Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.241
Filter
1.
CNS Neurosci Ther ; 30(5): e14737, 2024 05.
Article in English | MEDLINE | ID: mdl-38702929

ABSTRACT

AIMS: This study aims to investigate the pharmacological effects and the underlying mechanism of cannabidiol (CBD) on methamphetamine (METH)-induced relapse and behavioral sensitization in male mice. METHODS: The conditioned place preference (CPP) test with a biased paradigm and open-field test were used to assess the effects of CBD on METH-induced relapse and behavioral sensitization in male mice. RNA sequencing and bioinformatics analysis was employed to identify differential expressed (DE) circRNAs, miRNAs, and mRNAs in the nucleus accumbens (NAc) of mice, and the interaction among them was predicted using competing endogenous RNAs (ceRNAs) network analysis. RESULTS: Chronic administration of CBD (40 mg/kg) during the METH withdrawal phase alleviated METH (2 mg/kg)-induced CPP reinstatement and behavioral sensitization in mice, as well as mood and cognitive impairments following behavioral sensitization. Furthermore, 42 DEcircRNAs, 11 DEmiRNAs, and 40 DEmRNAs were identified in the NAc of mice. The circMeis2-miR-183-5p-Kcnj5 network in the NAc of mice is involved in the effects of CBD on METH-induced CPP reinstatement and behavioral sensitization. CONCLUSIONS: This study constructed the ceRNAs network for the first time, revealing the potential mechanism of CBD in treating METH-induced CPP reinstatement and behavioral sensitization, thus advancing the application of CBD in METH use disorders.


Subject(s)
Cannabidiol , Methamphetamine , Mice, Inbred C57BL , MicroRNAs , RNA, Circular , RNA, Messenger , Animals , Cannabidiol/pharmacology , Male , Methamphetamine/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , RNA, Circular/genetics , RNA, Messenger/metabolism , Recurrence , Central Nervous System Stimulants/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Gene Regulatory Networks/drug effects
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731799

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder. Dopamine (DA) neurons in the substantia nigra pars compacta, which have axonal projections to the dorsal striatum (dSTR), degenerate in PD. In contrast, DA neurons in the ventral tegmental area, with axonal projections to the ventral striatum, including the nucleus accumbens (NAcc) shell, are largely spared. This study aims to uncover the relative contributions of glycolysis and oxidative phosphorylation (OxPhos) to DA release in the striatum. We measured evoked DA release in mouse striatal brain slices using fast-scan cyclic voltammetry applied every two minutes. Blocking OxPhos resulted in a greater reduction in evoked DA release in the dSTR when compared to the NAcc shell, while blocking glycolysis caused a more significant decrease in evoked DA release in the NAcc shell than in the dSTR. Furthermore, when glycolysis was bypassed in favor of direct OxPhos, evoked DA release in the NAcc shell decreased by approximately 50% over 40 min, whereas evoked DA release in the dSTR was largely unaffected. These results demonstrate that the dSTR relies primarily on OxPhos for energy production to maintain evoked DA release, whereas the NAcc shell depends more on glycolysis. Consistently, two-photon imaging revealed higher oxidation levels of DA terminals in the dSTR than in the NAcc shell. Together, these findings partly explain the selective vulnerability of DA terminals in the dSTR to degeneration in PD.


Subject(s)
Corpus Striatum , Dopamine , Glycolysis , Oxidative Phosphorylation , Animals , Dopamine/metabolism , Mice , Corpus Striatum/metabolism , Male , Mice, Inbred C57BL , Dopaminergic Neurons/metabolism , Nucleus Accumbens/metabolism
3.
Elife ; 132024 May 15.
Article in English | MEDLINE | ID: mdl-38748470

ABSTRACT

Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. Mohebi, Collins and Berke recently reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1 (Mohebi et al., 2023). Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.


Subject(s)
Cholinergic Neurons , Dopamine , Interneurons , Optogenetics , Dopamine/metabolism , Animals , Interneurons/metabolism , Interneurons/physiology , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Rats , Optogenetics/methods , Motivation , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Acetylcholine/metabolism
4.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723884

ABSTRACT

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Ethanol , Mice, Transgenic , Nucleus Accumbens , Receptors, Glycine , Reward , Animals , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Alzheimer Disease/metabolism , Receptors, Glycine/metabolism , Ethanol/administration & dosage , Ethanol/pharmacology , Mice , Male , Neurons/metabolism , Mice, Inbred C57BL , Alcohol Drinking/metabolism
5.
Neuropharmacology ; 253: 109971, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705568

ABSTRACT

The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.


Subject(s)
Dopamine , Ethanol , Nucleus Accumbens , Oxytocin , Receptors, Dopamine D1 , Receptors, Oxytocin , Reward , Animals , Oxytocin/metabolism , Oxytocin/analogs & derivatives , Male , Ethanol/pharmacology , Ethanol/administration & dosage , Mice , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Dopamine/metabolism , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/antagonists & inhibitors , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Environment , Hypothalamus/metabolism , Hypothalamus/drug effects , Central Nervous System Depressants/pharmacology , Social Dominance , Social Behavior , Motivation/physiology , Motivation/drug effects
6.
Nat Commun ; 15(1): 4233, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762463

ABSTRACT

The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.


Subject(s)
Avoidance Learning , Basal Forebrain , GABAergic Neurons , Glutamic Acid , Reward , Ventral Tegmental Area , Ventral Tegmental Area/physiology , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/cytology , Animals , Glutamic Acid/metabolism , Basal Forebrain/metabolism , Basal Forebrain/physiology , Male , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Avoidance Learning/physiology , Mice , Dopamine/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/cytology , Nucleus Accumbens/physiology , Neurons/metabolism , Neurons/physiology , gamma-Aminobutyric Acid/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Mice, Inbred C57BL , Behavior, Animal/physiology
7.
Prog Neurobiol ; 236: 102615, 2024 May.
Article in English | MEDLINE | ID: mdl-38641041

ABSTRACT

The gut-brain peptide ghrelin and its receptor are established as a regulator of hunger and reward-processing. However, the recently recognized ghrelin receptor inverse agonist, liver-expressed antimicrobial peptide 2 (LEAP2), is less characterized. The present study aimed to elucidate LEAP2s central effect on reward-related behaviors through feeding and its mechanism. LEAP2 was administrated centrally in mice and effectively reduced feeding and intake of palatable foods. Strikingly, LEAP2s effect on feeding was correlated to the preference of the palatable food. Further, LEAP2 reduced the rewarding memory of high preference foods, and attenuated the accumbal dopamine release associated with palatable food exposure and eating. Interestingly, LEAP2 was widely expressed in the brain, and particularly in reward-related brain areas such as the laterodorsal tegmental area (LDTg). This expression was markedly altered when allowed free access to palatable foods. Accordingly, infusion of LEAP2 into LDTg was sufficient to transiently reduce acute palatable food intake. Taken together, the present results show that central LEAP2 has a profound effect on dopaminergic reward signaling associated with food and affects several aspects of feeding. The present study highlights LEAP2s effect on reward, which may have applications for obesity and other reward-related psychiatric and neurological disorders.


Subject(s)
Dopamine , Eating , Mice, Inbred C57BL , Nucleus Accumbens , Reward , Animals , Dopamine/metabolism , Male , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Eating/physiology , Mice , Feeding Behavior/physiology , Blood Proteins , Antimicrobial Cationic Peptides
8.
Science ; 384(6693): eadk6742, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669575

ABSTRACT

Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.


Subject(s)
Homeostasis , Nucleus Accumbens , Reward , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Animals , Mice , Neurons/metabolism , Illicit Drugs/adverse effects , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Male , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Signal Transduction , Substance-Related Disorders , Single-Cell Analysis , Cocaine/pharmacology , Calcium/metabolism
9.
Life Sci ; 348: 122673, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38679193

ABSTRACT

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Subject(s)
Ethanol , Gene Knock-In Techniques , Receptors, Glycine , Animals , Ethanol/pharmacology , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Mice , Male , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred C57BL , Neurons/metabolism , Neurons/drug effects , Mice, Transgenic , Receptors, GABA-A
10.
Behav Brain Res ; 466: 114983, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38580200

ABSTRACT

Humans and other animals exhibit aversive behavioral and emotional responses to unequal reward distributions compared with their conspecifics. Despite the significance of this phenomenon, experimental animal models designed to investigate social inequity aversion and delve into the underlying neurophysiological mechanisms are limited. In this study, we developed a rat model to determine the effects of socially equal or unequal reward and stress on emotional changes in male rats. During the training session, the rats were trained to escape when a sound cue was presented, and they were assigned to one of the following groups: all escaping rats [advantageous equity (AE)], freely moving rats alongside a restrained rat [advantageous inequity (AI)], all restrained rats [disadvantageous equity (DE)], and a rat restrained in the presence of freely moving companions [disadvantageous inequity (DI)]. During the test session, rats in the advantageous group (AE and AI) escaped after the cue sound (expected reward acquisition), whereas rats in the disadvantageous group (DE and DI) could not escape despite the cue being presented (expected reward deprivation). Emotional alteration induced by exposure to restraint stress under various social interaction circumstances was examined using an open field test. Notably, the DI group displayed reduced exploration of the center zone during the open field tests compared with the other groups, indicating heightened anxiety-like behaviors in response to reward inequity. Immunohistochemical analysis revealed increased c-Fos expression in the medial prefrontal and orbitofrontal cortices, coupled with reduced c-Fos expression in the striatum and nucleus accumbens under DI conditions, in contrast to the other experimental conditions. These findings provide compelling evidence that rats are particularly sensitive to reward inequity, shedding light on the neurophysiological basis for distinct cognitive processes that manifest when individuals are exposed to social equity and inequity situations.


Subject(s)
Behavior, Animal , Emotions , Proto-Oncogene Proteins c-fos , Stress, Psychological , Animals , Male , Rats , Behavior, Animal/physiology , Cues , Emotions/physiology , Nucleus Accumbens/metabolism , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats, Sprague-Dawley , Reward , Social Behavior , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
11.
Sci Adv ; 10(17): eadl6554, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657057

ABSTRACT

MDMA (3,4-methylenedioxymethamphetamine) is a psychoactive drug with powerful prosocial effects. While MDMA is sometimes termed an "empathogen," empirical studies have struggled to clearly demonstrate these effects or pinpoint underlying mechanisms. Here, we paired the social transfer of pain and analgesia-behavioral tests modeling empathy in mice-with region-specific neuropharmacology, optogenetics, and transgenic manipulations to explore MDMA's action as an empathogen. We report that MDMA, given intraperitoneally or infused directly into the nucleus accumbens (NAc), robustly enhances the social transfer of pain and analgesia. Optogenetic stimulation of 5-HT release in the NAc recapitulates the effects of MDMA, implicating 5-HT signaling as a core mechanism. Last, we demonstrate that systemic MDMA or optogenetic stimulation of NAc 5-HT inputs restores deficits in empathy-like behaviors in the Shank3-deficient mouse model of autism. These findings demonstrate enhancement of empathy-related behaviors by MDMA and implicate 5-HT signaling in the NAc as a core mechanism mediating MDMA's empathogenic effects.


Subject(s)
Empathy , Microfilament Proteins , N-Methyl-3,4-methylenedioxyamphetamine , Nucleus Accumbens , Optogenetics , Serotonin , Animals , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Empathy/drug effects , Serotonin/metabolism , Mice , Male , Behavior, Animal/drug effects , Nerve Tissue Proteins/metabolism , Autistic Disorder/metabolism , Mice, Inbred C57BL , Disease Models, Animal
12.
J Neuroendocrinol ; 36(5): e13389, 2024 May.
Article in English | MEDLINE | ID: mdl-38599683

ABSTRACT

Hunger increases the motivation for calorie consumption, often at the expense of low-taste appeal. However, the neural mechanisms integrating calorie-sensing with increased motivation for calorie consumption remain unknown. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus sense hunger, and the ingestion of caloric solutions promotes dopamine release in the absence of sweet taste perception. Therefore, we hypothesised that metabolic-sensing of hunger by AgRP neurons would be essential to promote dopamine release in the nucleus accumbens in response to caloric, but not non-caloric solutions. Moreover, we examined whether metabolic sensing in AgRP neurons affected taste preference for bitter solutions under conditions of energy need. Here we show that impaired metabolic sensing in AgRP neurons attenuated nucleus accumbens dopamine release in response to sucrose, but not saccharin, consumption. Furthermore, metabolic sensing in AgRP neurons was essential to distinguish nucleus accumbens dopamine response to sucrose consumption when compared with saccharin. Under conditions of hunger, metabolic sensing in AgRP neurons increased the preference for sucrose solutions laced with the bitter tastant, quinine, to ensure calorie consumption, whereas mice with impaired metabolic sensing in AgRP neurons maintained a strong aversion to sucrose/quinine solutions despite ongoing hunger. In conclusion, we demonstrate normal metabolic sensing in AgRP neurons drives the preference for calorie consumption, primarily when needed, by engaging dopamine release in the nucleus accumbens.


Subject(s)
Agouti-Related Protein , Dopamine , Nucleus Accumbens , Sucrose , Nucleus Accumbens/metabolism , Animals , Dopamine/metabolism , Agouti-Related Protein/metabolism , Mice , Male , Food Preferences/physiology , Mice, Inbred C57BL , Neurons/metabolism , Hunger/physiology , Taste Perception/physiology
13.
J Affect Disord ; 356: 672-680, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38657771

ABSTRACT

BACKGROUND: Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS: Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS: Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS: This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS: Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Nucleus Accumbens , Positron-Emission Tomography , Raclopride , Receptors, Dopamine D2 , Humans , Receptors, Dopamine D2/metabolism , Deep Brain Stimulation/methods , Male , Female , Middle Aged , Depressive Disorder, Treatment-Resistant/therapy , Depressive Disorder, Treatment-Resistant/metabolism , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Nucleus Accumbens/metabolism , Nucleus Accumbens/diagnostic imaging , Adult , Septal Nuclei/metabolism , Septal Nuclei/diagnostic imaging , Brain/metabolism , Brain/diagnostic imaging , Treatment Outcome
14.
Biomolecules ; 14(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672476

ABSTRACT

The recent approval of formulations of the endogenous neurosteroid allopregnanolone (brexanolone) and the synthetic neuroactive steroid SAGE-217 (zuranolone) to treat postpartum depression (PPD) has encouraged further research to elucidate why these potent enhancers of GABAAR function are clinically effective in this condition. Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens are associated with reward/motivation and brain imaging studies report that individuals with PPD show reduced activity of this pathway in response to reward and infant engagement. However, the influence of neurosteroids on GABA-ergic transmission in the nucleus accumbens has received limited attention. Here, we investigate, in the medium spiny neurons (MSNs) of the mouse nucleus accumbens core, the effect of allopregnanolone, SAGE-217 and other endogenous and synthetic steroids of interest on fast phasic and tonic inhibition mediated by synaptic (α1/2ßγ2) and extrasynaptic (α4ßδ) GABAARs, respectively. We present evidence suggesting the resident tonic current results from the spontaneous opening of δ-GABAARs, where the steroid-enhanced tonic current is GABA-dependent. Furthermore, we demonstrate local neurosteroid synthesis in the accumbal slice preparation and reveal that GABA-ergic neurotransmission of MSNs is influenced by an endogenous neurosteroid tone. Given the dramatic fluctuations in allopregnanolone levels during pregnancy and postpartum, this neurosteroid-mediated local fine-tuning of GABAergic transmission in the MSNs will probably be perturbed.


Subject(s)
Neurosteroids , Nucleus Accumbens , Pregnanolone , Receptors, GABA-A , Animals , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Mice , Receptors, GABA-A/metabolism , Neurosteroids/metabolism , Pregnanolone/pharmacology , Pregnanolone/metabolism , Synapses/metabolism , Synapses/drug effects , Mice, Inbred C57BL , Female , Male , Synaptic Transmission/drug effects , Neurons/metabolism , Neurons/drug effects
15.
Behav Neurosci ; 138(2): 108-124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661670

ABSTRACT

The cannabinoid system is being researched as a potential pharmaceutical target for a multitude of disorders. The present study examined the effect of indirect and direct cannabinoid agonists on mesolimbic dopamine release and related behaviors in C57BL/6J (B6) mice. The indirect cannabinoid agonist N-arachidonoyl serotonin (AA-5-HT) indirectly agonizes the cannabinoid system by preventing the metabolism of endocannabinoids through fatty acid amide hydrolase inhibition while also inhibiting transient receptor potential vanilloid Type 1 channels. Effects of AA-5-HT were compared with the direct cannabinoid receptor Type 1 agonist arachidonoyl-2'-chloroethylamide (ACEA). In Experiment 1, mice were pretreated with seven daily injections of AA-5-HT, ACEA, or vehicle prior to assessments of locomotor activity using open field (OF) testing and phasic dopamine release using in vivo fixed potential amperometry. Chronic exposure to AA-5-HT did not alter locomotor activity or mesolimbic dopamine functioning. Chronic exposure to ACEA decreased rearing and decreased phasic dopamine release while increasing the dopaminergic response to cocaine. In Experiment 2, mice underwent AA-5-HT, ACEA, or vehicle conditioned place preference, then saccharin preference testing, a measure commonly associated with anhedonia. Mice did not develop a conditioned place preference or aversion for AA-5-HT or ACEA, and repeated exposure to AA-5-HT or ACEA did not alter saccharin preference. Altogether, the findings suggest that neither of these drugs induce behaviors that are classically associated with abuse liability in mice; however, direct cannabinoid receptor Type 1 agonism may play more of a role in mediating mesolimbic dopamine functioning than indirect cannabinoid agonism. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Cannabinoid Receptor Agonists , Dopamine , Mice, Inbred C57BL , Animals , Dopamine/metabolism , Male , Mice , Cannabinoid Receptor Agonists/pharmacology , Serotonin/metabolism , Locomotion/drug effects , Behavior, Animal/drug effects , Arachidonic Acids/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Cocaine/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Motor Activity/drug effects
16.
Nat Commun ; 15(1): 3661, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688901

ABSTRACT

Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.


Subject(s)
Adenosine , Nucleus Accumbens , Receptor, Adenosine A2A , Sleep, Slow-Wave , Animals , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Male , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2A/genetics , Mice , Adenosine/metabolism , Adenosine/pharmacology , Allosteric Regulation , Sleep, Slow-Wave/physiology , Sleep, Slow-Wave/drug effects , Astrocytes/metabolism , Astrocytes/drug effects , Light , Neurons/metabolism , Neurons/drug effects , Mice, Inbred C57BL , Humans , Adenosine A2 Receptor Agonists/pharmacology
17.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38613458

ABSTRACT

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Dopamine , Ibogaine , Ibogaine/analogs & derivatives , Nicotine , Receptors, Nicotinic , Animals , Dopamine/metabolism , Male , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Nicotine/pharmacology , Ibogaine/pharmacology , Mice , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Mice, Inbred C57BL , Nicotinic Antagonists/pharmacology , Oocytes/drug effects , Nicotinic Agonists/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Self Administration , Xenopus laevis , Interneurons/drug effects , Interneurons/metabolism , Dose-Response Relationship, Drug , Motor Activity/drug effects
18.
Brain Res Bull ; 211: 110935, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38570076

ABSTRACT

Chronic ethanol consumption can lead to increased extracellular glutamate concentrations in key reward brain regions, such as medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), and consequently leading to oxidative stress and neuroinflammation. Previous studies from our lab tested ß-lactam antibiotics and novel beta-lactam non-antibiotic, MC-100093, and showed these ß-lactam upregulated the major astrocytic glutamate transporter, GLT-1, and consequently reduced ethanol intake and normalized glutamate homeostasis. This present study tested the effects of novel synthetic ß-lactam non-antibiotic drug, MC-100093, in chronic ethanol intake and neuroinflammatory and trophic factors in subregions of the NAc (NAc core and shell) and mPFC (Prelimbic, PL; and Infralimbic, IL) of male P rats. MC-100093 treatment reduced ethanol intake after 5-week drinking regimen. Importantly, MC-100093 attenuated ethanol-induced downregulation of brain derived neurotrophic factor (BDNF) expression in these brain regions. In addition, MC-100093 attenuated ethanol-induced upregulation of pro-inflammatory cytokines such as TNF-a and HMGB1 in all these brain regions. Furthermore, MC-100093 treatment attenuated ethanol-induced increase in RAGE in these brain regions. MC-100093 prevented neuroinflammation caused by ethanol intake as well as increased neurotrophic factor in mesocorticolimbic brain regions. MC-100093 treatment reduced ethanol intake and this behavioral effect was associated with attenuation of reduced trophic factors and increased pro-inflammatory factors. MC-100093 is considered a small molecule that may have potential therapeutic effects for the treatment of the effects of chronic exposure to ethanol.


Subject(s)
Ethanol , Excitatory Amino Acid Transporter 2 , Nucleus Accumbens , Prefrontal Cortex , Animals , Male , Excitatory Amino Acid Transporter 2/metabolism , Ethanol/pharmacology , Rats , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Biomarkers/metabolism , Alcohol Drinking/metabolism , Alcohol Drinking/drug therapy , Alcoholism/drug therapy , Alcoholism/metabolism , Brain/metabolism , Brain/drug effects
19.
Sci Signal ; 17(832): eadl4738, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626009

ABSTRACT

Cocaine use disorder (CUD) is a chronic neuropsychiatric condition that results from enduring cellular and molecular adaptations. Among substance use disorders, CUD is notable for its rising prevalence and the lack of approved pharmacotherapies. The nucleus accumbens (NAc), a region that is integral to the brain's reward circuitry, plays a crucial role in the initiation and continuation of maladaptive behaviors that are intrinsic to CUD. Leveraging advancements in neuroproteomics, we undertook a proteomic analysis that spanned membrane, cytosolic, nuclear, and chromatin compartments of the NAc in a mouse model. The results unveiled immediate and sustained proteomic modifications after cocaine exposure and during prolonged withdrawal. We identified congruent protein regulatory patterns during initial cocaine exposure and reexposure after withdrawal, which contrasted with distinct patterns during withdrawal. Pronounced proteomic shifts within the membrane compartment indicated adaptive and long-lasting molecular responses prompted by cocaine withdrawal. In addition, we identified potential protein translocation events between soluble-nuclear and chromatin-bound compartments, thus providing insight into intracellular protein dynamics after cocaine exposure. Together, our findings illuminate the intricate proteomic landscape that is altered in the NAc by cocaine use and provide a dataset for future research toward potential therapeutics.


Subject(s)
Cocaine-Related Disorders , Cocaine , Mice , Animals , Nucleus Accumbens/metabolism , Proteomics , Cocaine/pharmacology , Cocaine-Related Disorders/genetics , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/psychology , Chromatin/metabolism
20.
Behav Pharmacol ; 35(4): 193-200, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38567425

ABSTRACT

Prepulse inhibition (PPI) is a crucial indicator of sensorimotor gating that is often impaired in neuropsychiatric diseases. Although dopamine D1 receptor agonists have been found to disrupt PPI in mice, the underlying mechanisms are not fully understood. In this study, we aimed to identify the brain regions responsible for the PPI-disruptive effect of the D1 agonist in mice. Results demonstrated that intraperitoneal administration of the selective dopamine D1 receptor agonist SKF82958 dramatically inhibited PPI, while the dopamine D1 receptor antagonist SCH23390 enhanced PPI. Additionally, local infusion of SKF82958 into the nucleus accumbens and medial prefrontal cortex disrupted PPI, but not in the ventral hippocampus. Infusion of SCH23390 into these brain regions also failed to enhance PPI. Overall, the study suggests that the nucleus accumbens and medial prefrontal cortex are responsible for the PPI-disruptive effect of dopamine D1 receptor agonists. These findings provide essential insights into the cellular and neural circuit mechanisms underlying the disruptive effects of dopamine D1 receptor agonists on PPI and may contribute to the development of novel treatments for neuropsychiatric diseases.


Subject(s)
Benzazepines , Dopamine Agonists , Mice, Inbred C57BL , Nucleus Accumbens , Prefrontal Cortex , Prepulse Inhibition , Receptors, Dopamine D1 , Animals , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Dopamine Agonists/pharmacology , Mice , Benzazepines/pharmacology , Male , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/metabolism , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Reflex, Startle/drug effects , Sensory Gating/drug effects , Dopamine Antagonists/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...