Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Plant Cell Rep ; 43(4): 112, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568250

ABSTRACT

KEY MESSAGE: Purine permease PUP11 is essential for rice seed development, regulates the seed setting rate, and influences the cytokinin content, sugar transport, and starch biosynthesis during grain development. The distribution of cytokinins in plant tissues determines plant growth and development and is regulated by several cytokinin transporters, including purine permease (PUP). Thirteen PUP genes have been identified within the rice genome; however, the functions of most of these genes remain poorly understood. We found that pup11 mutants showed extremely low seed setting rates and a unique filled seed distribution. Moreover, seed formation arrest in these mutants was associated with the disappearance of accumulated starch 10 days after flowering. PUP11 has two major transcripts with different expression patterns and subcellular locations, and further studies revealed that they have redundant positive roles in regulating the seed setting rate. We also found that type-A Response Regulator (RR) genes were upregulated in the developing grains of the pup11 mutant compared with those in the wild type. The results also showed that PUP11 altered the expression of several sucrose transporters and significantly upregulated certain starch biosynthesis genes. In summary, our results indicate that PUP11 influences the rice seed setting rate by regulating sucrose transport and starch accumulation during grain filling. This research provides new insights into the relationship between cytokinins and seed development, which may help improve cereal yield.


Subject(s)
Nucleobase Transport Proteins , Oryza , Oryza/genetics , Seeds/genetics , Edible Grain/genetics , Cytokinins , Membrane Transport Proteins , Starch , Sucrose
2.
Mol Biochem Parasitol ; 258: 111616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38401850

ABSTRACT

Trypanosoma cruzi is a protozoan parasite and the etiological agent of Chagas disease, a debilitating and sometimes fatal disease that continues to spread to new areas. Yet, Chagas disease is still only treated with two related nitro compounds that are insufficiently effective and cause severe side effects. Nucleotide metabolism is one of the known vulnerabilities of T. cruzi, as they are auxotrophic for purines, and nucleoside analogues have been shown to have genuine promise against this parasite in vitro and in vivo. Since purine antimetabolites require efficient uptake through transporters, we here report a detailed characterisation of the T. cruzi NB1 nucleobase transporter with the aim of elucidating the interactions between TcrNB1 and its substrates and finding the positions that can be altered in the design of novel antimetabolites without losing transportability. Systematically determining the inhibition constants (Ki) of purine analogues for TcrNB1 yielded their Gibbs free energy of interaction, ΔG0. Pairwise comparisons of substrate (hypoxanthine, guanine, adenine) and analogues allowed us to determine that optimal binding affinity by TcrNB1 requires interactions with all four nitrogen residues of the purine ring, with N1 and N9, in protonation state, functioning as presumed hydrogen bond donors and unprotonated N3 and N7 as hydrogen bond acceptors. This is the same interaction pattern as we previously described for the main nucleobase transporters of Trypanosoma brucei spp. and Leishmania major and makes it the first of the ENT-family genes that is functionally as well as genetically conserved between the three main kinetoplast pathogens.


Subject(s)
Guanine , Hypoxanthine , Trypanosoma cruzi , Trypanosoma cruzi/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/chemistry , Guanine/metabolism , Hypoxanthine/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Nucleobase Transport Proteins/metabolism , Nucleobase Transport Proteins/genetics , Nucleobase Transport Proteins/chemistry , Biological Transport , Substrate Specificity , Protein Binding , Nucleosides/metabolism
3.
PLoS One ; 17(1): e0260535, 2022.
Article in English | MEDLINE | ID: mdl-35100268

ABSTRACT

Rice production is affected by many biotic and abiotic stresses; among them, bacterial blight (BB) and blast diseases and low soil phosphorous stress cause significant yield losses. The present study was carried out with the objective of combining the BB resistance gene, Xa21, the blast resistance gene, Pi54, and the low soil phosphorous tolerance QTL/gene, Pup1, into the genetic background of the Indian mega-rice variety, MTU1010 (Cottondora Sannalu), through marker-assisted pedigree breeding. RP5973-20-9-8-24-12-7 [a near isogenic line (NIL) of MTU1010 possessing Pup1] and RP6132 [a NIL of Akshayadhan possessing Xa21 + Pi54] were crossed and 'true' F1s were identified, using the target gene-specific markers and selfed. F2 plants, which are homozygous for all the three target genes/QTLs, were identified using PCR based markers and were advanced further through the pedigree method of breeding, with selection based on phenotypic traits specific for MTU1010. At the F5 generation, a set of 15 promising triple positive homozygous lines were identified and screened for their resistance against BB and blast diseases and tolerance to low soil P. Among them, two lines (LPK 30-18-16 and LPK 49-15-22) showed higher yields as compared to MTU1010, along with the desirable long slender grain type in both low soil P and normal soil P plots, and also exhibited high levels of resistance against BB and blast diseases, with lesser grain shattering as compared to MTU1010. These lines are being advanced for multi-location trials for validating their performance.


Subject(s)
Disease Resistance/genetics , Oryza/genetics , Phosphorus/analysis , Plant Diseases/genetics , Soil/chemistry , Stress, Physiological , Bacteria/isolation & purification , Genetic Markers , Genotype , India , Nucleobase Transport Proteins/genetics , Oryza/growth & development , Phenotype , Plant Breeding , Plant Diseases/microbiology , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Quantitative Trait Loci
4.
J Mol Biol ; 434(2): 167393, 2022 01 30.
Article in English | MEDLINE | ID: mdl-34896363

ABSTRACT

SLC23 family members are transporters of either nucleobases or ascorbate. While the mammalian SLC23 ascorbate transporters are sodium-coupled, the non-mammalian nucleobase transporters have been proposed, but not formally shown, to be proton-coupled symporters. This assignment is exclusively based on in vivo transport assays using protonophores. Here, by establishing the first in vitro transport assay for this protein family, we demonstrate that a representative member of the SLC23 nucleobase transporters operates as a uniporter instead. We explain these conflicting assignments by identifying a critical role of uracil phosphoribosyltransferase, the enzyme converting uracil to UMP, in driving uracil uptake in vivo. Detailed characterization of uracil phosphoribosyltransferase reveals that the sharp reduction of uracil uptake in whole cells in presence of protonophores is caused by acidification-induced enzyme inactivation. The SLC23 family therefore consists of both uniporters and symporters in line with the structurally related SLC4 and SLC26 families that have previously been demonstrated to accommodate both transport modes as well.


Subject(s)
Biological Transport/physiology , Ion Transport , Membrane Transport Proteins/chemistry , Protons , Animals , Ascorbic Acid/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Catalytic Domain , Escherichia coli , Humans , Membrane Transport Proteins/metabolism , Nucleobase Transport Proteins/chemistry , Nucleobase Transport Proteins/metabolism , Pentosyltransferases/chemistry , Pentosyltransferases/metabolism , Sodium/metabolism , Symporters , Uracil/metabolism
5.
J Mol Biol ; 433(24): 167329, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34710398

ABSTRACT

The relation of sequence with specificity in membrane transporters is challenging to explore. Most relevant studies until now rely on comparisons of present-day homologs. In this work, we study a set of closely related transporters by employing an evolutionary, ancestral-reconstruction approach and reveal unexpected new specificity determinants. We analyze a monophyletic group represented by the xanthine-specific XanQ of Escherichia coli in the Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2 (NAT/NCS2) family. We reconstructed AncXanQ, the putative common ancestor of this clade, expressed it in E. coli K-12, and found that, in contrast to XanQ, it encodes a high-affinity permease for both xanthine and guanine, which also recognizes adenine, hypoxanthine, and a range of analogs. AncXanQ conserves all binding-site residues of XanQ and differs substantially in only five intramembrane residues outside the binding site. We subjected both homologs to rationally designed mutagenesis and present evidence that these five residues are linked with the specificity change. In particular, we reveal Ser377 of XanQ (Gly in AncXanQ) as a major determinant. Replacement of this Ser with Gly enlarges the specificity of XanQ towards an AncXanQ-phenotype. The ortholog from Neisseria meningitidis retaining Gly at this position is also a xanthine/guanine transporter with extended substrate profile like AncXanQ. Molecular Dynamics shows that the S377G replacement tilts transmembrane helix 12 resulting in rearrangement of Phe376 relative to Phe94 in the XanQ binding pocket. This effect may rationalize the enlarged specificity. On the other hand, the specificity effect of S377G can be masked by G27S or other mutations through epistatic interactions.


Subject(s)
Bacterial Proteins/chemistry , Escherichia coli/enzymology , Guanine/metabolism , Neisseria meningitidis/enzymology , Nucleobase Transport Proteins/chemistry , Xanthine/metabolism , Bacterial Proteins/classification , Bacterial Proteins/genetics , Molecular Dynamics Simulation , Mutagenesis , Nucleobase Transport Proteins/classification , Nucleobase Transport Proteins/genetics , Phylogeny , Protein Structure, Secondary , Substrate Specificity/genetics
6.
BMC Plant Biol ; 21(1): 52, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33468049

ABSTRACT

BACKGROUND: Soil salinity is a critical threat to global agriculture. In plants, the accumulation of xanthine activates xanthine dehydrogenase (XDH), which catalyses the oxidation/conversion of xanthine to uric acid to remove excess reactive oxygen species (ROS). The nucleobase-ascorbate transporter (NAT) family is also known as the nucleobase-cation symporter (NCS) or AzgA-like family. NAT is known to transport xanthine and uric acid in plants. The expression of MdNAT is influenced by salinity stress in apple. RESULTS: In this study, we discovered that exogenous application of xanthine and uric acid enhanced the resistance of apple plants to salinity stress. In addition, MdNAT7 overexpression transgenic apple plants showed enhanced xanthine and uric acid concentrations and improved tolerance to salinity stress compared with nontransgenic plants, while opposite phenotypes were observed for MdNAT7 RNAi plants. These differences were probably due to the enhancement or impairment of ROS scavenging and ion homeostasis abilities. CONCLUSION: Our results demonstrate that xanthine and uric acid have potential uses in salt stress alleviation, and MdNAT7 can be utilized as a candidate gene to engineer resistance to salt stress in plants.


Subject(s)
Malus/physiology , Plant Proteins/genetics , Salt Tolerance/physiology , Uric Acid/pharmacology , Xanthine/pharmacology , Antioxidants/analysis , Antioxidants/metabolism , Gene Expression Regulation, Plant , Homeostasis , Hydrogen Peroxide/metabolism , Malus/drug effects , Malus/genetics , Nucleobase Transport Proteins/genetics , Nucleobase Transport Proteins/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Potassium/analysis , Salt Tolerance/drug effects , Sodium/analysis , Uric Acid/analysis , Xanthine/analysis
7.
PLoS One ; 16(1): e0245333, 2021.
Article in English | MEDLINE | ID: mdl-33481876

ABSTRACT

The Goss's bacterial wilt pathogen, Clavibacter nebraskensis, of corn is a candidate A1 quarantine organism; and its recent re-emergence and spread in the USA and Canada is a potential biothreat to the crop. We developed and tested an amplicon-based Nanopore detection system for C. nebraskensis (Cn), targeting a purine permease gene. The sensitivity (1 pg) of this system in mock bacterial communities (MBCs) spiked with serially diluted DNA of C. nebraskensis NCPPB 2581T is comparable to that of real-time PCR. Average Nanopore reads increased exponentially from 125 (1pg) to about 6000 reads (1000 pg) after a 3-hr run-time, with 99.0% of the reads accurately assigned to C. nebraskensis. Three run-times were used to process control MBCs, Cn-spiked MBCs, diseased and healthy leaf samples. The mean Nanopore reads doubled as the run-time is increased from 3 to 6 hrs while from 6 to 12 hrs, a 20% increment was recorded in all treatments. Cn-spiked MBCs and diseased corn leaf samples averaged read counts of 5,100, 11,000 and 14,000 for the respective run-times, with 99.8% of the reads taxonomically identified as C. nebraskensis. The control MBCs and healthy leaf samples had 47 and 14 Nanopore reads, respectively. 16S rRNA bacteriomic profiles showed that Sphingomonas (22.7%) and Clavibacter (21.2%) were dominant in diseased samples while Pseudomonas had only 3.5% relative abundance. In non-symptomatic leaf samples, however, Pseudomonas (20.0%) was dominant with Clavibacter at 0.08% relative abundance. This discrepancy in Pseudomonas abundance in the samples was corroborated by qPCR using EvaGreen chemistry. Our work outlines a new useful tool for diagnosis of the Goss's bacterial wilt disease; and provides the first insight on Pseudomonas community dynamics in necrotic leaf lesions.


Subject(s)
Clavibacter/genetics , Nanopore Sequencing/methods , Plant Diseases/microbiology , Zea mays/microbiology , Bacterial Proteins/genetics , Clavibacter/isolation & purification , DNA, Bacterial/genetics , Genes, Bacterial , High-Throughput Nucleotide Sequencing , Nucleobase Transport Proteins/genetics , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics
8.
J Mol Biol ; 433(16): 166814, 2021 08 06.
Article in English | MEDLINE | ID: mdl-33497644

ABSTRACT

Members of the ubiquitous Nucleobase Ascorbate Transporter (NAT) family are H+ or Na+ symporters specific for the cellular uptake of either purines and pyrimidines or L-ascorbic acid. Despite the fact that several bacterial and fungal members have been extensively characterised at a genetic, biochemical or cellular level, and crystal structures of NAT members from Escherichia coli and Aspergillus nidulans have been determined pointing to a mechanism of transport, we have little insight on how substrate selectivity is determined. Here, we present systematic mutational analyses, rational combination of mutations, and novel genetic screens that reveal cryptic context-dependent roles of partially conserved residues in the so-called NAT signature motif in determining the specificity of the UapA transporter of A. nidulans. We show that specific NAT signature motif substitutions, alone and in combinations with each other or with distant mutations in residues known to affect substrate selectivity, lead to novel UapA versions possessing variable transport capacities and specificities for nucleobases. In particular, we show that a UapA version including the quadruple mutation T405S/F406Y/A407S/Q408E in the NAT signature motif (UapA-SYSE) becomes incapable of purine transport, but gains a novel pyrimidine-related profile, which can be further altered to a more promiscuous purine/pyrimidine profile when combined with replacements at distantly located residues, especially at F528. Our results reveal that UapA specificity is genetically highly modifiable and allow us to speculate on how the elevator-type mechanism of transport might account for this flexibility.


Subject(s)
Nucleobase Transport Proteins/metabolism , Purines/metabolism , Amino Acid Motifs , Binding Sites , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation , Nucleobase Transport Proteins/chemistry , Nucleobase Transport Proteins/genetics , Protein Binding , Purines/chemistry , Structure-Activity Relationship , Substrate Specificity
9.
J Appl Microbiol ; 130(6): 2018-2028, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33152175

ABSTRACT

AIM: Erwinia amylovora is the causal agent of fire blight, a devastating disease of apples and pears. This study determines whether the E. amylovora guanine-hypoxanthine transporter (EaGhxP) is required for virulence and if it can import the E. amylovora produced toxic analogue 6-thioguanine (6TG) into cells. METHODS AND RESULTS: Characterization of EaGhxP in guanine transport deficient Escherichia coli reveals that it can transport guanine, hypoxanthine and the toxic analogues 8-azaguanine (8AG) and 6TG. Similarly, EaGhxP transports 8AG and 6TG into E. amylovora cells. EaGhxP has a high affinity for 6TG with a Ki of 3·7 µmol l-1 . An E. amylovora ⊿ghxP::Camr strain shows resistance to growth on 8AG and 6TG. Although EaGhxP is expressed during active disease propagation, it is not necessary for virulence as determined on immature apple and pear assays. CONCLUSIONS: EaGhxP is not required for virulence, but it does import 6TG into E. amylovora cells. SIGNIFICANCE AND IMPACT OF THE STUDY: As part of the disease establishment process, E. amylovora synthesizes and exports a toxic guanine derivative 6TG. Our results are counter intuitive and show that EaGhxP, an influx transporter, can move 6TG into cells raising questions regarding the role of 6TG in disease establishment.


Subject(s)
Erwinia amylovora/metabolism , Guanine/metabolism , Hypoxanthine/metabolism , Nucleobase Transport Proteins/metabolism , Thioguanine/metabolism , Azaguanine/metabolism , Erwinia amylovora/enzymology , Erwinia amylovora/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Malus/microbiology , Nucleobase Transport Proteins/genetics , Plant Diseases/microbiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Biol Pharm Bull ; 43(9): 1293-1300, 2020.
Article in English | MEDLINE | ID: mdl-32879202

ABSTRACT

It has long been suggested that a Na+-dependent carrier-mediated transport system is involved in the absorption of nucleobases and analogs, including some drugs currently in therapeutic use, for their uptake at the brush border membrane of epithelial cells in the small intestine, mainly based on studies in non-primate experimental animals. The presence of this transport system was indeed proved by the recent identification of sodium-dependent nucleobase transporter 1 (SNBT1/Slc23a4) as its molecular entity in rats. However, this transporter has been found to be genetically deficient in humans and higher primates. Aware of this deficiency, we need to revisit the issue of the absorption of these compounds in the human small intestine so that we can understand the mechanisms and gain information to assure the more rational use and development of drugs analogous to nucleobases. Here, we review the current understanding of the intestinal absorption of nucleobases and analogs. This includes recent knowledge about the efflux transport of those compounds across the basolateral membrane when exiting epithelial cells, following brush border uptake, in order to complete the overall absorption process; the facilitative transporters of equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) may be involved in that in many animal species, including human and rat, without any major species differences.


Subject(s)
Amino Acid Transport Systems/metabolism , Equilibrative Nucleoside Transporter 1/metabolism , Intestinal Absorption/genetics , Purines/pharmacokinetics , Pyrimidines/pharmacokinetics , Amino Acid Transport Systems/genetics , Animals , Cell Membrane , Equilibrative Nucleoside Transporter 1/genetics , Humans , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Nucleobase Transport Proteins/metabolism , Rats , Species Specificity
11.
J Biol Chem ; 295(25): 8449-8459, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32354744

ABSTRACT

The ability to modulate gene expression in response to changes in the host environment is essential for survival of the kinetoplastid parasite Leishmania Unlike most eukaryotes, gene expression in kinetoplastids is predominately regulated posttranscriptionally. Consequently, RNA-binding proteins and mRNA-encoded sequence elements serve as primary determinants of gene regulation in these organisms; however, few have defined roles in specific stress response pathways. Leishmania species cannot synthesize purines de novo and must scavenge these essential nutrients from the host. Leishmania have evolved a robust stress response to withstand sustained periods of purine scarcity during their life cycle. The purine nucleobase transporter LdNT3 is among the most substantially up-regulated proteins in purine-starved Leishmania donovani parasites. Here we report that the posttranslational stability of the LdNT3 protein is unchanged in response to purine starvation. Instead, LdNT3 up-regulation is primarily mediated by a 33-nucleotide-long sequence in the LdNT3 mRNA 3' UTR that is predicted to adopt a stem-loop structure. Although this sequence is highly conserved within the mRNAs of orthologous transporters in multiple kinetoplastid species, putative stem-loops from L. donovani and Trypanosoma brucei nucleobase transporter mRNAs were not functionally interchangeable for purine-responsive regulation. Through mutational analysis of the element, we demonstrate that species specificity is attributable to just three variant bases within the predicted loop. Finally, we provide evidence that the abundance of the trans-acting factor that binds the LdNT3 stem-loop in vivo is substantially higher than required for regulation of LdNT3 alone, implying a potential role in regulating other purine-responsive genes.


Subject(s)
Leishmania donovani/metabolism , Nucleobase Transport Proteins/metabolism , Protozoan Proteins/metabolism , Purines/metabolism , 3' Untranslated Regions , Base Sequence , Culture Media/chemistry , Genomic Instability , Leishmania donovani/genetics , Mutagenesis , Nucleic Acid Conformation , Nucleobase Transport Proteins/genetics , Protozoan Proteins/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Trypanosoma brucei brucei/metabolism
12.
Plant Physiol ; 181(3): 916-933, 2019 11.
Article in English | MEDLINE | ID: mdl-31467164

ABSTRACT

Although opiate biosynthesis has been largely elucidated, and cell-to-cell transport has been long postulated, benzylisoquinoline alkaloid (BIA) transporters from opium poppy (Papaver somniferum) have not been reported. Investigation of a purine permease-type sequence within a recently discovered opiate biosynthetic gene cluster led to the discovery of a family of nine homologs designated as BIA uptake permeases (BUPs). Initial expression studies in engineered yeast hosting segments of the opiate pathway showed that six of the nine BUP homologs facilitated dramatic increases in alkaloid yields. Closer examination revealed the ability to uptake a variety of BIAs and certain pathway precursors (e.g. dopamine), with each BUP displaying a unique substrate acceptance profile. Improvements in uptake for yeast expressing specific BUPs versus those devoid of the heterologous transporters were high for early intermediates (300- and 25-fold for dopamine and norcoclaurine, respectively), central pathway metabolites [10-fold for (S)-reticuline], and end products (30-fold for codeine). A coculture of three yeast strains, each harboring a different consecutive segment of the opiate pathway and BUP1, was able to convert exogenous Levodopa to 3 ± 4 mg/L codeine via a 14-step bioconversion process involving over a dozen enzymes. BUP1 is highly expressed in opium poppy latex and is localized to the plasma membrane. The discovery of the BUP transporter family expands the role of purine permease-type transporters in specialized metabolism, and provides key insight into the cellular mechanisms involved in opiate alkaloid biosynthesis in opium poppy.


Subject(s)
Benzylisoquinolines/metabolism , Nucleobase Transport Proteins/metabolism , Papaver/metabolism , Plant Proteins/metabolism , Cell Membrane/metabolism , Codeine/metabolism , Gene Expression Regulation, Plant , Nucleobase Transport Proteins/genetics
13.
Biochim Biophys Acta Biomembr ; 1861(9): 1546-1557, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31283918

ABSTRACT

Recombinant expression systems for mammalian membrane transport proteins are often limited by insufficient yields to support structural studies, inadequate post-translational processing and problems related with improper membrane targeting or cytotoxicity. Use of alternative expression systems and optimization of expression/purification protocols are constantly needed. In this work, we explore the applicability of the laboratory strain LEXSY of the ancient eukaryotic microorganism Leishmania tarentolae as a new expression system for mammalian nucleobase permeases of the NAT/NCS2 (Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2) family. We achieved the heterologous expression of the purine-pyrimidine permease rSNBT1 from Rattus norvegicus (tagged at C-terminus with a red fluorescent protein), as confirmed by confocal microscopy and biochemical analysis of the subcellular fractions enriched in membrane proteins. The cDNA of rSNBT1 has been subcloned in a pLEXSY-sat-mrfp1vector and used to generate transgenic L. tarentolae-rsnbt1-mrfp1 strains carrying the pLEXSY-sat-rsnbt1-mrfp1 plasmid either episomally or integrated in the chromosomal DNA. The chimeric transporter rSNBT1-mRFP1 is targeted to the ER and the plasma membrane of the L. tarentolae promastigotes. The transgenic strains are capable of transporting nucleobases that are substrates of rSNBT1 but also of the endogenous L. tarentolae nucleoside/nucleobase transporters. A dipyridamole-resistant Na+-dependent fraction of uptake is attributed to the exogenously expressed rSNBT1.


Subject(s)
Leishmania/genetics , Nucleobase Transport Proteins/genetics , Protein Engineering/methods , Animals , Animals, Genetically Modified , Biological Transport/genetics , Ion Transport , Leishmania/metabolism , Membrane Transport Proteins/metabolism , Nucleobase Transport Proteins/metabolism , Purines , Pyrimidines , Rats , Sodium/metabolism , Symporters/metabolism
14.
Molecules ; 24(12)2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31212849

ABSTRACT

In earlier studies, we generated concentration-response (E/c) curves with CPA (N6-cyclopentyladenosine; a selective A1 adenosine receptor agonist) or adenosine, in the presence or absence of S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine (NBTI, a selective nucleoside transport inhibitor), and with or without a pretreatment with 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)-benzoyloxy)propyl]-N1-propylxanthine (FSCPX, a chemical known as a selective, irreversible A1 adenosine receptor antagonist), in isolated, paced guinea pig left atria. Meanwhile, we observed a paradoxical phenomenon, i.e. the co-treatment with FSCPX and NBTI appeared to enhance the direct negative inotropic response to adenosine. In the present in silico study, we aimed to reproduce eight of these E/c curves. Four models (and two additional variants of the last model) were constructed, each one representing a set of assumptions, in order to find the model exhibiting the best fit to the ex vivo data, and to gain insight into the paradoxical phenomenon in question. We have obtained in silico evidence for an interference between effects of FSCPX and NBTI upon our ex vivo experimental setting. Regarding the mechanism of this interference, in silico evidence has been gained for the assumption that FSCPX inhibits the effect of NBTI on the level of endogenous (but not exogenous) adenosine. As an explanation, it may be hypothesized that FSCPX inhibits an enzyme participating in the interstitial adenosine formation. In addition, our results suggest that NBTI does not stop the inward adenosine flux in the guinea pig atrium completely.


Subject(s)
Adenosine A1 Receptor Antagonists/chemistry , Nucleobase Transport Proteins/chemistry , Receptor, Adenosine A1/chemistry , Xanthines/chemistry , Adenosine/chemistry , Adenosine/pharmacology , Adenosine A1 Receptor Antagonists/pharmacology , Animals , Dose-Response Relationship, Drug , Guinea Pigs , Nucleobase Transport Proteins/antagonists & inhibitors , Xanthines/pharmacology
15.
Biosci Biotechnol Biochem ; 83(7): 1300-1305, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30999827

ABSTRACT

Purine permeases (PUPs) mediate the proton-coupled uptake of nucleotide bases and their derivatives into cytosol. PUPs facilitate uptake of adenine, cytokinins and nicotine. Caffeine, a purine alkaloid derived from xanthosine, occurs in only a few eudicot species, including coffee, cacao, and tea. Although caffeine is not an endogenous metabolite in Arabidopsis and rice, AtPUP1 and OsPUP7 were suggested to transport caffeine. In this study, we identified 15 PUPs in the genome of Coffea canephora. Direct uptake measurements in yeast demonstrated that CcPUP1 and CcPUP5 facilitate adenine - but not caffeine - transport. Adenine uptake was pH-dependent, with increased activity at pH 3 and 4, and inhibited by nigericin, a potassium-proton ionophore, suggesting that CcPUP1 and CcPUP5 function as proton-symporters. Furthermore, adenine uptake was not competitively inhibited by an excess amount of caffeine, which implies that PUPs of C. canephora have evolved to become caffeine-insensitive to promote efficient uptake of adenine into cytosol.


Subject(s)
Adenine/metabolism , Coffea/metabolism , Nucleobase Transport Proteins/metabolism , Arabidopsis/metabolism , Caffeine/metabolism , Coffea/drug effects , Hydrogen-Ion Concentration , Nigericin/pharmacology , Oryza/metabolism
16.
Plant Biotechnol J ; 17(8): 1527-1537, 2019 08.
Article in English | MEDLINE | ID: mdl-30628157

ABSTRACT

As members of the basic helix-loop-helix transcription factor families, phytochrome-interacting factors regulate an array of developmental responses ranging from seed germination to plant growth. However, little is known about their roles in modulating grain development. Here, we firstly analyzed the expression pattern of rice OsPIL genes in grains and found that OsPIL15 may play an important role in grain development. We then generated knockout (KO) OsPIL15 lines in rice using CRISPR/Cas9 technology, the silencing expression of OsPIL15 led to increased numbers of cells, which thus enhanced grain size and weight. Moreover, overexpression and suppression of OsPIL15 in the rice endosperm resulted in brown rice showing grain sizes and weights that were decreased and increased respectively. Further studies indicated that OsPIL15 binds to N1-box (CACGCG) motifs of the purine permease gene OsPUP7 promoter. Measurement of isopentenyl adenosine, a bioactive form of cytokinin (CTK), revealed increased contents in the OsPIL15-KO spikelets compared with the wild-type. Overall, our results demonstrate a possible pathway whereby OsPIL15 directly targets OsPUP7, affecting CTK transport and thereby influencing cell division and subsequent grain size. These findings provide a valuable insight into the molecular functions of OsPIL15 in rice grains, highlighting a useful genetic improvement leading to increased rice yield.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Nucleobase Transport Proteins/genetics , Oryza/genetics , Plant Proteins/metabolism , Seeds/growth & development , Basic Helix-Loop-Helix Transcription Factors/genetics , CRISPR-Cas Systems , Edible Grain/growth & development , Gene Expression Regulation, Plant , Oryza/enzymology , Plant Proteins/genetics
17.
J Integr Plant Biol ; 61(5): 581-597, 2019 May.
Article in English | MEDLINE | ID: mdl-30267474

ABSTRACT

Grain size is an important agronomic trait affecting grain yield, but the underlying molecular mechanisms remain to be elucidated. Here, we isolated a dominant mutant, big grain3 (bg3-D), which exhibits a remarkable increase of grain size caused by activation of the PURINE PERMEASE gene, OsPUP4. BG3/OsPUP4 is predominantly expressed in vascular tissues and is specifically suppressed by exogenous cytokinin application. Hormone profiling revealed that the distribution of different cytokinin forms, in roots and shoots of the bg3-D mutant, is altered. Quantitative reverse transcription-PCR (qRT-PCR) analysis indicated that expression of rice cytokinin type-A RESPONSE REGULATOR (OsRR) genes is enhanced in the roots of the bg3-D mutant. These results suggest that OsPUP4 might contribute to the long-distance transport of cytokinin, by reinforcing cytokinin loading into vascular bundle cells. Furthermore, plants overexpressing OsPUP7, the closest homolog of OsPUP4, also exhibited a similar phenotype to the bg3-D mutant. Interestingly, subcellular localization demonstrated that OsPUP4 was localized on the plasma membrane, whereas OsPUP7 was localized to the endoplasmic reticulum. Based on these findings, we propose that OsPUP4 and OsPUP7 function in a linear pathway to direct cytokinin cell-to-cell transport, affecting both its long-distance movement and local allocation.


Subject(s)
Cytokinins/metabolism , Nucleobase Transport Proteins/metabolism , Oryza/enzymology , Oryza/metabolism , Plant Proteins/metabolism , Biological Transport , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Plant/physiology , Nucleobase Transport Proteins/genetics , Oryza/genetics , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism
18.
J Biosci ; 43(4): 797-815, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30207323

ABSTRACT

The nucleobase cation symporter-1 (NCS1) family of secondary active transport proteins comprises over 2500 sequenced members from bacteria, archaea, fungi and plants. NCS1 proteins use a proton or sodium gradient to drive inward cellular transport of purine and pyrimidine nucleobases and nucleosides, hydantoins and related compounds. The structural organization, substrate binding residues and molecular mechanism of NCS1 proteins are defined by crystal structures of sodium-coupled hydantoin transporter, Mhp1. Plant proteins are most closely related to bacterial/archaeal proteins and the distinct Fur-type and Fcy-type fungal proteins and plant proteins originated through independent horizontal transfers from prokaryotes. Analyses of 25 experimentally characterized proteins reveal high substrate specificity in bacterial proteins, distinct non-overlapping specificities in Fur-type and Fcy-type fungal proteins and broad specificity in plant proteins. Possible structural explanations are identified for differences in substrate specificity between bacterial proteins, whilst specificities of other proteins cannot be predicted by simple sequence comparisons. Specificity appears to be species specific and determined by combinations of effects dictated by multiple residues in the major substrate binding site and gating domains. This is an exploratory research review of evolutionary relationships, function and structural organization, molecular mechanism and origins of substrate specificity in NCS1 proteins and avenues of future direction.


Subject(s)
Arabidopsis Proteins/genetics , Evolution, Molecular , Microtubule-Associated Proteins/genetics , Nucleobase Transport Proteins/genetics , Phylogeny , Saccharomyces cerevisiae Proteins/genetics , Amino Acid Sequence/genetics , Archaea/genetics , Bacteria/genetics , Fungi/genetics , Sequence Homology, Amino Acid , Substrate Specificity
19.
Eur J Med Chem ; 156: 240-251, 2018 Aug 05.
Article in English | MEDLINE | ID: mdl-30006169

ABSTRACT

We have previously rationally designed, synthesized and tested a number of 3-deazapurine analogues, which inhibit the ubiquitous fungal nucleobase transporter FcyB, through binding in its major substrate binding site, by specifically interacting with Asn163. Here, in an effort to further understand the molecular details of structure-activity relationships in all three major nucleobase transporters of fungi, we extend this study by designing, based on our previous experience, synthesizing and testing further 3-deazapurine analogues. We thus identify seven new compounds with relatively high affinity (19-106 µΜ) for the FcyB binding site. Importantly, four of these compounds can also efficiently inhibit AzgA, a structurally and evolutionary distinct, but functionally similar, purine transporter. Contrastingly, none of the new compounds tested had any effect on the transport activity of the uric acid-xanthine transporter UapA, albeit this being a structural homologue of AzgA. Besides the apparent importance for understanding how nucleobase transporter specificity is determined at the molecular level, our work might constitute a critical step in the design of novel purine-related antifungals.


Subject(s)
Aspergillus nidulans/metabolism , Drug Design , Fungal Proteins/antagonists & inhibitors , Nucleobase Transport Proteins/antagonists & inhibitors , Purines/chemistry , Purines/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillus nidulans/drug effects , Biological Transport/drug effects , Fungal Proteins/metabolism , Humans , Molecular Docking Simulation , Nucleobase Transport Proteins/metabolism , Structure-Activity Relationship
20.
Physiol Rep ; 6(10): e13714, 2018 05.
Article in English | MEDLINE | ID: mdl-29845779

ABSTRACT

Sodium-dependent nucleobase transporter 1 (SNBT1) is a nucleobase-specific transporter identified in our recent study. In an attempt to search for its potential substrates other than nucleobases in this study, we could successfully find urate, a metabolic derivative of purine nucleobases, as a novel substrate, as indicated by its specific Na+ -dependent and saturable transport, with a Michaelis constant of 433 µmol/L, by rat SNBT1 (rSNBT1) stably expressed in Madin-Darby canine kidney II cells. However, urate uptake was observed only barely in the everted tissue sacs of the rat small intestine, in which rSNBT1 operates for nucleobase uptake. These findings suggested that urate undergoes a futile cycle, in which urate transported into epithelial cells is immediately effluxed back by urate efflux transporters, in the small intestine. In subsequent attempts to examine that possibility, such a futile urate cycle was demonstrated in the human embryonic kidney 293 cell line as a model cell system, where urate uptake induced by transiently introduced rSNBT1 was extensively reduced by the co-introduction of rat breast cancer resistance protein (rBCRP), a urate efflux transporter present in the small intestine. However, urate uptake was not raised in the presence of Ko143, a BCRP inhibitor, in the everted intestinal tissue sacs, suggesting that some other transporter might also be involved in urate efflux. The newly found urate transport function of SNBT1, together with the suggested futile urate cycle in the small intestine, should be of interest for its evolutional and biological implications, although SNBT1 is genetically deficient in humans.


Subject(s)
Nucleobase Transport Proteins/metabolism , Uric Acid/metabolism , Animals , Biological Transport , Dogs , HEK293 Cells , Humans , Intestine, Small/metabolism , Madin Darby Canine Kidney Cells , Male , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...