Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Crit Rev Food Sci Nutr ; 64(21): 7426-7450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39093582

ABSTRACT

The health benefits of nut consumption have been extensively demonstrated in observational studies and intervention trials. Besides the high nutritional value, countless evidences show that incorporating nuts into the diet may contribute to health promotion and prevention of certain diseases. Such benefits have been mostly and certainly attributed not only to their richness in healthy lipids (plentiful in unsaturated fatty acids), but also to the presence of a vast array of phytochemicals, such as polar lipids, squalene, phytosterols, tocochromanols, and polyphenolic compounds. Thus, many nut chemical compounds apply well to the designation "nutraceuticals," a broad umbrella term used to describe any food component that, in addition to the basic nutritional value, can contribute extra health benefits. This contribution analyses the general chemical profile of groundnut and common tree nuts (almond, walnut, cashew, hazelnut, pistachio, macadamia, pecan), focusing on lipid components and phytochemicals, with a view on their bioactive properties. Relevant scientific literature linking consumption of nuts, and/or some of their components, with ameliorative and/or preventive effects on selected diseases - such as cancer, cardiovascular, metabolic, and neurodegenerative pathologies - was also reviewed. In addition, the bioactive properties were analyzed in the light of known mechanistic frameworks.


Subject(s)
Dietary Supplements , Juglans , Nuts , Phytochemicals , Pistacia , Nuts/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Humans , Dietary Supplements/analysis , Juglans/chemistry , Pistacia/chemistry , Lipids/analysis , Nutritive Value , Anacardium/chemistry , Macadamia/chemistry , Corylus/chemistry , Phytosterols/analysis , Carya/chemistry , Prunus dulcis/chemistry , Cardiovascular Diseases/prevention & control
2.
Article in English | MEDLINE | ID: mdl-39008629

ABSTRACT

This study aimed to develop and validate a multi-mycotoxin analysis method applied to cashew nuts by employing a miniaturized QuEChERS method followed by determination by ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Satisfactory recoveries for the concentrations 1, 10 and 30 ng g-1, ranging from 66% (fumonisin B1) to 110% (ochratoxin A) and relative standard deviations lower than 9% (fumonisin B2) were obtained for the target compounds. Limits of quantification ranged from 0.004 ng g-1 (sterigmatocystin) to 0.59 ng g-1 (alternariol). The applicability of the analytical method was verified by analyzing 30 cashew nut samples from the city of Rio de Janeiro, RJ, southeastern Brazil. Aflatoxins M1, G2, G1, B2, B1, ochratoxin A and sterigmatocystin were detected, respectively, in 27%, 10%, 17%, 30%, 30%, 30% and 50% of the analyzed samples, at maximum concentrations of 0.56, 0.67, 1.43, 2.02, 4.93, 4.81, and 0.35 ng g-1. The maximum limit established by Brazilian legislation for aflatoxins was not exceeded by any of the analyzed samples.


Subject(s)
Anacardium , Food Contamination , Mycotoxins , Nuts , Tandem Mass Spectrometry , Mycotoxins/analysis , Anacardium/chemistry , Chromatography, High Pressure Liquid , Food Contamination/analysis , Nuts/chemistry , Aflatoxins/analysis , Liquid Chromatography-Mass Spectrometry
3.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998984

ABSTRACT

Almond trees are the most cultivated nut tree in the world. The production of almonds generates large amounts of by-products, much of which goes unused. Herein, this study aimed to develop a green chemistry approach to identify and extract potentially valuable compounds from almond by-products. Initially, a screening was performed with 10 different Natural Deep Eutectic Solvents (NADESs). The mixture lactic acid/glycerol, with a molar ratio 1:1 (1:50 plant material to NADES (w/v) with 20% v/v of water) was identified as the best extraction solvent for catechin, caffeoylquinic acid, and condensed tannins in almond hulls. Subsequently, a method was optimized by a Design of Experiment (DoE) protocol using a miniaturized extraction technique, Microwave-Assisted Extraction (MAE), in conjunction with the chosen NADESs. The optimal conditions were found to be 70 °C with 15 min irradiation time. The optimal extraction conditions determined by the DoE were confirmed experimentally and compared to methods already established in the literature. With these conditions, the extraction of metabolites was 2.4 times higher, according to the increase in total peak area, than the established literature methods used. Additionally, by applying the multiparameter Analytical Greenness Metric (AGREE) and Green Analytical Process Index (GAPI) metrics, it was possible to conclude that the developed method was greener than the established literature methods as it includes various principles of green analytical chemistry.


Subject(s)
Plant Extracts , Prunus dulcis , Prunus dulcis/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Microwaves , Green Chemistry Technology/methods , Solvents/chemistry , Biomimetics , Nuts/chemistry
4.
Food Chem ; 457: 140211, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38943918

ABSTRACT

This pilot study evaluated the impact of pistachio consumption on cognitive performance and mood in overweight young adults. Pistachios were characterized (chemical and nutraceutical), and a baseline-final, uncontrolled nutritional intervention was performed (28 g of pistachio/28 days). Psychometric tests were applied to estimate cognitive performance and mood; anthropometric evaluation, biochemical analysis, and plasma antioxidant activity were included. The main component of nuts was lipids (48.1%). Pistachios consumption significantly (p ≤ 0.05) reduced waist circumference (-1.47 cm), total cholesterol (-10.21 mg/dL), LDL (-6.57 mg/dL), and triglycerides (-21.07 mg/dL), and increased plasma antioxidant activity. Pistachio supplementation improved risk tolerance (p ≤ 0.006) and decision-making strategy (p ≤ 0.002; BART-task), executive functions (BCST-task; p ≤ 0.006), and selective and sustained attention (Go/No-Go-test; p ≤ 0.016). The mood state was positively modulated (p ≤ 0.05) for anxiety, anger-hostility, and sadness-depression. These results show for the first time the benefits of pistachio consumption on cognitive performance and mood in overweight young adults.


Subject(s)
Affect , Cognition , Overweight , Pistacia , Humans , Pistacia/chemistry , Pilot Projects , Male , Overweight/physiopathology , Overweight/metabolism , Adult , Female , Young Adult , Nuts/chemistry , Adolescent
5.
J Med Food ; 27(10): 1004-1008, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38770660

ABSTRACT

This study traced the cytotoxicity, antioxidant activity, and phytochemical profile before and after in vitro digestion of nuts from Sterculia striata A. St.-Hil. & Naudin (Malvaceae) (chichá or monkey's peanut), a native plant from Brazil, in comparison with Arachis hypogaea L. (peanut). The antioxidant activity in the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Ferric Reducing Antioxidant Power Assay (FRAP) assays was lower in chichá when compared with peanuts, corroborating the lower concentration of polyphenols. None of the samples studied showed significant cytotoxicity in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromideDAD: diode-array detection (MTT) assays. In vitro digestion altered the phytochemical profile in both plants, increasing the concentration of rutin in fresh and roasted chichá but only in raw peanuts. In roasted peanuts, rutin was converted into quercetin. Chichá nuts have been used by the local population for centuries, and the identification of their bioactive components can be useful to promote their benefits as a functional food.


Subject(s)
Antioxidants , Arachis , Plant Extracts , Arachis/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Brazil , Digestion , Nuts/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis
6.
Plant Foods Hum Nutr ; 79(3): 578-585, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38795267

ABSTRACT

The chemical composition, antioxidant capacity and functional properties of mixtures of baru by-products, named baru food ingredients (BFI), were investigated and applied in a plant-based burger formulation. BFI were prepared from wasted baru by-products - partially defatted baru nut cake and baru pulp plus peel. A plant-based burger was developed and its chemical composition, antioxidant capacity, cooking and texture parameters were determined. BFI1 (50% partially defatted baru nut cake + 50% baru pulp plus peel) had the highest content of carbohydrate (31.9%), and dietary fibre (28.3%). BFI2 (75% partially defatted baru nut cake + 25% baru pulp plus peel) and BFI3 (90% partially defatted baru nut cake + 10% baru pulp plus peel) showed high concentration of protein and dietary fibre, and BFI3 had the highest protein content (29.5%). All BFI showed high concentration of total phenolics (402-443 mg GAE/100 g). Replacing textured pea protein of control burger (PPB) with 35% of BFI3 in the formulation of baru protein burger (BPB) resulted in a low-fat product (2.9%), with protein content (19.2%) comparable to the PPB (15.9%) and the commercial burger (mixed plant proteins - 16.3%). The BPB also showed a higher concentration of dietary fibre (4.9%) and phenolic compounds (128 mg GAE/100 g) than the control burger. BPB's cooking yield was the highest among the tested burgers. BPB had a softer texture when compared to other burgers. Baru food ingredients can be used as nutritive ingredients of health-promoting foods, especially in plant-based products, such as burger and meat analogues, or in hybrid meat products. BPB showed a healthy and nutritious profile.


Subject(s)
Antioxidants , Cooking , Dietary Fiber , Food Ingredients , Nutritive Value , Dietary Fiber/analysis , Cooking/methods , Antioxidants/analysis , Food Ingredients/analysis , Phenols/analysis , Functional Food , Nuts/chemistry , Dietary Proteins/analysis , Food Handling/methods , Dietary Carbohydrates/analysis
7.
Food Chem ; 453: 139596, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38759441

ABSTRACT

The pecan nutshell [Carya illinoinensis (Wangenh) C. Koch] (PNS) is a source of bioactives with important beneficial properties for the human health. PNS represents between 40-50 % of total mass of the nut, resulting as waste without any added value for the food industry. Even though a variety of methods were already developed for bioactive extraction from this waste, unconventional methodologies, or those which apart from green chemistry principles, were discarded considering the cost of production, the sustainable development goals of United Nations and the feasibility of real inclusion of the technology in the food chain. Then, to add-value to this waste, a low-cost, green and easy-scalable extraction methodology was developed based on the determination of seven relevant factors by means of a factorial design and a Response Surface Methodology, allowing the extraction of bioactives with antioxidant capacity. The pecan nutshell extract had a high concentration of phenolic compounds (166 mg gallic acid equivalents-GAE/g dry weight-dw), flavonoids (90 mg catechin equivalent-CE/g dw) and condensed tannins (189 mg CE/g dw) -related also to the polymeric color (74.6 %)-, with high antioxidant capacities of ABTS+. radical inhibition (3665 µmol Trolox Equivalent-TE/g dw) and of iron reduction (1305 µmol TE/g dw). Several compounds associated with these determinations were identified by HPLC-ESI-MS/MS, such as [Epi]catechin-[Epi]catechin-[Epi]gallocatechin, myricetin, dihydroquercetins, dimers A and B of protoanthocyanidins, ellagitannins and ellagic acid derivatives. Hence, through the methodology developed here, we obtained a phenolic rich extract with possible benefits for human health, and of high industrial scalability for this co-product transformation.


Subject(s)
Antioxidants , Carya , Industrial Waste , Nuts , Plant Extracts , Carya/chemistry , Nuts/chemistry , Industrial Waste/analysis , Industrial Waste/economics , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Antioxidants/isolation & purification , Antioxidants/chemistry , Antioxidants/economics , Flavonoids/isolation & purification , Flavonoids/chemistry , Phenols/isolation & purification , Phenols/chemistry , Green Chemistry Technology
8.
Article in English | MEDLINE | ID: mdl-38557311

ABSTRACT

Aleurites moluccanus (candlenut) and Bertholletia excelsa (Brazil nut) are marketed as dietary supplements for weight loss. These dietary supplements have been found to sometimes be adulterated with toxic nuts/seeds from Cascabela thevetia, commonly known as yellow oleander or lucky nut. This study emphasizes the key identification parameters to differentiate the genuine and adulterated nuts. Samples were obtained from authenticated sources of the nuts and from commercial sources of dietary supplements. This study examined 38 samples, including voucher and commercial samples. All eight commercial candlenut dietary supplement samples were adulterated. Additionally, two samples sold as Brazil nuts were also found to be adulterated. Other nuts were screened for the presence of Cardiac Glycosides, but none were found to be positive. The presence of yellow oleander was confirmed in all commercial dietary supplement samples marketed as candlenut as well as in commercial samples of Brazil nut. This study provides simple key identification characters using micro-morphology and histochemical localization of cardiac glycosides in the commercial nuts, HPTLC fingerprints, and LC-DAD-Q-ToF analytical parameters to detect and identify adulteration in commercial products.


Subject(s)
Bertholletia , Dietary Supplements , Dietary Supplements/analysis , Bertholletia/chemistry , Food Contamination/analysis , Chromatography, Thin Layer , Nuts/chemistry , Chromatography, High Pressure Liquid , Weight Loss , Microscopy
9.
J Nutr ; 154(3): 962-977, 2024 03.
Article in English | MEDLINE | ID: mdl-38246355

ABSTRACT

BACKGROUND: Increased intestinal permeability and dysbiosis are related to obesity. Nuts can provide nutrients and bioactive compounds that modulate gut microbiota and inflammation, enhancing the beneficial effects of weight loss. OBJECTIVES: To evaluate the effect of consuming cashew nuts (Anacardium occidentale L.) and Brazil nuts (Bertholletia excelsa H.B.K) on intestinal permeability and microbiota, fecal SCFAs and pH, inflammation, and weight loss in energy restriction condition. METHODS: In this 8-week randomized controlled trial, 40 women with overweight or obesity were assigned to energy-restricted groups (-500 kcal/d): control group (free of nuts) or Brazilian nuts group (BN: 30 g of cashew nuts and 15 g of Brazil nuts per day). Permeability was analyzed by the lactulose/mannitol test and the microbiota by sequencing the 16S gene in the V3-V4 regions. Plasma concentrations of inflammatory cytokines (TNF, IL-6, IL-10, IL-8, IL-17A) and C-reactive protein were analyzed. RESULTS: In total, 25 women completed the intervention. Both groups lost weight without statistical differences. Lactulose excretion increased only in the control group (P < 0.05). The BN consumption increased fecal propionic acid and potentially beneficial bacteria, such as Ruminococcus, Roseburia, strains NK4A214 and UCG-002 from the Ruminococcaceae family, but also Lachnospiraceae family, Bacteroides, and Lachnoclostridium, when compared to the control group. Changes in intestinal permeability were correlated to a greater reduction in body fat (kg), and IL-8, and increases in Ruminococcus abundance. CONCLUSION: Our findings demonstrate a positive impact of BN consumption within an energy-restricted context, linked to the augmentation of potentially beneficial bacteria and pathways associated with body fat reduction. Besides, BN consumption mitigated increased intestinal permeability, although its capacity to diminish permeability or enhance weight loss proved limited. This trial was registered at the Brazilian Registry of Clinical Trials as ReBEC (ID: RBR-3ntxrm).


Subject(s)
Anacardium , Bertholletia , Humans , Female , Nuts/chemistry , Anacardium/chemistry , Overweight , Brazil , Interleukin-8/analysis , Lactulose , Obesity , Inflammation , Weight Loss
10.
Phytomedicine ; 123: 155170, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000103

ABSTRACT

BACKGROUND: Cardiovascular disease (CVDs) is the leading cause of death worldwide. The main risk factors are hypertension, diabetes, obesity, and increased serum lipids. The peanut (Arachis hypogaea L.), also known as the groundnut, goober, pindar, or monkey nut, belongs to the Fabaceae family and is the fourth most cultivated oilseed in the world. The seeds and skin of peanuts possess a rich phytochemical profile composed of antioxidants, such as phenolic acids, stilbenes, flavonoids, and phytosterols. Peanut consumption can provide numerous health benefits, such as anti-obesity, antidiabetic, antihypertensive, and hypolipidemic effects. Accordingly, peanuts have the potential to treat CVD and counteract its risk factors. PURPOSE: This study aims to critically evaluate the effects of peanuts on metabolic syndrome (MetS) and CVD risk factors based on clinical studies. METHOD: This review includes studies indexed in MEDLINE-PubMed, COCHRANE, and EMBASE, and the Preferred Reporting Items for a Systematic Review and Meta-Analysis guidelines were adhered to. RESULTS: Nineteen studies were included and indicated that the consumption of raw peanuts or differing forms of processed foods containing peanut products and phytochemicals could improve metabolic parameters, such as glycemia, insulinemia, glycated hemoglobin, lipids, body mass index, waist circumference, atherogenic indices, and endothelial function. CONCLUSION: We propose that this legume and its products be used as a sustainable and low-cost alternative for the prevention and treatment of MetS and CVD. However, further research with larger sample sizes, longer intervention durations, and more diverse populations is needed to understand the full benefit of peanut consumption in MetS and CVD.


Subject(s)
Arachis , Cardiovascular Diseases , Metabolic Syndrome , Nuts , Humans , Arachis/chemistry , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Lipids , Metabolic Syndrome/diet therapy , Metabolic Syndrome/prevention & control , Nuts/chemistry , Seeds/chemistry , Clinical Studies as Topic
11.
Environ Technol ; 45(25): 5437-5453, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38158749

ABSTRACT

Purification methods such as membrane technology and adsorption have been studied for the purification of textile effluents. This article aimed to evaluate the membrane separation process and adsorption on pine nut shell, separately and sequentially, for reactive dye blue 5G removal from a synthetic effluent. The membrane separation process was carried out in a front filtration module using polymeric membranes. The maximum dye retention was 35.9% using a regenerated cellulose membrane, with agitation and a pressure of 0.5 bar. The permeate flux was fully restored after cleaning the membrane. In the adsorption using pine nut shell, the best results were at pH 2, 50°C, and 50 ppm, with 85% dye removal. The Freundlich isotherm showed the best fit to the data, as did the pseudo-second-order kinetic model. The thermodynamic parameters indicated that the adsorption is of the physical type, with the process being endothermic and spontaneous. In the combined process, the permeate from the membrane separation process was subjected to adsorption on pine nut shell, achieving a removal rate of 98.7 for the initial concentration of 50 ppm. Therefore, this work shows the potential of pine nut shell as an adsorbent, not only to purify textile effluents but also to add value to a waste product, indicating that the combination of membrane technology and adsorption on pine nut shell could be an alternative for the treatment of textile effluents containing the reactive dye 5G blue.


Subject(s)
Coloring Agents , Membranes, Artificial , Nuts , Pinus , Wastewater , Water Pollutants, Chemical , Adsorption , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Wastewater/chemistry , Pinus/chemistry , Nuts/chemistry , Water Purification/methods , Waste Disposal, Fluid/methods
12.
Waste Manag Res ; 41(9): 1486-1495, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37293743

ABSTRACT

The Brazilian Northeast region has considerable agricultural potential for corn and cashew nuts production. Residues from these cultures can be densified into pellets and used as heat generators in industries and homes. In this study, corn straw pellets (CSP) and cashew nut shells pellets (CNSP) were handmade, together with a variation using glycerol as a binder (CSGP and CNSGP). All pellets were subjected to chemical, thermal and exhaust gas analyses of their combustion. All analyses were based on two different scenarios: (i) the use of CSP and CSGP for energy supply in residential use and (ii) the use of CNSP and CNSGP for energy supply in industrial use. All pellets were subjected to chemical, thermal and exhaust gas analyses of their combustion. Chemical analysis involved the study of various fuel properties, comprehending moisture content (%U), bulk density (kg m-3), volatile materials (%V), ash content (%C) and fixed carbon (%FC), and all evaluated pellets met two or more international trading standards. The combustion process analyses in the residential scenario showed higher average temperatures and lower carbon monoxide (CO) and nitrogen oxide (NOx) concentrations obtained during CSP combustion than those of CSGP, and in the industrial scenario showed average similar temperatures and lower CO and NOx concentrations obtained during CNSP combustion than those of CNSGP. Ours results demonstrate the great potential of corn straw and cashew nut shells as crops to be integrated into the biomass supply chain for energy generation and agro-ecological development.


Subject(s)
Anacardium , Zea mays , Zea mays/chemistry , Nuts/chemistry , Temperature , Nitrogen Oxides/analysis , Nitric Oxide , Biomass
13.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557871

ABSTRACT

Recently, natural antioxidants for the food industry have become an important focus. Cashew nut-shell liquid (CNSL) is composed of compounds that can act as natural antioxidants in food systems. The aim of this work was to evaluate the potential of CNSL and its components to act as natural antioxidants in a bulk oil system. CNSL was treated with calcium hydroxide to obtain two fractions [cardol/cardanols acid fraction (CCF) and anacardic acid fraction (AF)]. CNSL, FF and AF were analyzed by thin-layer chromatography and Fourier-transform infrared spectroscopy. The protective effects of CNSL, CCF and AF were tested in terms of the peroxide value of bulk soybean oil in accelerated assays and were compared against controls with and without synthetic antioxidants (CSA and CWA). CNLS, CCF, AF and CSA were tested at 200 mg/kg soybean oil by incubation at 30, 40, 50 and 60 °C for five days. The activation energy (Ea) for the production of peroxides was calculated by using the linearized Arrhenius equation. Thin-layer chromatography and Fourier-transform infrared spectroscopy revealed that (i) CNSL contained cardanols, anacardic acids, and cardols; (ii) CCF contained cardanols and cardols; and (iii) AF contained anacardic acids. CSA (Ea 35,355 J/mol) was the most effective antioxidant, followed by CCF (Ea 31,498 J/mol) and by CNSL (Ea 26,351 J/mol). AF exhibited pro-oxidant activity (Ea 8339 J/mol) compared with that of CWA (Ea 15,684 J/mol). Therefore, cardols and cardanols from CNSL can be used as a natural antioxidant in soybean oil.


Subject(s)
Anacardium , Anacardium/chemistry , Antioxidants/chemistry , Soybean Oil/analysis , Phenols/chemistry , Anacardic Acids/pharmacology , Anacardic Acids/chemistry , Nuts/chemistry
14.
Molecules ; 27(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35630629

ABSTRACT

Tree nuts are rich in polar (phenolic compounds) and non-polar (tocols) antioxidants, with recognized effects in the prevention of diseases such as cancer. These biomolecules possess antiproliferative activity on cancer cells; however, the combined effect of both types of compounds has been scarcely studied, and this approach could give valuable information on the real anticancer potential of tree nuts. In the present study, the antiproliferative activity of pure tocols and phenolic compounds, tocol- and phenolic-rich extracts (TRE and PRE, respectively) from tree nuts and the extracts combinations, was evaluated in four cancer (HeLa, MCF7, PC3, A549) and one control (ARPE) cell lines. The most sensible cell lines were HeLa and MCF7. TRE and PRE from nuts were chemically characterized; γ and δ tocopherols, total tocols, total tocopherols and total phenolic compounds were negatively correlated with cell viability in MCF7 cells. In HeLa cells, only δ and total tocopherols were negatively correlated with cell viability. TRE and PRE had a low effect in reducing cell viability of the cancer cell lines, the most effective extracts were those of emory oak acorn (EOA), pecan nut (PEC) and walnut (WAL), and these were further studied for their pharmacological interactions, using the combination index and the isobologram methods. Combinations of both extracts showed a synergistic and strongly synergistic behavior in the three nuts (EOA, PEC and WAL), with combination indexes between 0.12 and 0.55. These results highlight the need to understand the interactions among components found in complex natural extracts or food products in order to fully understand their bioactivities.


Subject(s)
Neoplasms , Nuts , HeLa Cells , Humans , Nuts/chemistry , Phenols/analysis , Phenols/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Tocopherols/analysis
15.
Chem Biodivers ; 19(6): e202200107, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35474603

ABSTRACT

The dichloromethane extract of the cashew nuts from Anacardium occidentale was fractionated by rotation locular countercurrent chromatography aimed at discovering metabolites that could be useful as new models for photosynthesis inhibitors. The chemical fractionation afforded a complex mixture of anacardic acids, which upon catalytic hydrogenation yielded anacardic acid (1). Methylation of 1 via reaction with diazomethane afforded an ester 2. Both compounds were evaluated using polarographic approaches and fluorescence studies of chlorophyll a (ChL a). The in vitro assays informed the decision for the classification of 1 and 2 as Hill reaction inhibitors. Besides that, 1 inhibited the donor side of the PSII, while 2 acted as an energy transfer inhibitor. Therefore, this study is important for the development of herbicides.


Subject(s)
Anacardic Acids , Anacardium , Anacardic Acids/chemistry , Anacardic Acids/pharmacology , Anacardium/chemistry , Chlorophyll A , Nuts/chemistry , Photosynthesis
16.
Molecules ; 27(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056741

ABSTRACT

The purpose of the present work was to prepare polypropylene (PP) matrix composited filled with chemically treated pistachio shell particles (PTx), and evaluate their effect on the composites' thermal properties. PP-PTx composites were formulated in different PTx content (from 2 to 10 phr) in a mixing chamber, using the melt-mixing process. The PTx were chemically treated using a NaOH solution and infrared spectroscopy (FTIR). According to thermogravimetric analysis (TGA), the treatment of pistachio shell particles resulted in the remotion of lignin and hemicellulose. The thermal stability was evaluated by means of TGA, where the presence of PTx in composites showed a positive effect compared with PP pristine. Thermal properties such as crystallization temperature (Tc), crystallization enthalpy (∆Hc), melting temperature (Tm) and crystallinity were determinate by means differential scanning calorimetry (DSC); these results suggest that the PTx had a nucleation effect on the PP matrix, increasing their crystallinity. Dynamic mechanical analysis (DMA) showed that stiffness of the composites increase compared with that PP pristine, as well as the storage modulus, and the best results were found at a PTx concentration of 4 phr. At higher concentrations, the positive effect decreased; however, they were better than the reference PP.


Subject(s)
Biocompatible Materials/chemistry , Pistacia/chemistry , Polypropylenes/chemistry , Calorimetry, Differential Scanning , Crystallization , Lignin , Nuts/chemistry , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Thermogravimetry
17.
Odontology ; 110(3): 434-443, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34800212

ABSTRACT

To evaluate i) the inhibitory and bactericidal activity of cashew nut shell liquid (CNSL) and its isolated compounds (anacardic acid and cardol) against oral bacteria; ii) the biofilm formation inhibition, resin-dentin bond strength and physicochemical properties of a dental adhesive incorporated with these substances. The antibacterial effect of CNSL, anacardic acid, and cardol were assessed by determining the minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations. Effect in inhibiting biofilm formation of the adhesive incorporated with the substances (15 µg/ml) against a mixed-species biofilm of Streptococcus mutans and Candida Albicans and was determined by direct contact test. Additional Analysis included microtensile bond strength (µTBS) test, elastic modulus (EM), flexural strength (FS), degree of conversion (DC), water sorption (WS) and solubility (SL). The data were submitted to statistical analysis by one-way ANOVA and Tukey's test (p < 0.05). CNSL, anacardic acid and cardol showed antibacterial activity for all strains tested, with MIC and MBC values ranging from 3.12 to 25 µg/ml. There was no growth of colonies forming units in the adhesives incorporated with the substances. EM increased in the adhesive incorporated with anacardic acid, decreased after incorporation of cardol and it was not affected by incorporation of CNSL. The substances tested showed no effect in FS, DC, WS, SL and µTBS. In conclusion, the CNSL, anacardic acid and cardol showed antibacterial effects against oral bacteria and, the incorporation of substances did not reduce the performance of the adhesive.


Subject(s)
Anacardium , Dental Bonding , Anacardium/chemistry , Anti-Bacterial Agents/pharmacology , Dental Cements/chemistry , Dentin/chemistry , Dentin-Bonding Agents/chemistry , Materials Testing , Nuts/chemistry , Resin Cements/chemistry , Resin Cements/pharmacology , Streptococcus mutans , Tensile Strength
18.
Nat Prod Res ; 36(17): 4475-4481, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34618614

ABSTRACT

Baru nuts (Dipteryx alata Vog.) are a native species from Brazil, rich in phenols and other antioxidants, with high socioeconomic value and possible pharmaceutical applications. Here we investigated baru nut ethanolic extract (BNEE) antioxidant and wound healing activities in human NCI-H441 and A549 lung epithelial cell lines for a possible use in conditions related to oxidative stress and wound healing impairments, such as chronic obstructive pulmonary disease (COPD). BNEE was characterised with high DPPH free radical scavenging activity and high total phenolics content, amongst them gallic acid, that was identified and quantified by HPLC. BNEE was not cytotoxic at concentrations studied, reduced the levels of reactive oxygen species before and during oxidative stress and increased wound healing in cell monolayers. These are the first steps to investigate the beneficial properties of baru in diseases related to oxidative stress and wound healing impairments such as COPD.


Subject(s)
Dipteryx , Pulmonary Disease, Chronic Obstructive , Antioxidants/analysis , Antioxidants/pharmacology , Dipteryx/chemistry , Epithelial Cells , Humans , Lung , Nuts/chemistry , Phenols/analysis , Phenols/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Wound Healing
19.
Acta cir. bras ; Acta cir. bras;37(9): e370902, 2022. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1402980

ABSTRACT

Purpose: To investigate the active ingredients of walnut ointment (WO) and its mechanism in repairing wounds. Methods: The ingredients of WO were detected by gas chromatography­mass spectrometry. The effect of linoleic acid (LA) was tested by in vitro Alamar Blue (AB) reagent. Image J software, histological and immunohistochemical analysis were used to confirm the healing effect of LA in the porcine skin model. The animals were euthanized after the experiment by injection of pentobarbital sodium. Results: LA, 24% in WO, promotes keratinocytes and fibroblasts proliferation, which were 50.09% and 15.07% respectively higher than control (p < 0.05). The healing rate of the LA group (96.02% ± 2%, 98.58% ± 0.78%) was higher than the saline group (82.11% ± 3.37%, 88.72% ± 1.73%) at week 3 and week 4 (p < 0.05). The epidermal thickness of the LA was 0.16 ± 0.04 mm greater and the expression of the P63 and CK10 proteins was stronger in the LA group than the control (p < 0.05). Conclusions: LA, which is the main components in WO can promote full-thickness burning wounds (FBWs) by stimulating cell proliferation and differentiation.


Subject(s)
Ointments/chemistry , Wound Healing/drug effects , Keratinocytes/drug effects , Linoleic Acid/therapeutic use , Nuts/chemistry , Burns/therapy , Fibroblasts
20.
Food Chem ; 345: 128766, 2021 May 30.
Article in English | MEDLINE | ID: mdl-33302103

ABSTRACT

This paper describes the simultaneous determination of Ba, Co, Fe, and Ni in nuts by high-resolution continuum source atomic absorption spectrometry after extraction induced by solid-oil-water emulsion breaking. Extraction yields ranged from 94.9 for Ba to 109.8% for Fe. Simultaneous measurements were carried out at secondary lines of Ba, Co, Fe, and Ni. The limits of detection and quantification were, respectively, 3.819 and 1.146 mg L-1 for Ba, 2.274 and 7.421 µg L-1 for Co, 0.095 and 0.285 mg L-1 for Fe, and 2.138 and 6.614 µg L-1 for Ni. The precision ranged from 3.1 to 4.2%, 1.5 to 8.0%, 1.6 to 6.6%, and 0.4 to 6.1% for Ba, Co, Fe and Ni, respectively. The method accuracy was assessed by recovery tests and comparison of the results obtained by the proposed extraction method with those obtained after acid digestion. Recoveries ranged from 93.5 for Ni to 104.5% for Co.


Subject(s)
Barium/analysis , Cobalt/analysis , Iron/analysis , Nickel/analysis , Nuts/chemistry , Spectrophotometry, Atomic/methods , Emulsions , Reproducibility of Results , Water
SELECTION OF CITATIONS
SEARCH DETAIL