Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.721
Filter
2.
Vet Res ; 55(1): 44, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589930

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV), an emerging Alpha-coronavirus, brings huge economic loss in swine industry. Interferons (IFNs) participate in a frontline antiviral defense mechanism triggering the activation of numerous downstream antiviral genes. Here, we demonstrated that TRIM25 overexpression significantly inhibited SADS-CoV replication, whereas TRIM25 deficiency markedly increased viral yield. We found that SADS-CoV N protein suppressed interferon-beta (IFN-ß) production induced by Sendai virus (SeV) or poly(I:C). Moreover, we determined that SADS-CoV N protein interacted with RIG-I N-terminal two caspase activation and recruitment domains (2CARDs) and TRIM25 coiled-coil dimerization (CCD) domain. The interaction of SADS-CoV N protein with RIG-I and TRIM25 caused TRIM25 multimerization inhibition, the RIG-I-TRIM25 interaction disruption, and consequent the IRF3 and TBK1 phosphorylation impediment. Overexpression of SADS-CoV N protein facilitated the replication of VSV-GFP by suppressing IFN-ß production. Our results demonstrate that SADS-CoV N suppresses the host IFN response, thus highlighting the significant involvement of TRIM25 in regulating antiviral immune defenses.


Subject(s)
Alphacoronavirus , Nucleocapsid Proteins , Animals , Swine , Alphacoronavirus/metabolism , Interferons/genetics , DEAD Box Protein 58/metabolism
3.
Front Immunol ; 15: 1384467, 2024.
Article in English | MEDLINE | ID: mdl-38605965

ABSTRACT

Introduction: The therapeutic potential of bispecific antibodies is becoming widely recognised, with over a hundred formats already described. For many applications, enhanced tissue penetration is sought, so bispecifics with low molecular weight may offer a route to enhanced potency. Here we report the design of bi- and tri-specific antibody-based constructs with molecular weights as low as 14.5 and 22 kDa respectively. Methods: Autonomous bovine ultra-long CDR H3 (knob domain peptide) modules have been engineered with artificial coiled-coil stalks derived from Sin Nombre orthohantavirus nucleocapsid protein and human Beclin-1, and joined in series to produce bi- and tri-specific antibody-based constructs with exceptionally low molecular weights. Results: Knob domain peptides with coiled-coil stalks retain high, independent antigen binding affinity, exhibit exceptional levels of thermal stability, and can be readily joined head-to-tail yielding the smallest described multi-specific antibody format. The resulting constructs are able to bind simultaneously to all their targets with no interference. Discussion: Compared to existing bispecific formats, the reduced molecular weight of the knob domain fusions may enable enhanced tissue penetration and facilitate binding to cryptic epitopes that are inaccessible to conventional antibodies. Furthermore, they can be easily produced at high yield as recombinant products and are free from the heavy-light chain mispairing issue. Taken together, our approach offers an efficient route to modular construction of minimalistic bi- and multi-specifics, thereby further broadening the therapeutic scope for knob domain peptides.


Subject(s)
Antibodies, Bispecific , Animals , Cattle , Humans , Antibodies, Bispecific/chemistry , Peptides , Nucleocapsid Proteins
4.
Vet Microbiol ; 293: 110098, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677126

ABSTRACT

The infection of canine coronavirus (CCoV) causes a highly contagious disease in dogs with acute gastroenteritis. The efficient serological diagnostics is critical for controlling the disease caused by CCoV. Nucleocapsid (N) protein of CCoV is an important target for developing serological approaches. However, little is known about the antigenic sites in the N protein of CCoV. In this study, we generated a monoclonal antibody (mAb) against the N protein of CCoV, designated as 13E8, through the fusion of the sp2/0 cells with the spleen cells from a mouse immunized with the purified recombinant GST-N protein. Epitope mapping revealed that mAb 13E8 recognized a novel linear B cell epitope in N protein at 294-314aa (named as EP-13E8) by using a serial of truncated N protein through Western blot and ELISA. Sequence analysis showed that the sequence of EP-13E8 was highly conserved (100 %) among different CCoV strains analyzed, but exhibited a low similarity (31.8-63.6 %) with the responding sequence in other coronaviruses of the same genus such as FCoV, PEDV and HCoV except for TGEV (95.5 % identity). Structural assay suggested that the epitope of EP-13E8 were located in the close proximity on the surface of the N protein. Overall, the mAb 13E8 against N protein generated and its epitope EP-13E8 identified here paid the way for further developing epitope-based serological diagnostics for CCoV.


Subject(s)
Antibodies, Monoclonal , Coronavirus, Canine , Epitope Mapping , Epitopes, B-Lymphocyte , Nucleocapsid Proteins , Animals , Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Dogs , Mice , Nucleocapsid Proteins/immunology , Coronavirus, Canine/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Mice, Inbred BALB C , Coronavirus Nucleocapsid Proteins/immunology , Dog Diseases/virology , Dog Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/diagnosis , Amino Acid Sequence
5.
Medicine (Baltimore) ; 103(16): e37780, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640329

ABSTRACT

COVID-19 caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2, (SARS-CoV-2) is a highly contagious disease known for its significant lung damage. Although the impact of the COVID-19 pandemic on our daily lives has been limited, the virus has not vanished entirely and continues to undergo mutations. This calls for a concentrated focus on the matter of SARS-CoV-2 immune evasion. Drawing on observations of immune escape mechanisms in other viruses, some scholars have proposed that liquid-liquid phase separation might play a crucial role in SARS-CoV-2's ability to evade the immune system. Within the structure of SARS-CoV-2, the nucleocapsid protein plays a pivotal role in RNA replication and transcription. Concurrently, this protein can engage in phase separation with RNA. A thorough examination of the phase separation related to the nucleocapsid protein may unveil the mechanism by which SARS-CoV-2 accomplishes immune evasion. Moreover, this analysis may provide valuable insights for future development of innovative antiviral drugs or vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immune Evasion , Pandemics/prevention & control , Nucleocapsid Proteins
6.
Sci Adv ; 10(16): eadl6144, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640233

ABSTRACT

Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. NP also determines the sensitivity of influenza to myxovirus resistance protein 1 (MxA), an innate immunity factor that restricts influenza replication. A few critical MxA-resistant mutations have been identified in NP, including the highly conserved proline-283 substitution. This essential proline-283 substitution impairs influenza growth, a fitness defect that becomes particularly prominent at febrile temperature (39°C) when host chaperones are depleted. Here, we biophysically characterize proline-283 NP and serine-283 NP to test whether the fitness defect is caused by the proline-283 substitution introducing folding defects. We show that the proline-283 substitution changes the folding pathway of NP, making NP more aggregation prone during folding, but does not alter the native structure of the protein. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape.


Subject(s)
Influenza, Human , Humans , Viral Core Proteins/genetics , Viral Core Proteins/chemistry , Viral Core Proteins/metabolism , RNA-Binding Proteins/metabolism , Nucleocapsid Proteins/metabolism , Myxovirus Resistance Proteins
7.
Viruses ; 16(3)2024 03 08.
Article in English | MEDLINE | ID: mdl-38543783

ABSTRACT

Despite the rapid development of vaccines against COVID-19, they have important limitations, such as safety issues, the scope of their efficacy, and the induction of mucosal immunity. The present study proposes a potential component for a new generation of vaccines. The recombinant nucleocapsid (N) protein from the SARS-CoV-2 Delta variant was combined with the ODN-39M, a synthetic 39 mer unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), used as an adjuvant. The evaluation of its immunogenicity in Balb/C mice revealed that only administration by intranasal route induced a systemic cross-reactive, cell-mediated immunity (CMI). In turn, this combination was able to induce anti-N IgA in the lungs, which, along with the specific IgG in sera and CMI in the spleen, was cross-reactive against the nucleocapsid protein of SARS-CoV-1. Furthermore, the nasal administration of the N + ODN-39M preparation, combined with RBD Delta protein, enhanced the local and systemic immune response against RBD, with a neutralizing capacity. Results make the N + ODN-39M preparation a suitable component for a future intranasal vaccine with broader functionality against Sarbecoviruses.


Subject(s)
COVID-19 , Vaccines , Animals , Mice , Humans , Administration, Intranasal , Nucleocapsid Proteins , Vaccines, Combined , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Immunity, Mucosal , Adjuvants, Immunologic , Antibodies, Viral , Antibodies, Neutralizing
8.
Viruses ; 16(3)2024 03 09.
Article in English | MEDLINE | ID: mdl-38543786

ABSTRACT

Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.


Subject(s)
Influenza A virus , Nucleocapsid Proteins , Influenza A virus/genetics , Influenza A virus/metabolism , Nucleoproteins/metabolism , RNA, Viral/metabolism , Genomics
9.
Virology ; 595: 110056, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552409

ABSTRACT

The Peste des petits ruminant virus (PPRV) is a member of the Paramyxoviridae family and is classified into the genus Measles virus. PPRV predominantly infects small ruminants, leading to mortality rates of nearly 100%, which have caused significant economic losses in developing countries. Host proteins are important in virus replication, but the PPRV nucleocapsid (N) protein-host interacting partners for regulating PPRV replication remain unclear. The present study confirmed the interaction between PPRV-N and the host protein vimentin by co-immunoprecipitation and co-localization experiments. Overexpression of vimentin suppressed PPRV replication, whereas vimentin knockdown had the opposite effect. Mechanistically, N was subjected to degradation via the ubiquitin/proteasome pathway, where vimentin recruits the E3 ubiquitin ligase NEDD4L to fulfill N-ubiquitination, resulting in the degradation of the N protein. These findings suggest that the host protein vimentin and E3 ubiquitin ligase NEDD4L have an anti-PPRV effect.


Subject(s)
Nucleocapsid Proteins , Peste-des-petits-ruminants virus , Vimentin , Virus Replication , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Vimentin/metabolism , Vimentin/genetics , Animals , Peste-des-petits-ruminants virus/physiology , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/metabolism , Humans , Ubiquitination , Host-Pathogen Interactions , HEK293 Cells , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Cell Line , Peste-des-Petits-Ruminants/virology , Peste-des-Petits-Ruminants/metabolism , Protein Binding
10.
Cell Rep ; 43(3): 113965, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38492217

ABSTRACT

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , DNA Helicases/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Virulence , RNA, Guide, CRISPR-Cas Systems , Nucleocapsid Proteins , Virus Replication , RNA, Viral/genetics
11.
J Biol Chem ; 300(4): 107135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447796

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of the coronavirus family and caused severe economic losses to the global swine industry. Previous studies have established that p53 is a host restriction factor for PEDV infection, and p53 degradation occurs in PEDV-infected cells. However, the underlying molecular mechanisms through which PEDV viral proteins regulate p53 degradation remain unclear. In this study, we found that PEDV infection or expression of the nucleocapsid protein downregulates p53 through a post-translational mechanism: increasing the ubiquitination of p53 and preventing its nuclear translocation. We also show that the PEDV N protein functions by recruiting the E3 ubiquitin ligase COP1 and suppressing COP1 self-ubiquitination and protein degradation, thereby augmenting COP1-mediated degradation of p53. Additionally, COP1 knockdown compromises N-mediated p53 degradation. Functional mapping using truncation analysis showed that the N-terminal domains of N protein were responsible for interacting with COP1 and critical for COP1 stability and p53 degradation. The results presented here suggest the COP1-dependent mechanism for PEDV N protein to abolish p53 activity. This study significantly increases our understanding of PEDV in antagonizing the host antiviral factor p53 and will help initiate novel antiviral strategies against PEDV.


Subject(s)
Nucleocapsid Proteins , Porcine epidemic diarrhea virus , Proteolysis , Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Porcine epidemic diarrhea virus/metabolism , Animals , Humans , Nucleocapsid Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Chlorocebus aethiops , HEK293 Cells , Swine , Vero Cells
12.
J Med Virol ; 96(3): e29531, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38515377

ABSTRACT

The Nucleocapsid Protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not only the core structural protein required for viral packaging, but also participates in the regulation of viral replication, and its post-translational modifications such as phosphorylation have been shown to be an important strategy for regulating virus proliferation. Our previous work identified NP could be ubiquitinated, as confirmed by two independent studies. But the function of NP ubiquitination is currently unknown. In this study, we first pinpointed TRIM6 as the E3 ubiquitin ligase responsible for NP ubiquitination, binding to NP's CTD via its RING and B-box-CCD domains. TRIM6 promotes the K29-typed polyubiquitination of NP at K102, K347, and K361 residues, increasing its binding to viral genomic RNA. Consistently, functional experiments such as the use of the reverse genetic tool trVLP model and gene knockout of TRIM6 further confirmed that blocking the ubiquitination of NP by TRIM6 significantly inhibited the proliferation of SARS-CoV-2. Notably, the NP of coronavirus is relatively conserved, and the NP of SARS-CoV can also be ubiquitinated by TRIM6, indicating that NP could be a broad-spectrum anti-coronavirus target. These findings shed light on the intricate interaction between SARS-CoV-2 and the host, potentially opening new opportunities for COVID-19 therapeutic development.


Subject(s)
COVID-19 , Genome, Viral , SARS-CoV-2 , Ubiquitin-Protein Ligases , Humans , Cell Proliferation , COVID-19/genetics , COVID-19/virology , Nucleocapsid Proteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism
13.
J Virol ; 98(4): e0197223, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38470155

ABSTRACT

The coordinated packaging of the segmented genome of the influenza A virus (IAV) into virions is an essential step of the viral life cycle. This process is controlled by the interaction of packaging signals present in all eight viral RNA (vRNA) segments and the viral nucleoprotein (NP), which binds vRNA via a positively charged binding groove. However, mechanistic models of how the packaging signals and NP work together to coordinate genome packaging are missing. Here, we studied genome packaging in influenza A/SC35M virus mutants that carry mutated packaging signals as well as specific amino acid substitutions at the highly conserved lysine (K) residues 184 and 229 in the RNA-binding groove of NP. Because these lysines are acetylated and thus neutrally charged in infected host cells, we replaced them with glutamine to mimic the acetylated, neutrally charged state or arginine to mimic the non-acetylated, positively charged state. Our analysis shows that the coordinated packaging of eight vRNAs is influenced by (i) the charge state of the replacing amino acid and (ii) its location within the RNA-binding groove. Accordingly, we propose that lysine acetylation induces different charge states within the RNA-binding groove of NP, thereby supporting the activity of specific packaging signals during coordinated genome packaging. IMPORTANCE: Influenza A viruses (IAVs) have a segmented viral RNA (vRNA) genome encapsidated by multiple copies of the viral nucleoprotein (NP) and organized into eight distinct viral ribonucleoprotein complexes. Although genome segmentation contributes significantly to viral evolution and adaptation, it requires a highly sophisticated genome-packaging mechanism. How eight distinct genome complexes are incorporated into the virion is poorly understood, but previous research suggests an essential role for both vRNA packaging signals and highly conserved NP amino acids. By demonstrating that the packaging process is controlled by charge-dependent interactions of highly conserved lysine residues in NP and vRNA packaging signals, our study provides new insights into the sophisticated packaging mechanism of IAVs.


Subject(s)
Influenza A virus , Nucleocapsid Proteins , Viral Genome Packaging , Animals , Dogs , Humans , Amino Acid Substitution , Cell Line , Genome, Viral , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza A virus/metabolism , Lysine/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , Viral Genome Packaging/genetics , Virion/chemistry , Virion/genetics , Virion/metabolism , Mutation , Static Electricity
14.
Anal Chem ; 96(11): 4479-4486, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38454359

ABSTRACT

Metal-organic gels (MOGs) are a new type of intelligent soft material, which are bridged by metal ions and organic ligands through noncovalent interactions. In this paper, we prepared highly stable P-MOGs, using the classical organic electrochemiluminescence (ECL) luminescence meso-tetra(4-carboxyphenyl)porphine as the organic ligand and Fe3+ as the metal ion. Surprisingly, P-MOGs can stably output ECL signals at a low potential. We introduced P-MOGs into the ECL resonance energy transfer strategy (ECL-RET) and constructed a quenched ECL immunosensor for the detection of the SARS-CoV-2 nucleocapsid protein (SARS-CoV-2-N). In the ECL-RET system, P-MOGs were used as energy donors, and Au@Cu2O@Fe3O4 were selected as energy acceptors. The ultraviolet-visible spectrum of Au@Cu2O@Fe3O4 partially overlaps with the ECL spectrum of P-MOGs, which can effectively touch off the ECL-RET behavior between the donors and receptors. Under the ideal experimental situation, the linear detection range of the SARS-CoV-2-N concentration was 10 fg/mL to 100 ng/mL, and the limit of detection was 1.5 fg/mL. This work has broad application prospects for porphyrin-MOGs in ECL sensing.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Luminescent Measurements , SARS-CoV-2 , Electrochemical Techniques , Limit of Detection , Immunoassay , COVID-19/diagnosis , Gels , Nucleocapsid Proteins
15.
Sci Rep ; 14(1): 5870, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467657

ABSTRACT

The nucleocapsid (N) protein of SARS-CoV-2 is known to participate in various host cellular processes, including interferon inhibition, RNA interference, apoptosis, and regulation of virus life cycles. Additionally, it has potential as a diagnostic antigen and/or immunogen. Our research focuses on examining structural changes caused by mutations in the N protein. We have modeled the complete tertiary structure of native and mutated forms of the N protein using Alphafold2. Notably, the N protein contains 3 disordered regions. The focus was on investigating the impact of mutations on the stability of the protein's dimeric structure based on binding free energy calculations (MM-PB/GB-SA) and RMSD fluctuations after MD simulations. The results demonstrated that 28 mutations out of 37 selected mutations analyzed, compared with wild-type N protein, resulted in a stable dimeric structure, while 9 mutations led to destabilization. Our results are important to understand the tertiary structure of the N protein dimer of SARS-CoV-2 and the effect of mutations on it, their behavior in the host cell, as well as for the research of other viruses belonging to the same genus additionally, to anticipate potential strategies for addressing this viral illness․.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid/genetics , Nucleocapsid/metabolism , Mutation
16.
Microbiol Spectr ; 12(4): e0341023, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38376366

ABSTRACT

The nucleocapsid protein of SARS-CoV-2 plays significant roles in viral assembly, immune evasion, and viral stability. Due to its immunogenicity, high expression levels during COVID-19, and conservation across viral strains, it represents an attractive target for antiviral treatment. In this study, we identified and characterized a single-stranded DNA aptamer, N-Apt17, which effectively disrupts the liquid-liquid phase separation (LLPS) mediated by the N protein. To enhance the aptamer's stability, a circular bivalent form, cb-N-Apt17, was designed and evaluated. Our findings demonstrated that cb-N-Apt17 exhibited improved stability, enhanced binding affinity, and superior inhibition of N protein LLPS; thus, it has the potential inhibition ability on viral replication. These results provide valuable evidence supporting the potential of cb-N-Apt17 as a promising candidate for the development of antiviral therapies against COVID-19.IMPORTANCEVariants of SARS-CoV-2 pose a significant challenge to currently available COVID-19 vaccines and therapies due to the rapid epitope changes observed in the viral spike protein. However, the nucleocapsid (N) protein of SARS-CoV-2, a highly conserved structural protein, offers promising potential as a target for inhibiting viral replication. The N protein forms complexes with genomic RNA, interacts with other viral structural proteins during virion assembly, and plays a critical role in evading host innate immunity by impairing interferon production during viral infection. In this investigation, we discovered a single-stranded DNA aptamer, designated as N-Apt17, exhibiting remarkable affinity and specificity for the N protein. Notably, N-Apt17 disrupts the liquid-liquid phase separation (LLPS) of the N protein. To enhance the stability and molecular recognition capabilities of N-Apt17, we designed a circular bivalent DNA aptamer termed cb-N-Apt17. In both in vivo and in vitro experiments, cb-N-Apt17 exhibited increased stability, enhanced binding affinity, and superior LLPS disrupting ability. Thus, our study provides essential proof-of-principle evidence supporting the further development of cb-N-Apt17 as a therapeutic candidate for COVID-19.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Humans , SARS-CoV-2/genetics , DNA, Single-Stranded/pharmacology , COVID-19 Vaccines , Antiviral Agents/pharmacology
17.
Nat Commun ; 15(1): 1722, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409240

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a WHO priority pathogen. Antibody-based medical countermeasures offer an important strategy to mitigate severe disease caused by CCHFV. Most efforts have focused on targeting the viral glycoproteins. However, glycoproteins are poorly conserved among viral strains. The CCHFV nucleocapsid protein (NP) is highly conserved between CCHFV strains. Here, we investigate the protective efficacy of a CCHFV monoclonal antibody targeting the NP. We find that an anti-NP monoclonal antibody (mAb-9D5) protected female mice against lethal CCHFV infection or resulted in a significant delay in mean time-to-death in mice that succumbed to disease compared to isotype control animals. Antibody protection is independent of Fc-receptor functionality and complement activity. The antibody bound NP from several CCHFV strains and exhibited robust cross-protection against the heterologous CCHFV strain Afg09-2990. Our work demonstrates that the NP is a viable target for antibody-based therapeutics, providing another direction for developing immunotherapeutics against CCHFV.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Female , Animals , Mice , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Nucleocapsid Proteins/metabolism , Antibodies, Monoclonal , Hemorrhagic Fever, Crimean/prevention & control , Glycoproteins/metabolism , Antibodies, Viral
18.
J Virol Methods ; 326: 114904, 2024 May.
Article in English | MEDLINE | ID: mdl-38368949

ABSTRACT

Fig mosaic virus (FMV) is recognized as the main viral agent associated with the mosaic disease (MD) of fig trees (Ficus carica). Due to its worldwide occurrence, FMV represents the most significant global threat to the production of fig fruit. A disease management strategy against the MD in fig orchards has never been effective; and therefore, expression of recombinant antibody in plant cells could provide an alternative approach to suppress FMV infections. In this study we focused on expressing a specific recombinant antibody, a single-chain variable fragment (scFv), targeting the nucleocapsid protein (NP) of FMV in planta. To accomplish this objective, we inserted the scFv gene into a plant expression vector and conducted transient expression in leaves of Nicotiana tabacum cv. Samson plants. The construct was transiently expressed in tobacco plants by agroinfiltration, and antibody of the anticipated size was detected by immunoblotting. The produced plantibody was then assessed for specificity using ELISA and confirmed by Western blot analysis. In this study, the plantibody developed against FMV could be considered as a potential countermeasure to the infection by conferring resistance to MD.


Subject(s)
Plant Viruses , Single-Chain Antibodies , Nucleocapsid Proteins , Single-Chain Antibodies/genetics , Plant Viruses/genetics , Plants , Nicotiana/genetics , Recombinant Proteins/genetics
19.
Signal Transduct Target Ther ; 9(1): 40, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355661

ABSTRACT

Emerging and recurrent infectious diseases caused by human coronaviruses (HCoVs) continue to pose a significant threat to global public health security. In light of this ongoing threat, the development of a broad-spectrum drug to combat HCoVs is an urgently priority. Herein, we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). These aptamers have nanomolar affinity with the nucleocapsid protein (NP) of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and also show excellent binding efficiency to the N proteins of both SARS, MERS, HCoV-OC43 and -NL63 with affinity KD values of 1.31 to 135.36 nM. Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant (BA.5) with EC50 values at 2.00 nM and 41.08 nM, respectively. The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs (-229E and -HKU1). In conclusion, we have identified six aptamers with a high pan-coronavirus antiviral activity, which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleocapsid Proteins/genetics , Antiviral Agents/pharmacology
20.
Sci Rep ; 14(1): 3711, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355695

ABSTRACT

The emergence of corona virus disease 2019 (COVID-19), resulting from Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has left an indelible mark on a global scale, causing countless infections and fatalities. This investigation delves into the role of the SARS-CoV-2 nucleocapsid (N) protein within the HEK293 cells, shedding light on its influence over apoptosis, interferon signaling, and cytokines production. The N gene was amplified, inserted into the pAdTrack-CMV vector, and then transfected to the HEK293 cells. Changes in the expression of IRF3, IRF7, IFN-ß, BAK, BAX, and BCL-2 genes were evaluated. The levels of proinflammatory cytokines of IL-6, IL-12, IL-1ß, and TNF-α were also determined. The N protein exhibited an anti-apoptotic effect by modulating critical genes associated with apoptosis, including BAK, BAX, and BCL-2. This effect potentially prolonged the survival of infected cells. The N protein also played a role in immune evasion by suppressing the interferon pathway, evidenced by the downregulation of essential interferon regulatory factors of IRF3 and IRF7, and IFN-ß expression. The N protein expression led to a substantial increase in the production of proinflammatory cytokines of IL-6, IL-12, IL-1ß, and TNF-α. The N protein emerged as a versatile factor and was exerted over apoptosis, interferon signaling, and cytokine production. These findings carry potential implications for the development of targeted therapies to combat COVID-19 and mitigate its global health impact.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , SARS-CoV-2/metabolism , Tumor Necrosis Factor-alpha , HEK293 Cells , Interleukin-6 , bcl-2-Associated X Protein/genetics , Cytokines , Interferons , Interleukin-12
SELECTION OF CITATIONS
SEARCH DETAIL
...