Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mod Pathol ; 33(8): 1505-1517, 2020 08.
Article in English | MEDLINE | ID: mdl-32094425

ABSTRACT

Diagnosis of osteocartilaginous pathologies depends on morphological examination and immunohistochemical and molecular biology analyses. Decalcification is required before tissue processing, but available protocols often lead to altered proteins and nucleic acids, and thus compromise the diagnosis. The objective of this study was to compare the effect of different methods of decalcification on histomolecular analyses required for diagnosis and to recommend an optimal protocol for processing these samples in routine practice. We prospectively submitted 35 tissue samples to different decalcification procedures with hydrochloric acid, formic acid, and EDTA, in short, overnight and long cycles for 1 to >10 cycles. Preservation of protein integrity was examined by immunohistochemistry, and quality of nucleic acids was estimated after extraction (DNA and RNA concentrations, 260/280 ratios, PCR cycle thresholds), analysis of DNA mutations (high-resolution melting) or amplifications (PCR, in situ hybridization), and detection of fusion transcripts (RT-PCR, in situ hybridization). Hydrochloric acid- and long-term formic acid-based decalcification induced false-negative results on immunohistochemistry and molecular analysis. EDTA and short-term formic acid-based decalcification (<5 cycles of 6 h each) did not alter antigenicity and allowed for detection of gene mutations, amplifications or even fusion transcripts. EDTA showed superiority for in situ hybridization techniques. According to these results and our institutional experience, we propose recommendations for decalcification of bone samples, from biopsies to surgical specimens.


Subject(s)
Artifacts , Bone Diseases/diagnosis , Decalcification Technique/methods , Nucleic Acids/agonists , Edetic Acid/pharmacology , Formates/pharmacology , Humans , Hydrochloric Acid/pharmacology , Immunohistochemistry , Nucleic Acids/analysis , Nucleic Acids/drug effects
2.
J Biol Chem ; 288(1): 442-54, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23166319

ABSTRACT

Translocation of nucleic acid-sensing (NAS) Toll-like receptors (TLRs) to endosomes is essential for response to microbial nucleic acids as well as for prevention of the autoimmune response. The accessory protein UNC93B1 is indispensable for activation of NAS TLRs because it regulates their response through trafficking to endosomes. We observed that poly(I:C) up-regulates transcription of UNC93B1 and promotes trafficking of TLR3 to the plasma membrane in human epithelial cell line. Up-regulation of UNC93B1 is triggered through TLR3 activation by poly(I:C). Further studies revealed that expression of UNC93B1 promotes trafficking of differentially glycosylated TLR3, but not other NAS TLRs, to the plasma membrane. UNC93B1 promoter region contains binding sites for poly(I:C)- and type I interferon-inducible regulatory elements. UNC93B1 also increases the protein lifetime of TLR3 and TLR9 and augments signaling of all NAS TLRs. Furthermore, we discovered that poly(I:C) pretreatment primes B-cells to the activation by ssDNA via up-regulation of UNC93B1. Our findings identified TLR3 as the important regulator of UNC93B1 that in turn governs the responsiveness of all NAS TLRs.


Subject(s)
Gene Expression Regulation , Membrane Transport Proteins/biosynthesis , Membrane Transport Proteins/physiology , Nucleic Acids/agonists , Toll-Like Receptor 3/metabolism , Cell Membrane/metabolism , Cell Separation , Endothelial Cells/cytology , Flow Cytometry , Glycosylation , HEK293 Cells , Humans , Interferon-beta/metabolism , Poly I-C/metabolism , RNA Interference , Toll-Like Receptor 9/metabolism , Transcription, Genetic , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...