Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Nat Commun ; 15(1): 3992, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734767

ABSTRACT

Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.


Subject(s)
Cryoelectron Microscopy , Electron Microscope Tomography , Proteasome Endopeptidase Complex , Proteomics , Ribosomes , Software , Electron Microscope Tomography/methods , Cryoelectron Microscopy/methods , Ribosomes/ultrastructure , Ribosomes/metabolism , Proteasome Endopeptidase Complex/ultrastructure , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/chemistry , Humans , Proteomics/methods , Nuclear Pore/ultrastructure , Nuclear Pore/metabolism , Microtubules/ultrastructure , Microtubules/metabolism , Fatty Acid Synthases/metabolism , Machine Learning , Imaging, Three-Dimensional/methods , Algorithms , Image Processing, Computer-Assisted/methods
2.
Nat Commun ; 15(1): 3797, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714656

ABSTRACT

Nucleoporins rich in phenylalanine/glycine (FG) residues form the permeability barrier within the nuclear pore complex and are implicated in several pathological cellular processes, including oncogenic fusion condensates. The self-association of FG-repeat proteins and interactions between FG-repeats play a critical role in these activities by forming hydrogel-like structures. Here we show that mutation of specific FG repeats of Nup98 can strongly decrease the protein's self-association capabilities. We further present a cryo-electron microscopy structure of a Nup98 peptide fibril with higher stability per residue compared with previous Nup98 fibril structures. The high-resolution structure reveals zipper-like hydrophobic patches which contain a GLFG motif and are less compatible for binding to nuclear transport receptors. The identified distinct molecular properties of different regions of the nucleoporin may contribute to spatial variations in the self-association of FG-repeats, potentially influencing transport processes through the nuclear pore.


Subject(s)
Cryoelectron Microscopy , Nuclear Pore Complex Proteins , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/ultrastructure , Humans , Mutation , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Nuclear Pore/chemistry , Glycine/chemistry , Glycine/metabolism , Phenylalanine/chemistry , Phenylalanine/metabolism , Repetitive Sequences, Amino Acid , Protein Binding , Models, Molecular , Hydrophobic and Hydrophilic Interactions
3.
Nature ; 618(7964): 411-418, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258668

ABSTRACT

The nuclear pore complex (NPC) is the bidirectional gate that mediates the exchange of macromolecules or their assemblies between nucleus and cytoplasm1-3. The assembly intermediates of the ribosomal subunits, pre-60S and pre-40S particles, are among the largest cargoes of the NPC and the export of these gigantic ribonucleoproteins requires numerous export factors4,5. Here we report the cryo-electron microscopy structure of native pre-60S particles trapped in the channel of yeast NPCs. In addition to known assembly factors, multiple factors with export functions are also included in the structure. These factors in general bind to either the flexible regions or subunit interface of the pre-60S particle, and virtually form many anchor sites for NPC binding. Through interactions with phenylalanine-glycine (FG) repeats from various nucleoporins of NPC, these factors collectively facilitate the passage of the pre-60S particle through the central FG repeat network of the NPC. Moreover, in silico analysis of the axial and radial distribution of pre-60S particles within the NPC shows that a single NPC can take up to four pre-60S particles simultaneously, and pre-60S particles are enriched in the inner ring regions close to the wall of the NPC with the solvent-exposed surface facing the centre of the nuclear pore. Our data suggest a translocation model for the export of pre-60S particles through the NPC.


Subject(s)
Active Transport, Cell Nucleus , Nuclear Pore , Saccharomyces cerevisiae , Cryoelectron Microscopy , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/ultrastructure , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Protein Subunits/chemistry , Protein Subunits/metabolism , Phenylalanine , Glycine , Computer Simulation , Solvents
4.
J Cell Biol ; 222(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36469001

ABSTRACT

Volume electron microscopy is an important imaging modality in contemporary cell biology. Identification of intracellular structures is a laborious process limiting the effective use of this potentially powerful tool. We resolved this bottleneck with automated segmentation of intracellular substructures in electron microscopy (ASEM), a new pipeline to train a convolutional neural network to detect structures of a wide range in size and complexity. We obtained dedicated models for each structure based on a small number of sparsely annotated ground truth images from only one or two cells. Model generalization was improved with a rapid, computationally effective strategy to refine a trained model by including a few additional annotations. We identified mitochondria, Golgi apparatus, endoplasmic reticulum, nuclear pore complexes, caveolae, clathrin-coated pits, and vesicles imaged by focused ion beam scanning electron microscopy. We uncovered a wide range of membrane-nuclear pore diameters within a single cell and derived morphological metrics from clathrin-coated pits and vesicles, consistent with the classical constant-growth assembly model.


Subject(s)
Image Processing, Computer-Assisted , Microscopy, Electron , Neural Networks, Computer , Clathrin , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/ultrastructure , Microscopy, Electron/methods , Mitochondria/ultrastructure , Nuclear Pore/ultrastructure , Caveolae/ultrastructure , Cell Biology
5.
Protein Cell ; 13(10): 760-777, 2022 10.
Article in English | MEDLINE | ID: mdl-35015240

ABSTRACT

The nuclear pore complex (NPC), one of the largest protein complexes in eukaryotes, serves as a physical gate to regulate nucleocytoplasmic transport. Here, we determined the 8 Å resolution cryo-electron microscopic (cryo-EM) structure of the outer rings containing nuclear ring (NR) and cytoplasmic ring (CR) from the Xenopus laevis NPC, with local resolutions reaching 4.9 Å. With the aid of AlphaFold2, we managed to build a pseudoatomic model of the outer rings, including the Y complexes and flanking components. In this most comprehensive and accurate model of outer rings to date, the almost complete Y complex structure exhibits much tighter interaction in the hub region. In addition to two copies of Y complexes, each asymmetric subunit in CR contains five copies of Nup358, two copies of the Nup214 complex, two copies of Nup205 and one copy of newly identified Nup93, while that in NR contains one copy of Nup205, one copy of ELYS and one copy of Nup93. These in-depth structural features represent a great advance in understanding the assembly of NPCs.


Subject(s)
Nuclear Pore , Oocytes , Animals , Artificial Intelligence , Cryoelectron Microscopy , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Oocytes/metabolism , Xenopus laevis
6.
Science ; 374(6573): eabd9776, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34762489

ABSTRACT

In eukaryotic cells, nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes and mediate nucleocytoplasmic exchange. They are made of 30 different nucleoporins and form a cylindrical architecture around an aqueous central channel. This architecture is highly dynamic in space and time. Variations in NPC diameter have been reported, but the physiological circumstances and the molecular details remain unknown. Here, we combined cryo­electron tomography with integrative structural modeling to capture a molecular movie of the respective large-scale conformational changes in cellulo. Although NPCs of exponentially growing cells adopted a dilated conformation, they reversibly constricted upon cellular energy depletion or conditions of hypertonic osmotic stress. Our data point to a model where the nuclear envelope membrane tension is linked to the conformation of the NPC.


Subject(s)
Nuclear Envelope/physiology , Nuclear Pore/physiology , Nuclear Pore/ultrastructure , Active Transport, Cell Nucleus , Biomechanical Phenomena , Cryoelectron Microscopy , Cytoplasm/metabolism , Energy Metabolism , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Models, Biological , Nuclear Envelope/ultrastructure , Nuclear Pore Complex Proteins/chemistry , Osmotic Pressure , Schizosaccharomyces/growth & development , Schizosaccharomyces/ultrastructure , Schizosaccharomyces pombe Proteins/chemistry , Stress, Physiological
7.
Cells ; 10(8)2021 07 30.
Article in English | MEDLINE | ID: mdl-34440706

ABSTRACT

The nuclear basket (NB) scaffold, a fibrillar structure anchored to the nuclear pore complex (NPC), is regarded as constructed of polypeptides of the coiled-coil dominated protein TPR to which other proteins can bind without contributing to the NB's structural integrity. Here we report vertebrate protein ZC3HC1 as a novel inherent constituent of the NB, common at the nuclear envelopes (NE) of proliferating and non-dividing, terminally differentiated cells of different morphogenetic origin. Formerly described as a protein of other functions, we instead present the NB component ZC3HC1 as a protein required for enabling distinct amounts of TPR to occur NB-appended, with such ZC3HC1-dependency applying to about half the total amount of TPR at the NEs of different somatic cell types. Furthermore, pointing to an NB structure more complex than previously anticipated, we discuss how ZC3HC1 and the ZC3HC1-dependent TPR polypeptides could enlarge the NB's functional repertoire.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Neoplasms/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Nuclear Proteins/metabolism , Oocytes/metabolism , Proto-Oncogene Proteins/metabolism , Xenopus Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle Proteins/genetics , Female , HCT116 Cells , HeLa Cells , Humans , Macaca mulatta , Neoplasms/genetics , Neoplasms/ultrastructure , Nuclear Pore/genetics , Nuclear Pore/ultrastructure , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/genetics , Oocytes/ultrastructure , Protein Binding , Proto-Oncogene Proteins/genetics , Signal Transduction , Xenopus Proteins/genetics , Xenopus laevis
8.
Mol Biol Cell ; 32(17): 1523-1533, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34191541

ABSTRACT

Nuclear pore complexes (NPCs) are large macromolecular machines that mediate the traffic between the nucleus and the cytoplasm. In vertebrates, each NPC consists of ∼1000 proteins, termed nucleoporins, and has a mass of more than 100 MDa. While a pseudo-atomic static model of the central scaffold of the NPC has recently been assembled by integrating data from isolated proteins and complexes, many structural components still remain elusive due to the enormous size and flexibility of the NPC. Here, we explored the power of three-dimensional (3D) superresolution microscopy combined with computational classification and averaging to explore the 3D structure of the NPC in single human cells. We show that this approach can build the first integrated 3D structural map containing both central as well as peripheral NPC subunits with molecular specificity and nanoscale resolution. Our unbiased classification of more than 10,000 individual NPCs indicates that the nuclear ring and the nuclear basket can adopt different conformations. Our approach opens up the exciting possibility to relate different structural states of the NPC to function in situ.


Subject(s)
Microscopy, Fluorescence/methods , Nuclear Pore Complex Proteins/ultrastructure , Nuclear Pore/ultrastructure , Animals , Cell Nucleus/metabolism , Cytoplasm/metabolism , Humans , Nuclear Pore/metabolism , Nuclear Pore/physiology , Nuclear Pore Complex Proteins/metabolism
9.
Nat Commun ; 12(1): 2847, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990554

ABSTRACT

Single molecule localization microscopy offers in principle resolution down to the molecular level, but in practice this is limited primarily by incomplete fluorescent labeling of the structure. This missing information can be completed by merging information from many structurally identical particles. In this work, we present an approach for 3D single particle analysis in localization microscopy which hugely increases signal-to-noise ratio and resolution and enables determining the symmetry groups of macromolecular complexes. Our method does not require a structural template, and handles anisotropic localization uncertainties. We demonstrate 3D reconstructions of DNA-origami tetrahedrons, Nup96 and Nup107 subcomplexes of the nuclear pore complex acquired using multiple single molecule localization microscopy techniques, with their structural symmetry deducted from the data.


Subject(s)
Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure , Single Molecule Imaging/methods , Algorithms , Cell Line , Computer Simulation , DNA/chemistry , DNA/ultrastructure , Humans , Imaging, Three-Dimensional , Molecular Conformation , Nuclear Pore/chemistry , Nuclear Pore/ultrastructure , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/ultrastructure , Signal-To-Noise Ratio , Single Molecule Imaging/statistics & numerical data
10.
Curr Opin Genet Dev ; 67: 142-150, 2021 04.
Article in English | MEDLINE | ID: mdl-33556822

ABSTRACT

The nuclear pore complex (NPC) is a massive nuclear envelope-embedded protein complex, the canonical function of which is to mediate selective nucleocytoplasmic transport. In addition to its transport function, the NPC has been shown to interact with the underlying chromatin and to influence both activating and repressive gene regulatory processes, contributing to the establishment and the epigenetic maintenance of cell identity. In this review, we discuss diverse gene regulatory functions of NPC components and emerging mechanisms underlying these functions, including roles in genome architecture, transcription complex assembly, chromatin remodeling, and coordination of transcription and mRNA export. These functional roles highlight the importance of the NPC as a nuclear scaffold directing genome organization and function.


Subject(s)
Active Transport, Cell Nucleus/genetics , Chromatin/ultrastructure , Genome/genetics , Nuclear Pore/ultrastructure , Chromatin/genetics , Gene Expression Regulation/genetics , Humans , Nuclear Envelope/genetics , Nuclear Envelope/ultrastructure , Nuclear Pore/genetics
11.
J Cell Biol ; 220(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33570570

ABSTRACT

Nuclear lamin isoforms form fibrous meshworks associated with nuclear pore complexes (NPCs). Using datasets prepared from subpixel and segmentation analyses of 3D-structured illumination microscopy images of WT and lamin isoform knockout mouse embryo fibroblasts, we determined with high precision the spatial association of NPCs with specific lamin isoform fibers. These relationships are retained in the enlarged lamin meshworks of Lmna-/- and Lmnb1-/- fibroblast nuclei. Cryo-ET observations reveal that the lamin filaments composing the fibers contact the nucleoplasmic ring of NPCs. Knockdown of the ring-associated nucleoporin ELYS induces NPC clusters that exclude lamin A/C fibers but include LB1 and LB2 fibers. Knockdown of the nucleoporin TPR or NUP153 alters the arrangement of lamin fibers and NPCs. Evidence that the number of NPCs is regulated by specific lamin isoforms is presented. Overall the results demonstrate that lamin isoforms and nucleoporins act together to maintain the normal organization of lamin meshworks and NPCs within the nuclear envelope.


Subject(s)
Computer Simulation , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Lamin Type A/metabolism , Lamin Type B/metabolism , Nuclear Pore/metabolism , Animals , Cell Line , Embryo, Mammalian/ultrastructure , Fibroblasts/ultrastructure , Lamin Type A/genetics , Lamin Type B/genetics , Mice , Mice, Knockout , Nuclear Pore/genetics , Nuclear Pore/ultrastructure , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
12.
Cell ; 184(4): 1032-1046.e18, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571428

ABSTRACT

Human immunodeficiency virus (HIV-1) remains a major health threat. Viral capsid uncoating and nuclear import of the viral genome are critical for productive infection. The size of the HIV-1 capsid is generally believed to exceed the diameter of the nuclear pore complex (NPC), indicating that capsid uncoating has to occur prior to nuclear import. Here, we combined correlative light and electron microscopy with subtomogram averaging to capture the structural status of reverse transcription-competent HIV-1 complexes in infected T cells. We demonstrated that the diameter of the NPC in cellulo is sufficient for the import of apparently intact, cone-shaped capsids. Subsequent to nuclear import, we detected disrupted and empty capsid fragments, indicating that uncoating of the replication complex occurs by breaking the capsid open, and not by disassembly into individual subunits. Our data directly visualize a key step in HIV-1 replication and enhance our mechanistic understanding of the viral life cycle.


Subject(s)
Capsid/metabolism , HIV-1/metabolism , Nuclear Pore/metabolism , Active Transport, Cell Nucleus , Capsid/ultrastructure , Cryoelectron Microscopy , HEK293 Cells , HIV Infections/virology , HIV-1/ultrastructure , Humans , Models, Biological , Nuclear Pore/ultrastructure , Nuclear Pore/virology , Reverse Transcription , Virion/metabolism , Virus Internalization , mRNA Cleavage and Polyadenylation Factors/metabolism
13.
Sci China Life Sci ; 64(1): 66-76, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32430850

ABSTRACT

It is recognized that HIV-1 capsid cores are disassembled in the cytoplasm, releasing their genomes into the nucleus through nuclear pores, but there is also evidence showing the capsid (CA) exists in the nucleus. Whether HIV-1 enters the nucleus and how it enters the nucleus through the undersized nuclear pore remains mysterious. Based on multicolor labeling and real-time imaging of the viral and cellular components, our observations via light and electron microscopy suggest that HIV-1 selectively gathered at the microtubule organization center (MTOC), leading the nearby nuclear envelope (NE) to undergo deformation, invagination and restoration to form a nuclear vesicle in which the viral particles were wrapped; then, the inner membrane of the nuclear vesicle ruptured to release HIV-1 into the nucleus. This unexpected discovery expands our understanding of the complexity of HIV-1 nuclear entry, which may provide new insights to HIV-1 virology.


Subject(s)
Capsid Proteins/metabolism , Cell Nucleus/metabolism , Endocytosis , HIV-1/metabolism , Nuclear Pore/metabolism , Virion/metabolism , Active Transport, Cell Nucleus , Cell Line, Tumor , Cell Nucleus/ultrastructure , Cell Nucleus/virology , HEK293 Cells , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , Humans , Microscopy, Confocal , Microscopy, Electron, Transmission , Microtubule-Organizing Center/metabolism , Microtubule-Organizing Center/virology , Nuclear Envelope/metabolism , Nuclear Envelope/ultrastructure , Nuclear Envelope/virology , Nuclear Pore/ultrastructure , Nuclear Pore/virology , Time-Lapse Imaging/methods , Virion/ultrastructure
14.
Elife ; 92020 12 21.
Article in English | MEDLINE | ID: mdl-33346731

ABSTRACT

While the static structure of the nuclear pore complex (NPC) continues to be refined with cryo-EM and x-ray crystallography, in vivo conformational changes of the NPC remain under-explored. We developed sensors that report on the orientation of NPC components by rigidly conjugating mEGFP to different NPC proteins. Our studies show conformational changes to select domains of nucleoporins (Nups) within the inner ring (Nup54, Nup58, Nup62) when transport through the NPC is perturbed and no conformational changes to Nups elsewhere in the NPC. Our results suggest that select components of the NPC are flexible and undergo conformational changes upon engaging with cargo.


Subject(s)
Active Transport, Cell Nucleus/physiology , Nuclear Pore/chemistry , Nuclear Pore/ultrastructure , Cell Line , Humans , Molecular Conformation , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/ultrastructure , Protein Conformation
15.
Nat Commun ; 11(1): 6179, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33268786

ABSTRACT

Nuclear pore complexes (NPCs) are the main conduits for molecular exchange across the nuclear envelope. The NPC is a modular assembly of ~500 individual proteins, called nucleoporins or nups. Most scaffolding nups are organized in two multimeric subcomplexes, the Nup84 or Y complex and the Nic96 or inner ring complex. Working in S. cerevisiae, and to study the assembly of these two essential subcomplexes, we here develop a set of twelve nanobodies that recognize seven constituent nucleoporins of the Y and Nic96 complexes. These nanobodies all bind specifically and with high affinity. We present structures of several nup-nanobody complexes, revealing their binding sites. Additionally, constitutive expression of the nanobody suite in S. cerevisiae detect accessible and obstructed surfaces of the Y complex and Nic96 within the NPC. Overall, this suite of nanobodies provides a unique and versatile toolkit for the study of the NPC.


Subject(s)
Nuclear Pore Complex Proteins/chemistry , Nuclear Pore/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/ultrastructure , Single-Domain Antibodies/chemistry , Amino Acid Sequence , Animals , Antibody Affinity , Antibody Specificity , Binding Sites , Camelids, New World , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Models, Molecular , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Peptide Library , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Single-Domain Antibodies/genetics , Single-Domain Antibodies/isolation & purification , Single-Domain Antibodies/metabolism
16.
PLoS Comput Biol ; 16(12): e1008479, 2020 12.
Article in English | MEDLINE | ID: mdl-33290385

ABSTRACT

Single-molecule localization microscopy (SMLM) is a powerful tool for studying intracellular structure and macromolecular organization at the nanoscale. The increasingly massive pointillistic data sets generated by SMLM require the development of new and highly efficient quantification tools. Here we present FOCAL3D, an accurate, flexible and exceedingly fast (scaling linearly with the number of localizations) density-based algorithm for quantifying spatial clustering in large 3D SMLM data sets. Unlike DBSCAN, which is perhaps the most commonly employed density-based clustering algorithm, an optimum set of parameters for FOCAL3D may be objectively determined. We initially validate the performance of FOCAL3D on simulated datasets at varying noise levels and for a range of cluster sizes. These simulated datasets are used to illustrate the parametric insensitivity of the algorithm, in contrast to DBSCAN, and clustering metrics such as the F1 and Silhouette score indicate that FOCAL3D is highly accurate, even in the presence of significant background noise and mixed populations of variable sized clusters, once optimized. We then apply FOCAL3D to 3D astigmatic dSTORM images of the nuclear pore complex (NPC) in human osteosaracoma cells, illustrating both the validity of the parameter optimization and the ability of the algorithm to accurately cluster complex, heterogeneous 3D clusters in a biological dataset. FOCAL3D is provided as an open source software package written in Python.


Subject(s)
Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods , Algorithms , Cluster Analysis , Datasets as Topic , Humans , Nuclear Pore/ultrastructure , Osteosarcoma/ultrastructure , Programming Languages , Software , Tumor Cells, Cultured
17.
Nature ; 586(7831): 796-800, 2020 10.
Article in English | MEDLINE | ID: mdl-32879490

ABSTRACT

Nuclear pore complexes (NPCs) fuse the inner and outer membranes of the nuclear envelope. They comprise hundreds of nucleoporins (Nups) that assemble into multiple subcomplexes and form large central channels for nucleocytoplasmic exchange1,2. How this architecture facilitates messenger RNA export, NPC biogenesis and turnover remains poorly understood. Here we combine in situ structural biology and integrative modelling with correlative light and electron microscopy and molecular perturbation to structurally analyse NPCs in intact Saccharomyces cerevisiae cells within the context of nuclear envelope remodelling. We find an in situ conformation and configuration of the Nup subcomplexes that was unexpected from the results of previous in vitro analyses. The configuration of the Nup159 complex appears critical to spatially accommodate its function as an mRNA export platform, and as a mediator of NPC turnover. The omega-shaped nuclear envelope herniae that accumulate in nup116Δ cells3 conceal partially assembled NPCs lacking multiple subcomplexes, including the Nup159 complex. Under conditions of starvation, herniae of a second type are formed that cytoplasmically expose NPCs. These results point to a model of NPC turnover in which NPC-containing vesicles bud off from the nuclear envelope before degradation by the autophagy machinery. Our study emphasizes the importance of investigating the structure-function relationship of macromolecular complexes in their cellular context.


Subject(s)
Cryoelectron Microscopy , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/ultrastructure , Autophagy , Models, Molecular , Nuclear Pore/chemistry , Nuclear Pore Complex Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Tomography
19.
J Cell Biol ; 219(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32453403

ABSTRACT

The mechanisms underlying turnover of the nuclear pore complex (NPC) and the component nucleoporins (Nups) are still poorly understood. In this study, we found that the budding yeast Saccharomyces cerevisiae triggers NPC degradation by autophagy upon the inactivation of Tor kinase complex 1. This degradation largely depends on the selective autophagy-specific factor Atg11 and the autophagy receptor-binding ability of Atg8, suggesting that the NPC is degraded via receptor-dependent selective autophagy. Immunoelectron microscopy revealed that NPCs embedded in nuclear envelope-derived double-membrane vesicles are sequestered within autophagosomes. At least two pathways are involved in NPC degradation: Atg39-dependent nucleophagy (selective autophagy of the nucleus) and a pathway involving an unknown receptor. In addition, we found the interaction between Nup159 and Atg8 via the Atg8-family interacting motif is important for degradation of this nucleoporin not assembled into the NPC. Thus, this study provides the first evidence for autophagic degradation of the NPC and Nups, which we term "NPC-phagy" and "nucleoporinophagy."


Subject(s)
Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Proteins/genetics , Autophagy/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Vesicular Transport Proteins/genetics , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Gene Expression Regulation, Fungal , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Microscopy, Immunoelectron , Nuclear Pore/drug effects , Nuclear Pore/ultrastructure , Nuclear Pore Complex Proteins/metabolism , Protein Binding , Protein Kinase Inhibitors/pharmacology , Proteolysis/drug effects , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Sirolimus/pharmacology , Vesicular Transport Proteins/metabolism
20.
Anal Chem ; 91(23): 14911-14919, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31692338

ABSTRACT

Dynamic tracking of the spatiotemporal coordination among various organelles to in-depth understanding of the mechanism of autophagy have attracted considerable attention. However, the monitor of nucleoli participation in autophagy was somehow neglected. Herein, we report a RNA-targeted bioprobe (ADAP) with high selective permeability into nuclear pore complexes, which induced a two-photon (TP) fluorescence "off-on" response by groove combination with RNA, dynamically monitoring the autophagy process among multiorganelles (nucleoli, mitochondria, and mitochondria-containing lysosomes). This work provides a simple and convenient way to observe the dynamic behavior of multiorganelles during the autophagy process, which benefits the understanding of cellular metabolism.


Subject(s)
Biosensing Techniques/methods , Fluorescent Dyes/metabolism , Microscopy, Fluorescence, Multiphoton/methods , Nuclear Pore/metabolism , Photons , RNA/metabolism , Autophagy , Cell Nucleolus/metabolism , Cell Nucleolus/ultrastructure , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Lysosomes/metabolism , Lysosomes/ultrastructure , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitophagy , Molecular Docking Simulation , Nuclear Pore/ultrastructure , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...