Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 285
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732079

ABSTRACT

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


Subject(s)
ARNTL Transcription Factors , Circadian Rhythm , Mitophagy , Nuclear Receptor Subfamily 1, Group D, Member 1 , Animals , Rats , Circadian Rhythm/physiology , Male , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Weightlessness Simulation , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Body Temperature , Heart Rate , Rats, Sprague-Dawley , Proteolysis
2.
Sci Rep ; 14(1): 8401, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600172

ABSTRACT

REV-ERBα, a therapeutically promising nuclear hormone receptor, plays a crucial role in regulating various physiological processes such as the circadian clock, inflammation, and metabolism. However, the availability of chemical probes to investigate the pharmacology of this receptor is limited, with SR8278 being the only identified synthetic antagonist. Moreover, no X-ray crystal structures are currently available that demonstrate the binding of REV-ERBα to antagonist ligands. This lack of structural information impedes the development of targeted therapeutics. To address this issue, we employed Gaussian accelerated molecular dynamics (GaMD) simulations to investigate the binding pathway of SR8278 to REV-ERBα. For comparison, we also used GaMD to observe the ligand binding process of STL1267, for which an X-ray structure is available. GaMD simulations successfully captured the binding of both ligands to the receptor's orthosteric site and predicted the ligand binding pathway and important amino acid residues involved in the antagonist SR8278 binding. This study highlights the effectiveness of GaMD in investigating protein-ligand interactions, particularly in the context of drug recognition for nuclear hormone receptors.


Subject(s)
Isoquinolines , Nuclear Receptor Subfamily 1, Group D, Member 1 , Ligands , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Isoquinolines/chemistry , Thiophenes/chemistry , Circadian Rhythm/physiology
3.
Cell Rep ; 43(4): 114075, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38583151

ABSTRACT

Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and no specific drugs are clinically available. We have previously demonstrated that inhibiting microsomal prostaglandin E synthase-2 (mPGES-2) alleviated type 2 diabetes by enhancing ß cell function and promoting insulin production. However, the involvement of mPGES-2 in DKD remains unclear. Here, we aimed to analyze the association of enhanced mPGES-2 expression with impaired metabolic homeostasis of renal lipids and subsequent renal damage. Notably, global knockout or pharmacological blockage of mPGES-2 attenuated diabetic podocyte injury and tubulointerstitial fibrosis, thereby ameliorating lipid accumulation and lipotoxicity. These findings were further confirmed in podocyte- or tubule-specific mPGES-2-deficient mice. Mechanistically, mPGES-2 and Rev-Erbα competed for heme binding to regulate fatty acid binding protein 5 expression and lipid metabolism in the diabetic kidney. Our findings suggest a potential strategy for treating DKD via mPGES-2 inhibition.


Subject(s)
Diabetic Nephropathies , Lipid Metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1 , Podocytes , Prostaglandin-E Synthases , Signal Transduction , Animals , Humans , Male , Mice , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/drug therapy , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Fibrosis , Kidney/pathology , Kidney/metabolism , Lipid Metabolism/drug effects , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Podocytes/metabolism , Podocytes/pathology , Podocytes/drug effects , Prostaglandin-E Synthases/metabolism , Prostaglandin-E Synthases/genetics , Signal Transduction/drug effects
4.
Theranostics ; 14(5): 2036-2057, 2024.
Article in English | MEDLINE | ID: mdl-38505614

ABSTRACT

Background: ApoA5 mainly synthesized and secreted by liver is a key modulator of lipoprotein lipase (LPL) activity and triglyceride-rich lipoproteins (TRLs). Although the role of ApoA5 in extrahepatic triglyceride (TG) metabolism in circulation has been well documented, the relationship between ApoA5 and nonalcoholic fatty liver disease (NAFLD) remains incompletely understood and the underlying molecular mechanism still needs to be elucidated. Methods: We used CRISPR/Cas9 gene editing to delete Apoa5 gene from Syrian golden hamster, a small rodent model replicating human metabolic features. Then, the ApoA5-deficient (ApoA5-/-) hamsters were used to investigate NAFLD with or without challenging a high fat diet (HFD). Results: ApoA5-/- hamsters exhibited hypertriglyceridemia (HTG) with markedly elevated TG levels at 2300 mg/dL and hepatic steatosis on a regular chow diet, accompanied with an increase in the expression levels of genes regulating lipolysis and small adipocytes in the adipose tissue. An HFD challenge predisposed ApoA5-/- hamsters to severe HTG (sHTG) and nonalcoholic steatohepatitis (NASH). Mechanistic studies in vitro and in vivo revealed that targeting ApoA5 disrupted NR1D1 mRNA stability in the HepG2 cells and the liver to reduce both mRNA and protein levels of NR1D1, respectively. Overexpression of human NR1D1 by adeno-associated virus 8 (AAV8) in the livers of ApoA5-/- hamsters significantly ameliorated fatty liver without affecting plasma lipid levels. Moreover, restoration of hepatic ApoA5 or activation of UCP1 in brown adipose tissue (BAT) by cold exposure or CL316243 administration could significantly correct sHTG and hepatic steatosis in ApoA5-/- hamsters. Conclusions: Our data demonstrate that HTG caused by ApoA5 deficiency in hamsters is sufficient to elicit hepatic steatosis and HFD aggravates NAFLD by reducing hepatic NR1D1 mRNA and protein levels, which provides a mechanistic link between ApoA5 and NAFLD and suggests the new insights into the potential therapeutic approaches for the treatment of HTG and the related disorders due to ApoA5 deficiency in the clinical trials in future.


Subject(s)
Hyperlipidemias , Non-alcoholic Fatty Liver Disease , Animals , Cricetinae , Humans , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Triglycerides/metabolism , Hyperlipidemias/metabolism , Diet, High-Fat/adverse effects , Mesocricetus , RNA, Messenger/metabolism , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
5.
J Biol Rhythms ; 39(1): 20-34, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37872767

ABSTRACT

Circadian-paced biological processes are key to physiology and required for metabolic, immunologic, and cardiovascular homeostasis. Core circadian clock components are transcription factors whose half-life is precisely regulated, thereby controlling the intrinsic cellular circadian clock. Genetic disruption of molecular clock components generally leads to marked pathological events phenotypically affecting behavior and multiple aspects of physiology. Using a transcriptional signature similarity approach, we identified anti-cancer protein synthesis inhibitors as potent modulators of the cardiomyocyte molecular clock. Eukaryotic protein translation inhibitors, ranging from translation initiation (rocaglates, 4-EGI1, etc.) to ribosomal elongation inhibitors (homoharringtonine, puromycin, etc.), were found to potently ablate protein abundance of REV-ERBα, a repressive nuclear receptor and component of the molecular clock. These inhibitory effects were observed both in vitro and in vivo and could be extended to PER2, another component of the molecular clock. Taken together, our observations suggest that the activity spectrum of protein synthesis inhibitors, whose clinical use is contemplated not only in cancers but also in viral infections, must be extended to circadian rhythm disruption, with potential beneficial or iatrogenic effects upon acute or prolonged administration.


Subject(s)
Circadian Clocks , Circadian Clocks/genetics , Circadian Rhythm/physiology , Protein Synthesis Inhibitors , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Heart
6.
Mil Med Res ; 10(1): 62, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072952

ABSTRACT

Nuclear receptor subfamily 1, group D, member 1 (NR1D1, also known as REV-ERBα) belongs to the nuclear receptor (NR) family, and is a heme-binding component of the circadian clock that consolidates circadian oscillators. In addition to repressing the transcription of multiple clock genes associated with circadian rhythms, NR1D1 has a wide range of downstream target genes that are intimately involved in many physiopathological processes, including autophagy, immunity, inflammation, metabolism and aging in multiple organs. This review focuses on the pivotal role of NR1D1 as a key transcription factor in the gene regulatory network, with particular emphasis on the milestones of the latest discoveries of NR1D1 ligands. NR1D1 is considered as a promising drug target for treating diverse diseases and may contribute to research on innovative biomarkers and therapeutic targets for organ injury-related diseases. Further research on NR1D1 ligands in prospective human trials may pave the way for their clinical application in many organ injury-related disorders.


Subject(s)
Circadian Rhythm , Nuclear Receptor Subfamily 1, Group D, Member 1 , Humans , Prospective Studies , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
7.
J Med Chem ; 66(21): 14815-14823, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37888788

ABSTRACT

Autoimmune diseases affect 50 million Americans, predominantly women, and are thought to be one of the top 10 leading causes of death among women in age groups up to 65 years. A central role for TH17 cells has been highlighted by genome-wide association studies (GWAS) linking genes preferentially expressed in TH17 cells to several human autoimmune diseases. We and others have reported that the nuclear receptors REV-ERBα and ß are cell-intrinsic repressors of TH17 cell development and pathogenicity and might therefore be therapeutic targets for intervention. Herein, we describe detailed SAR studies of a novel REV-ERBα-selective scaffold. Metabolic stability of the ligands was optimized allowing for in vivo interrogation of the receptor in a mouse model of multiple sclerosis (EAE) with a ligand (34). Reduction in frequency and number of T-cells in the CNS as well as key REV-ERB target genes is a measure of target engagement in vivo.


Subject(s)
Genome-Wide Association Study , Multiple Sclerosis , Mice , Animals , Humans , Female , Male , Transcription Factors/genetics , Cell Differentiation , Multiple Sclerosis/drug therapy , Structure-Activity Relationship , Nuclear Receptor Subfamily 1, Group D, Member 1/agonists , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
8.
Mol Biol Rep ; 50(12): 10427-10443, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37874505

ABSTRACT

BACKGROUND: Today, modern lifestyles and disrupted sleep patterns cause circadian clock rhythm impairments that are associated with altered leptin levels, which subsequently affect a wide range of physiological processes and have significant health burdens on societies. Nevertheless, there has been no systematic review of circadian clock genes and proteins, leptin, and related signaling pathways. METHODS: Accordingly, we systematically reviewed circadian clock proteins, leptin, and molecular mechanisms between them by searching Pubmed, Scopus, ProQuest, Web of Sciences, and Google Scholar until September 2022. After considering the inclusion and exclusion criteria, 20 animal studies were selected. The risk of bias was assessed in each study. RESULTS: The results clarified the reciprocal interconnected relationship between circadian clock genes and leptin. Circadian clock genes regulate leptin expression and signaling via different mechanisms, such as CLOCK-BMAL1 heterodimers, which increase the expression of PPARs. PPARs induce the expression of C/EBPα, a key factor in upregulating leptin expression. CLOCK-BMAL1 also induces the expression of Per1 and Rev-erb genes. PER1 activates mTORC1 and mTORC1 enhances the expression of C/EBPα. In addition, REV-ERBs activate the leptin signaling pathway. Also, leptin controls the expression of circadian clock genes by triggering the AMPK and ERK/MAPK signaling pathways, which regulate the activity of PPARs. Moreover, the roles of these molecular mechanisms are elucidated in different physiological processes and organs. CONCLUSIONS: Crosstalk between circadian clock genes and leptin and their affecting elements should be considered in the selection of new therapeutic targets for related disorders, especially obesity and metabolic impairments.


Subject(s)
Circadian Clocks , Circadian Rhythm Signaling Peptides and Proteins , Animals , ARNTL Transcription Factors , Circadian Clocks/genetics , Circadian Rhythm/genetics , Leptin/genetics , Mechanistic Target of Rapamycin Complex 1 , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Peroxisome Proliferator-Activated Receptors , Humans
9.
Mol Cell ; 83(19): 3399-3401, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37802021

ABSTRACT

In this issue of Molecular Cell, Zhu et al.1 demonstrate that REV-ERBα and its co-repressor NCOR1 are assembled into daytime-dependent liquid droplets that constitute hubs in which the transcription of multiple REV-ERBα target genes is simultaneously repressed.


Subject(s)
Circadian Rhythm , Nuclear Receptor Subfamily 1, Group D, Member 1 , Circadian Rhythm/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Promoter Regions, Genetic
10.
Mol Cell ; 83(19): 3457-3469.e7, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37802023

ABSTRACT

Circadian gene transcription is fundamental to metabolic physiology. Here we report that the nuclear receptor REV-ERBα, a repressive component of the molecular clock, forms circadian condensates in the nuclei of mouse liver. These condensates are dictated by an intrinsically disordered region (IDR) located in the protein's hinge region which specifically concentrates nuclear receptor corepressor 1 (NCOR1) at the genome. IDR deletion diminishes the recruitment of NCOR1 and disrupts rhythmic gene transcription in vivo. REV-ERBα condensates are located at high-order transcriptional repressive hubs in the liver genome that are highly correlated with circadian gene repression. Deletion of the IDR disrupts transcriptional repressive hubs and diminishes silencing of target genes by REV-ERBα. This work demonstrates physiological circadian protein condensates containing REV-ERBα whose IDR is required for hub formation and the control of rhythmic gene expression.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Liver/metabolism , Gene Expression
11.
Biol Reprod ; 109(5): 720-735, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37552055

ABSTRACT

Trophoblast plays a crucial role in gestation maintenance and embryo implantation, partly due to the synthesis of progesterone. It has been demonstrated that hypoxia regulates invasion, proliferation, and differentiation of trophoblast cells. Additionally, human trophoblasts display rhythmic expression of circadian clock genes. However, it remains unclear if the circadian clock system is present in goat trophoblast cells (GTCs), and its involvement in hypoxia regulation of steroid hormone synthesis remains elusive. In this study, immunofluorescence staining revealed that both BMAL1 and NR1D1 (two circadian clock components) were highly expressed in GTCs. Quantitative real-time PCR analysis showed that several circadian clock genes were rhythmically expressed in forskolin-synchronized GTCs. To mimic hypoxia, GTCs were treated with hypoxia-inducing reagents (CoCl2 or DMOG). Quantitative real-time PCR results demonstrated that hypoxia perturbed the mRNA expression of circadian clock genes and StAR. Notably, the increased expression of NR1D1 and the reduction of StAR expression in hypoxic GTCs were also detected by western blotting. In addition, progesterone secretion exhibited a notable decline in hypoxic GTCs. SR9009, an NR1D1 agonist, significantly decreased StAR expression at both the mRNA and protein levels and markedly inhibited progesterone secretion in GTCs. Moreover, SR8278, an NR1D1 antagonist, partially reversed the inhibitory effect of CoCl2 on mRNA and protein expression levels of StAR and progesterone synthesis in GTCs. Our results demonstrate that hypoxia reduces StAR expression via the activation of NR1D1 signaling in GTCs, thus inhibiting progesterone synthesis. These findings provide new insights into the NR1D1 regulation of progesterone synthesis in GTCs under hypoxic conditions.


Subject(s)
Progesterone , Trophoblasts , Animals , Humans , Trophoblasts/metabolism , Goats/genetics , Hypoxia , RNA, Messenger , Cobalt , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
12.
Exp Mol Med ; 55(8): 1806-1819, 2023 08.
Article in English | MEDLINE | ID: mdl-37537215

ABSTRACT

Social interaction among conspecifics is essential for maintaining adaptive, cooperative, and social behaviors, along with survival among mammals. The 5-hydroxytryptamine (5-HT) neuronal system is an important neurotransmitter system for regulating social behaviors; however, the circadian role of 5-HT in social interaction behaviors is unclear. To investigate whether the circadian nuclear receptor REV-ERBα, a transcriptional repressor of the rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) gene in 5-HT biosynthesis, may affect social interaction behaviors, we generated a conditional knockout (cKO) mouse by targeting Rev-Erbα in dorsal raphe (DR) 5-HT neurons (5-HTDR-specific REV-ERBα cKO) using the CRISPR/Cas9 gene editing system and assayed social behaviors, including social preference and social recognition, with a three-chamber social interaction test at two circadian time (CT) points, i.e., at dawn (CT00) and dusk (CT12). The genetic ablation of Rev-Erbα in DR 5-HTergic neurons caused impaired social interaction behaviors, particularly social preference but not social recognition, with no difference between the two CT points. This deficit of social preference induced by Rev-Erbα in 5-HTDR-specific mice is functionally associated with real-time elevated neuron activity and 5-HT levels at dusk, as determined by fiber-photometry imaging sensors. Moreover, optogenetic inhibition of DR to nucleus accumbens (NAc) 5-HTergic circuit restored the impairment of social preference in 5-HTDR-specific REV-ERBα cKO mice. These results suggest the significance of the circadian regulation of 5-HT levels by REV-ERBα in regulating social interaction behaviors.


Subject(s)
Circadian Rhythm , Nuclear Receptor Subfamily 1, Group D, Member 1 , Social Behavior , Animals , Mice , Circadian Rhythm/genetics , Dorsal Raphe Nucleus/metabolism , Mammals/metabolism , Mice, Knockout , Neurons/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Serotonin , Social Interaction
13.
Brain Behav Immun ; 114: 287-298, 2023 11.
Article in English | MEDLINE | ID: mdl-37648007

ABSTRACT

The circadian system is an evolutionarily adaptive system that synchronizes biological and physiological activities within the body to the 24 h oscillations on Earth. At the molecular level, circadian clock proteins are transcriptional factors that regulate the rhythmic expression of genes involved in numerous physiological processes such as sleep, cognition, mood, and immune function. Environmental and genetic disruption of the circadian clock can lead to pathology. For example, global deletion of the circadian clock gene Rev-erbα (RKO) leads to hyperlocomotion, increased anxiety-like behaviors, and cognitive impairments in male mice; however, the mechanisms underlying behavioral changes remain unclear. Here we hypothesized that RKO alters microglia function leading to neuroinflammation and altered mood and cognition, and that microglia depletion can resolve neuroinflammation and restore behavior. We show that microglia depletion (CSF1R inhibitor, PLX5622) in 8-month-old RKO mice ameliorated hyperactivity, memory impairments, and anxiety/risky-like behaviors. RKO mice exhibited striking increases in expression of pro-inflammatory cytokines (e.g., IL-1ß and IL-6). Surprisingly, these increases were only fully reversed by microglia depletion in the male but not female RKO hippocampus. In contrast, male RKO mice showed greater alterations in microglial morphology and phagocytic activity than females. In both sexes, microglia depletion reduced microglial branching and decreased CD68 production without altering astrogliosis. Taken together, we show that male and female RKO mice exhibit unique perturbations to the neuroimmune system, but microglia depletion is effective at rescuing aspects of behavioral changes in both sexes. These results demonstrate that microglia are involved in Rev-erbα-mediated changes in behavior and neuroinflammation.


Subject(s)
Cognitive Dysfunction , Microglia , Nuclear Receptor Subfamily 1, Group D, Member 1 , Animals , Female , Male , Mice , Anxiety , Circadian Rhythm/physiology , Cognition , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Mice, Knockout , Microglia/metabolism , Neuroinflammatory Diseases , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
14.
Biochem Biophys Res Commun ; 669: 120-127, 2023 08 20.
Article in English | MEDLINE | ID: mdl-37269594

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by excessive scarring of the lungs that can lead to respiratory failure and death. Lungs of patients with IPF demonstrate excessive deposition of extracellular matrix (ECM) and an increased presence of pro-fibrotic mediators such as transforming growth factor-beta 1 (TGFß1), which is a major driver of fibroblast-to-myofibroblast transition (FMT). Current literature supports that circadian clock dysfunction plays an essential role in the pathophysiology of various chronic inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease, and IPF. The circadian clock transcription factor Rev-erbα is encoded by Nr1d1 that regulates daily rhythms of gene expression linked to immunity, inflammation, and metabolism. However, investigations into the potential roles of Rev-erbα in TGFß-induced FMT and ECM accumulation are limited. In this study, we utilized several novel small molecule Rev-erbα agonists (GSK41122, SR9009, and SR9011) and a Rev-erbα antagonist (SR8278) to determine the roles of Rev-erbα in regulating TGFß1-induced FMT and pro-fibrotic phenotypes in human lung fibroblasts. WI-38 cells were either pre-treated/co-treated with or without Rev-erbα agonist/antagonist along with TGFß1. After 48 h, the following parameters were evaluated: secretion of COL1A1 (Slot-Blot analysis) and IL-6 (ELISA) into condition media, expressions of α-smooth muscle actin (αSMA: immunostaining and confocal microscopy), and pro-fibrotic proteins (αSMA and COL1A1 by immunoblotting), as well as gene expression of pro-fibrotic targets (qRT-PCR: Acta2, Fn1, and Col1a1). Results revealed that Rev-erbα agonists inhibited TGFß1-induced FMT (αSMA and COL1A1), and ECM production (reduced gene expression of Acta2, Fn1, and Col1a1), and decreased pro-inflammatory cytokine IL-6 release. The Rev-erbα antagonist promoted TGFß1-induced pro-fibrotic phenotypes. These findings support the potential of novel circadian clock-based therapeutics, such as Rev-erbα agonist, for the treatment and management of fibrotic lung diseases and disorders.


Subject(s)
Idiopathic Pulmonary Fibrosis , Myofibroblasts , Humans , Myofibroblasts/metabolism , Interleukin-6/metabolism , Lung/pathology , Fibrosis , Idiopathic Pulmonary Fibrosis/pathology , Fibroblasts/metabolism , Phenotype , Chronic Disease , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
15.
Endocrinology ; 164(6)2023 04 17.
Article in English | MEDLINE | ID: mdl-37149727

ABSTRACT

REV-ERB nuclear receptors are potent transcriptional repressors that play an important role in the core mammalian molecular clock and metabolism. Deletion of both REV-ERBα and its largely redundant isoform REV-ERBß in a murine tissue-specific manner have shed light on their specific functions in clock mechanisms and circadian metabolism. This review highlights recent findings that establish REV-ERBs as crucial circadian timekeepers in a variety of tissues, regulating overlapping and distinct processes that maintain normal physiology and protect from metabolic dysfunction.


Subject(s)
Circadian Clocks , Circadian Rhythm , Mice , Animals , Circadian Rhythm/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Mammals/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Circadian Clocks/genetics
16.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240325

ABSTRACT

REV-ERB receptors are members of the nuclear receptor superfamily of proteins, which act as both intracellular receptors and transcription factors, therefore modulating the expression of target genes. REV-ERBs act as transcription repressors because of their unique structure. Their predominant role involves the control of peripheral circadian rhythmicity by participating in a transcription-translation feedback loop with other major clock genes. Regarding their role in cancer pathogenesis, recent studies in various cancerous tissues have revealed that their expression was downregulated in the majority of the cases. Dysregulation of their expression was also implicated in cancer-associated cachexia. The pharmacological restoration of their effects is feasible with synthetic agonists, which have been explored in preclinical studies but with scarce data. There is a need for further investigation, primarily with mechanistic studies, on the effect of the REV-ERB-induced circadian rhythm deregulation in carcinogenesis and cancer-related systemic effects, such as cachexia, in order to address the potential of relevant therapeutic implications.


Subject(s)
Cachexia , Neoplasms , Humans , Cachexia/genetics , Transcription Factors , Circadian Rhythm/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Neoplasms/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
17.
Urol Oncol ; 41(7): 327.e9-327.e18, 2023 07.
Article in English | MEDLINE | ID: mdl-37208228

ABSTRACT

PURPOSE: To explore the role of circadian clock gene NR1D1 (REV-erbα) in bladder cancer (BC). METHODS: Firstly, the association of NR1D1 level with clinical characteristics and prognosis was investigated among patients diagnosed with BC. Secondly, CCK-8, transwell, and colony formation experiments were performed among BC cells treated with Rev-erbα agonist (SR9009), as well as lentivirus and siRNA, for which NR1D1 were overexpressed (OE) and knocked down (KD), respectively. Thirdly, cell cycle and apoptosis were tested by flowcytometry. PI3K/AKT/mTOR pathway proteins were determined in OE-NR1D1 cells. Finally, OE-NR1D1 and OE-Control BC cells were subcutaneously implanted in BALB/c nude mice. The tumor size and protein levels were compared between groups. A P < 0.05 was considered as statistically significant. RESULTS: Patients with NR1D1 positive status had a longer disease-free survival than those with negative expression. The cell viability, migration, and colony formation of BC cells after treated with SR9009 were significantly suppressed. OE-NR1D1 cells had obviously inhibited cell viability, migration, and colony formation, while those were found strengthened in KD-NR1D1 cells. Besides, KD-NR1D1 cells were observed with a lower proportion of dead cells and G0/G1 cells, but a higher ratio of G2/M. The changes of p-AKT, p-S6, p-4EBP1, and FASN involved in PI3K/AKT/mTOR pathway were detected in OE- and KD-NR1D1 BC cells. Finally, in vivo data demonstrated that overexpression of NR1D1 suppressed the tumorigenicity of BC cells. CONCLUSION: NR1D1 played a role of tumor suppressor and it might become a novel target for the treatment of BC.


Subject(s)
Nuclear Receptor Subfamily 1, Group D, Member 1 , Urinary Bladder Neoplasms , Animals , Mice , Mice, Nude , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Humans
18.
J Clin Invest ; 133(8)2023 04 17.
Article in English | MEDLINE | ID: mdl-37066875

ABSTRACT

Rhythmic intraorgan communication coordinates environmental signals and the cell-intrinsic clock to maintain organ homeostasis. Hepatocyte-specific KO of core components of the molecular clock Rev-erbα and -ß (Reverb-hDKO) alters cholesterol and lipid metabolism in hepatocytes as well as rhythmic gene expression in nonparenchymal cells (NPCs) of the liver. Here, we report that in fatty liver caused by diet-induced obesity (DIO), hepatocyte SREBP cleavage-activating protein (SCAP) was required for Reverb-hDKO-induced diurnal rhythmic remodeling and epigenomic reprogramming in liver macrophages (LMs). Integrative analyses of isolated hepatocytes and LMs revealed that SCAP-dependent lipidomic changes in REV-ERB-depleted hepatocytes led to the enhancement of LM metabolic rhythms. Hepatocytic loss of REV-ERBα and ß (REV-ERBs) also attenuated LM rhythms via SCAP-independent polypeptide secretion. These results shed light on the signaling mechanisms by which hepatocytes regulate diurnal rhythms in NPCs in fatty liver disease caused by DIO.


Subject(s)
Liver , Nuclear Receptor Subfamily 1, Group D, Member 1 , Sterol Regulatory Element Binding Protein 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Liver/metabolism , Hepatocytes/metabolism , Circadian Rhythm/physiology , Communication
19.
Nat Commun ; 14(1): 1295, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894533

ABSTRACT

Molecular clock REV-ERBα is central to regulating lung injuries, and decreased REV-ERBα abundance mediates sensitivity to pro-fibrotic insults and exacerbates fibrotic progression. In this study, we determine the role of REV-ERBα in fibrogenesis induced by bleomycin and Influenza A virus (IAV). Bleomycin exposure decreases the abundance of REV-ERBα, and mice dosed with bleomycin at night display exacerbated lung fibrogenesis. Rev-erbα agonist (SR9009) treatment prevents bleomycin induced collagen overexpression in mice. Rev-erbα global heterozygous (Rev-erbα Het) mice infected with IAV showed augmented levels of collagens and lysyl oxidases compared with WT-infected mice. Furthermore, Rev-erbα agonist (GSK4112) prevents collagen and lysyl oxidase overexpression induced by TGFß in human lung fibroblasts, whereas the Rev-erbα antagonist exacerbates it. Overall, these results indicate that loss of REV-ERBα exacerbates the fibrotic responses by promoting collagen and lysyl oxidase expression, whereas Rev-erbα agonist prevents it. This study provides the potential of Rev-erbα agonists in the treatment of pulmonary fibrosis.


Subject(s)
Circadian Clocks , Pulmonary Fibrosis , Animals , Humans , Mice , Circadian Clocks/genetics , Circadian Rhythm/physiology , Collagen , Lung/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Protein-Lysine 6-Oxidase , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics
20.
Yi Chuan ; 45(2): 99-114, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36927658

ABSTRACT

The physiological processes of mammals show rhythmic changes in a 24-h cycle. Circadian rhythms are under the subtle control of the autonomous circadian clock, and dysregulation of the circadian system can lead to health problems such as metabolic disorders. REV-ERBα, a member of the nuclear receptor superfamily, is an important component of the mammalian circadian clock. REV-ERBα regulates various physiological processes, including the regulation of metabolism, inflammation and immunity as well as the circadian rhythm, making it a potential therapeutic target for metabolic syndrome, inflammatory diseases and cancers. In recent years, an array of new REV-ERBα ligands have been discovered, most of which have potential applications in the treatment of diseases. In this review, we focus on the regulatory role of nuclear receptor REV-ERBα in energy metabolism and inflammation, in order to provide new strategies for the therapy of metabolic syndrome and its related diseases.


Subject(s)
Circadian Clocks , Metabolic Syndrome , Animals , Circadian Clocks/genetics , Metabolic Syndrome/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Energy Metabolism , Mammals/metabolism , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...