Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125596

ABSTRACT

Ethylene-Responsive Factor (ERF) is a key element found in the middle and lower reaches of the ethylene signal transduction pathway. It is widely distributed in plants and plays important roles in plant growth and development, hormone signal transduction, and various stress processes. Although there is research on AP/ERF family members, research on AP2/ERF in Osmanthus fragrans is lacking. Thus, in this work, AP2/ERF in O. fragrans was extensively and comprehensively analyzed. A total of 298 genes encoding OfAP2/ERF proteins with complete AP2/ERF domains were identified. Based on the number of AP2/ERF domains and the similarity among amino acid sequences between AP2/ERF proteins from A. thaliana and O. fragrans, the 298 putative OfAP2/ERF proteins were divided into four different families, including AP2 (45), ERF (247), RAV (5), and SOLOIST (1). In addition, the exon-intron structure characteristics of these putative OfAP2/ERF genes and the conserved protein motifs of their encoded OfAP2/ERF proteins were analyzed, and the results were found to be consistent with those of the population classification. A tissue-specific analysis showed the spatiotemporal expression of OfAP2/ERF in the stems and leaves of O. fragrans at different developmental stages. Specifically, 21 genes were not expressed in any tissue, while high levels of expression were found for 25 OfAP2/ERF genes in several tissues, 60 genes in the roots, 34 genes in the stems, 37 genes in young leaves, 34 genes in old leaves, 32 genes in the early flowering stage, 18 genes in the full flowering stage, and 37 genes in the late flowering stage. Quantitative RT-PCR experiments showed that OfERF110a and OfERF110b had the highest expression levels at the full-bloom stage (S4), and this gradually decreased with the senescence of petals. The expression of OfERF119c decreased first and then increased, while the expression levels of OfERF4c and OfERF5a increased constantly. This indicated that these genes may play roles in flower senescence and the ethylene response. In the subsequent subcellular localization experiments, we found that ERF1-4 was localized in the nucleus, indicating that it was expressed in the nucleus. In yeast self-activation experiments, we found that OfERF112, OfERF228, and OfERF23 had self-activation activity. Overall, these results suggest that OfERFs may have the function of regulating petal senescence in O. fragrans.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Oleaceae , Phylogeny , Plant Proteins , Transcription Factors , Plant Proteins/genetics , Plant Proteins/metabolism , Oleaceae/genetics , Oleaceae/metabolism , Oleaceae/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism , Ethylenes/metabolism , Amino Acid Sequence
2.
J Ethnopharmacol ; 334: 118537, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38992400

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The flowers of Nyctanthes arbor-tristis (L.) heals mouth ulcers. Its tinctures promote gastric secretions, and improve lung expectoration when taken orally. It has traditionally been used to treats scabies and other skin problems. The leaves of NAT(L.) plant are used in Ayurvedic medicine to treat sciatica, chronic fever, rheumatism, internal worm infections, and as a laxative, diaphoretic, and diuretic. The bark used in treatment of snakebite and bronchitis. In addition to traditional uses, pharmacologically this plant has potent antimalarial, antiarthritic, anticancer and antidiabetic activity. However, the mechanistic antiproliferative potentials of NAT(L.) flower as anticancer therapeutics has not yet been explored. AIM OF THE STUDY: The current study is based on a broad range of scientific literature that highlights the nutritional and therapeutic benefits of NAT (L.). Present investigation was carried out to determine the therapeutic efficacy of NAT (L.) against breast adenocarcinoma cells and T-cell lymphoma. MATERIALS AND METHODS: The ethyl-acetate extract of NAT(L.) was tested against breast cancer cells to assess the anticancer potential. To evaluate apoptosis, intracellular ROS levels and mitochondrial dynamics, fluorescence microscopy and flow cytometry were employed. Additionally, cell cycle analysis and western blotting were also performed. Furthermore, in vivo antitumor efficacy of flower extracts was investigated in T-cell lymphoma-bearing BALB/c mice model. RESULTS: Our present study revealed that NAT (L.) exert anticancer activity against breast cancer cells effectively at IC50 320 µg/ml while having less impact on normal cells with IC50 more than 480 µg/ml. Fluorescence imaging showed that NAT (L.) treatment elicits a concentration-dependent rise in the occurrence of apoptotic cell deaths with altered mitochondrial dynamics and was subsequently confirmed by flow cytometry. Further, flow cytometric analysis delineates ethyl acetate flower extract exposure promotes arrest of cells in S phase of the cell cycle. The differential expression of apoptotic proteins such as Bax, Bcl-2, cleaved PARP-1, cleaved caspase 3, Cytochrome-c, p53 and VEGF A were influenced by NAT (L.) treatment. The in vivo antitumor activity study delineates that NAT(L.) therapy significantly increased the life span of T-cell lymphoma bearing mice while reducing tumor load and belly size growth pattern without causing significant other distinct side effects as evident by histopathological studies. CONCLUSION: Our current findings unveil that NAT(L.) ethyl acetate flower extract potentially induces mitochondrial pathway of apoptosis, promote cell cycle arrest, reduces tumor load of mice, enhances survivability and could be a promising agent against the triple negative breast cancer and lymphoma.


Subject(s)
Adenocarcinoma , Antineoplastic Agents, Phytogenic , Apoptosis , Breast Neoplasms , Flowers , Lymphoma, T-Cell , Mitochondria , Plant Extracts , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Flowers/chemistry , Mitochondria/drug effects , Female , Lymphoma, T-Cell/drug therapy , Lymphoma, T-Cell/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Humans , Apoptosis/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Mice , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Mice, Inbred BALB C , Cell Line, Tumor , Oleaceae/chemistry , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays
3.
BMC Plant Biol ; 24(1): 589, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902627

ABSTRACT

BACKGROUND: The plant-specific YABBY transcription factor family plays important roles in plant growth and development, particularly leaf growth, floral organ formation, and secondary metabolite synthesis. RESULTS: Here, we identified a total of 13 OfYABBY genes from the Osmanthus fragrans genome. These 13 OfYABBY genes were divided into five subfamilies through phylogenetic analysis, and genes in the same subfamily showed similar gene structures and conserved protein motifs. Gene duplication promoted the expansion of the OfYABBY family in O. fragrans. Tissue-specific expression analysis showed that the OfYABBY family was mainly expressed in O. fragrans leaves and floral organs. To better understand the role of OfYABBY genes in plant growth and development, OfYABBY12 was selected for heterologous stable overexpression in tobacco, and OfYABBY12-overexpressing tobacco leaves released significantly fewer volatile organic compounds than wild-type tobacco leaves. Overexpression of OfYABBY12 led to the downregulation of NtCCD1/4 and decreased ß-ionone biosynthesis. Correspondingly, a dual-luciferase assay showed that OfYABBY12 negatively regulated the expression of OfCCD4, which promotes ß-ionone synthesis. Furthermore, tobacco leaves overexpressing OfYABBY12 were curled and wrinkled and had significantly reduced leaf thickness and leaf inclusions and significantly extended flower pistils (styles). CONCLUSION: Overall, the results suggest that the OfYABBY gene family may influence the biosynthesis of the floral scent (especially ß-ionone) in O. fragrans and may regulate leaf morphogenesis and lateral organs.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Oleaceae , Plant Leaves , Plant Proteins , Transcription Factors , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/anatomy & histology , Oleaceae/genetics , Oleaceae/growth & development , Oleaceae/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/anatomy & histology , Flowers/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Odorants , Volatile Organic Compounds/metabolism
4.
Plant J ; 119(2): 927-941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38872484

ABSTRACT

Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.


Subject(s)
Catechol Oxidase , Glucosides , Phenols , Plant Proteins , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Glucosides/metabolism , Glucosides/biosynthesis , Phenols/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Biosynthetic Pathways , Oleaceae/enzymology , Oleaceae/genetics , Oleaceae/metabolism , Catechols/metabolism , Gene Expression Regulation, Plant , Polyphenols
5.
Plant Physiol ; 195(4): 2815-2828, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38753307

ABSTRACT

Sweet osmanthus (Osmanthus fragrans) is famous in China for its flowers and contains four groups: Albus, Luteus, Aurantiacus, and Asiaticus. Understanding the relationships among these groups and the genetic mechanisms of flower color and aroma biosynthesis are of tremendous interest. In this study, we sequenced representative varieties from two of the four sweet osmanthus groups. Multiomics and phylogenetic analyses of varieties from each of the four groups showed that Asiaticus split first within the species, followed by Aurantiacus and the sister groups Albus and Luteus. We show that the difference in flower color between Aurantiacus and the other three groups was caused by a 4-bp deletion in the promoter region of carotenoid cleavage dioxygenase 4 (OfCCD4) that leads to expression decrease. In addition, we identified 44 gene pairs exhibiting significant structural differences between the multiseasonal flowering variety "Rixianggui" in the Asiaticus group and other autumn-flowering varieties. Through correlation analysis between intermediate products of aromatic components and gene expression, we identified eight genes associated with the linalool and α- and ß-ionone biosynthesis pathways. Overall, our study offers valuable genetic resources for sweet osmanthus, while also providing genetic clues for improving the flower color and multiseasonal flowering of osmanthus and other flowers.


Subject(s)
Flowers , Oleaceae , Phylogeny , Oleaceae/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Genome, Plant , Genomics/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Multiomics
6.
BMC Plant Biol ; 24(1): 331, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664619

ABSTRACT

BACKGROUND: Jasmine (Jasminum), renowned for its ornamental value and captivating fragrance, has given rise to numerous species and accessions. However, limited knowledge exists regarding the evolutionary relationships among various Jasminum species. RESULTS: In the present study, we sequenced seven distinct Jasminum species, resulting in the assembly of twelve high-quality complete chloroplast (cp) genomes. Our findings revealed that the size of the 12 cp genomes ranged from 159 to 165 kb and encoded 134-135 genes, including 86-88 protein-coding genes, 38-40 tRNA genes, and 8 rRNA genes. J. nudiflorum exhibited a larger genome size compared to other species, mainly attributed to the elevated number of forward repeats (FRs). Despite the typically conservative nature of chloroplasts, variations in the presence or absence of accD have been observed within J. sambac. The calculation of nucleotide diversity (Pi) values for 19 cp genomes indicated that potential mutation hotspots were more likely to be located in LSC regions than in other regions, particularly in genes ycf2, rbcL, atpE, ndhK, and ndhC (Pi > 0.2). Ka/Ks values revealed strong selection pressure on the genes rps2, atpA, rpoA, rpoC1, and rpl33 when comparing J. sambac with the three most closely related species (J. auriculatum, J. multiflorum, and J. dichotomum). Additionally, SNP identification, along with the results of Structure, PCA, and phylogenetic tree analyses, divided the Jasminum cp genomes into six groups. Notably, J. polyanthum showed gene flow signals from both the G5 group (J. nudiflorum) and the G3 group (J. tortuosum and J. fluminense). Phylogenetic tree analysis reflected that most species from the same genus clustered together with robust support in Oleaceae, strongly supporting the monophyletic nature of cp genomes within the genus Jasminum. CONCLUSION: Overall, this study provides comprehensive insights into the genomic composition, variation, and phylogenetic relationships among various Jasminum species. These findings enhance our understanding of the genetic diversity and evolutionary history of Jasminum.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Chloroplast , Jasminum , Phylogeny , Jasminum/genetics , Oleaceae/genetics
7.
Curr Biol ; 34(9): 1967-1976.e6, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38626763

ABSTRACT

In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.


Subject(s)
Gibberellins , Gibberellins/metabolism , Oleaceae/genetics , Oleaceae/metabolism , Oleaceae/growth & development , Self-Incompatibility in Flowering Plants/genetics , Genome, Plant , Flowers/genetics , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Curr Biol ; 34(9): 1977-1986.e8, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38626764

ABSTRACT

Self-incompatibility (SI) has evolved independently multiple times and prevents self-fertilization in hermaphrodite angiosperms. Several groups of Oleaceae such as jasmines exhibit distylous flowers, with two compatibility groups each associated with a specific floral morph.1 Other Oleaceae species in the olive tribe have two compatibility groups without associated morphological variation.2,3,4,5 The genetic basis of both homomorphic and dimorphic SI systems in Oleaceae is unknown. By comparing genomic sequences of three olive subspecies (Olea europaea) belonging to the two compatibility groups, we first locate the genetic determinants of SI within a 700-kb hemizygous region present only in one compatibility group. We then demonstrate that the homologous hemizygous region also controls distyly in jasmine. Phylogenetic analyses support a common origin of both systems, following a segmental genomic duplication in a common ancestor. Examination of the gene content of the hemizygous region in different jasmine and olive species suggests that the mechanisms determining compatibility groups and floral phenotypes (whether homomorphic or dimorphic) in Oleaceae rely on the presence/absence of two genes involved in gibberellin and brassinosteroid regulation.


Subject(s)
Phylogeny , Self-Incompatibility in Flowering Plants , Self-Incompatibility in Flowering Plants/genetics , Flowers/genetics , Olea/genetics , Olea/physiology , Oleaceae/genetics , Genes, Plant
9.
ScientificWorldJournal ; 2024: 5080176, 2024.
Article in English | MEDLINE | ID: mdl-38515931

ABSTRACT

The importance of medicinal plants for the treatment of different diseases is high from the aspects of the pharmaceutical industry and traditional healers. The present study involves nine different medicinal plants, namely, Neolamarckia cadamba, Nyctanthes arbor-tristis, Pogostemon benghalensis, Equisetum debile, Litsea monopetala, Spilanthes uliginosa, Desmostachya bipinnata, Mallotus philippensis, and Phoenix humilis, collected from Chitwan district of Nepal for biochemical analysis followed by the isolation of active plant fractions from the bioactive plant extract. The methanolic extracts of roots, barks, seeds, seed cover, and the other aerial parts of plants were used for the phytochemical analysis and biological activities. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay was adopted to evaluate the antioxidant activity. Antibacterial activity was evaluated using the agar well diffusion method. The antidiabetic activity was studied by the α-amylase enzyme inhibition assay. The highest antioxidant activity was observed in extracts of Nyctanthes arbor-tristis followed by Mallotus philippensis (seed cover), Pogostemon benghalensis, Litsea monopetala, Phoenix humilis, and Neolamarckia cadamba with IC50 values of 27.38 ± 1.35, 32.08 ± 2.81, 32.75 ± 2.13, 33.82 ± 1.07, 40.14 ± 0.93, and 50.44 ± 3.75 µg/mL, respectively. The highest antidiabetic activity was observed in extracts of Phoenix humilis followed by Desmostachya bipinnata and Pogostemon benghalensis with IC50 values of 95.69 ± 6.97, 99.24 ± 12.6, and 106.3 ± 12.89 µg/mL, respectively. The mild α-amylase enzyme inhibition was found in extracts of Nyctanthes arbor-tristis, Spilanthes uliginosa Swartz, Litsea monopetala, and Equisetum debile showing IC50 values of 110.4 ± 7.78, 115.98 ± 10.24, 149.83 ± 8.3, and 196.45 ± 6.04 µg/mL, whereas Mallotus Philippensis (seed cover), Mallotus philippensis (seed), and Desmostachya bipinnata showed weak α-amylase inhibition with IC50 values of 208.87 ± 1.76, 215.41 ± 2.09, and 238.89 ± 9.27 µg/mL, respectively. The extract of Nyctanthes arbor-tristis showed high zones of inhibition against S. aureus (ATCC 25923) and E. coli (ATCC 25922) of ZOI 26 and 22 mm, respectively. The chemical constituents isolated from the active plant Nyctanthes arbor-tristis were subjected to GCMS analysis where the major chemical compounds were 11,14,17-eicosatrienoic acid and methyl ester. These results support the partial scientific validation for the traditional uses of these medicinal plants in the treatment of diabetes and infectious diseases by the people living in different communities of Chitwan, Nepal.


Subject(s)
Oleaceae , Plants, Medicinal , Humans , Nepal , Antioxidants/pharmacology , Antioxidants/chemistry , Escherichia coli , Staphylococcus aureus , Plant Extracts/chemistry , Oleaceae/chemistry , Hypoglycemic Agents , alpha-Amylases
10.
Int J Mol Sci ; 25(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255929

ABSTRACT

Endophytic fungi in flowers influence plant health and reproduction. However, whether floral volatile organic compounds (VOCs) affect the composition and function of the endophytic fungal community remains unclear. Here, gas chromatography-mass spectrometry (GC-MS) and high-throughput sequencing were used to explore the relationship between floral VOCs and the endophytic fungal community during different flower development stages in Osmanthus fragrans 'Rixiang Gui'. The results showed that the composition of the endophytic fungal community and floral VOCs shifted along with flowering development. The highest and lowest α diversity of the endophytic fungal community occurred in the flower fading stage and full blooming stage, respectively. The dominant fungi, including Dothideomycetes (class), Pleosporales (order), and Neocladophialophora, Alternaria, and Setophoma (genera), were enriched in the flower fading stage and decreased in the full blooming stage, demonstrating the enrichment of the Pathotroph, Saprotroph, and Pathotroph-Saprotroph functions in the flower fading stage and their depletion in the full blooming stage. However, the total VOC and terpene contents were highest in the full blooming stage and lowest in the flower fading stage, which was opposite to the α diversity of the endophytic fungal community and the dominant fungi during flowering development. Linalool, dihydro-ß-ionone, and trans-linalool oxide(furan) were key factors affecting the endophytic fungal community composition. Furthermore, dihydro-ß-ionone played an extremely important role in inhibiting endophytic fungi in the full blooming stage. Based on the above results, it is believed that VOCs, especially terpenes, changed the endophytic fungal community composition in the flowers of O. fragrans 'Rixiang Gui'. These findings improve the understanding of the interaction between endophytic fungi and VOCs in flowers and provide new insight into the mechanism of flower development.


Subject(s)
Mycobiome , Oleaceae , Volatile Organic Compounds , Norisoprenoids , Flowers , Terpenes
11.
Physiol Plant ; 175(6): e14119, 2023.
Article in English | MEDLINE | ID: mdl-38148217

ABSTRACT

The night-flowering Jasmine, Nyctanthes arbor-tristis also known as Parijat, is a perennial woody shrub belonging to the family of Oleaceae. It is popular for its fragrant flowers that bloom in the night and is a potent source of secondary metabolites. However, knowledge about its genome and the expression of genes regulating flowering or secondary metabolite accumulation is lacking. In this study, we generated whole genome sequencing data to assemble the first de novo assembly of Parijat and use it for comparative genomics and demographic history reconstruction. The temporal dynamics of effective population size (Ne ) experienced a positive influence of colder climates suggesting the switch to night flowering may have provided an evolutionary advantage. We employed multi-tissue transcriptome sequencing of floral stages/parts to obtain insights into the transcriptional regulation of nocturnal flower development and the production of volatiles/metabolites. Tissue-specific transcripts for mature flowers revealed key players in circadian regulation and flower development, including the auxin pathway and cell wall modifying genes. Furthermore, we identified tissue-specific transcripts responsible for producing numerous secondary metabolites, mainly terpenoids and carotenoids. The diversity and specificity of Terpene Synthase (TPS) and CCDs (Carotenoid Cleavage Deoxygenases) mediate the bio-synthesis of specialised metabolites in Parijat. Our study establishes Parijat as a novel non-model species to understand the molecular mechanisms of nocturnal blooming and secondary metabolite production.


Subject(s)
Jasminum , Oleaceae , Oleaceae/genetics , Gene Expression Profiling , Genomics , Carotenoids/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Transcriptome/genetics
12.
Zootaxa ; 5352(4): 594-600, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-38221426

ABSTRACT

A new species, Priopoda macrophyae sp. nov., is described. This species is an important parasitoid of a serious pest of Japanese ash (Fraxinus japonica), Macrophya satoi Shinohara & Li, 2015. This species resembles P. otaruensis (Uchida, 1930) in the black colouration of the hind coxa, hind femur, and all metasomal tergites, but can be clearly distinguished by the length of the malar space, the smooth interspace of the punctures on the mesopleuron, the large smooth area of the speculum, the complete and strongly raised propodeal carinae, and the length of the first metasomal tergite. The bionomics of this species is also noted. The host record of this species is also the first record for Asian species of this genus.


Subject(s)
Coleoptera , Fraxinus , Hymenoptera , Oleaceae , Animals , Japan
13.
Journal de la Faculté de Médecine d'Oran ; 4(2): 579-586, 2020. figures, tables
Article in French | AIM (Africa) | ID: biblio-1415538

ABSTRACT

Introduction: Objectif-Dans les dernières décennies il y a eu un intérêt croissant pour l'étude des plantes médicinales et leur utilisation traditionnelle pour le traitement de diverses maladies. L'olivier ou Olea europaea L. constitue une entité indissociable des peuples méditerranéens. Cette plante appartient à la grande famille des oleaceae. L'objectif de cette étude a été d'évaluer l'activité anti-oxydante des extraits éthanoliques de quatre variétés sauvages de la plante O.europaea des régions de l'Est algérien : Batna et Mila (hautes-plateaux), Biskra (Sahara) et Skikda (ville côtière). Matériels et méthodes - L'évaluation de l'activité anti-oxydante in vitro des extraits éthanoliques de la plante O.europaea a été réalisée par différentes méthodes, notamment le piégeage du radical libre DPPH• et le pouvoir réducteur des ions ferriques. Résultats : L'analyse quantitative des extraits éthanoliques des feuilles de la plante O.europaea a révélé que l'extrait de Mila était plus riche (420.36 mg GAE/g MS), suivi de celui de Batna (396.84 mg GAE/g MS), puis celui de Biskra (de 380.69 mg GAE/g MS) et enfin de l'extrait de Skikda (368.45 mg GAE/g MS). Les résultats de l'activité antiradicalaire des extraits éthanoliques ont montré que ceux de Batna et Mila possédaient le pouvoir le plus important. Conclusion -Les résultats obtenus confirment favorablement l'utilisation des feuilles d'O.europaea en médecine traditionnelle algérienne pour le traitement de diverses maladies.


Introduction-Objective-In recent decades the study of medicinal proprieties of Olea europaea showed an increase interest of medicinal plants and their traditional use for the treatment of various diseases. The olive tree or Olea europaea L. is an inseparable entity of the Mediterranean people. This plant belongs to the large family of oleaceae. The purpose of this study was to assess the antioxidant activity of the ethanolic extracts from four wild varieties of O.europea in the eastern regions of Algeria: Batna and Mila (highlands), Biskra (Sahara) and Skikda (coastal city). Material and methods - The evaluation of the antioxidant activity in vitro of the ethanolic extracts of O.europaea plant was carried out by various methods, in particular, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging effect and ferric reducing antioxidant power (FRAP). Results -Quantitative analysis of ethanolic extracts from the leaves of the plant O.europaea revealed that Mila's extract was richer (420.36 mg GAE / g DM), followed by that of Batna (396.84 mg GAE / g DM), then that of Biskra (380.69 mg GAE / g MS) and finally by Skikda extract (368.45 mg GAE / g MS). The results of DPPH free radical scavenging of the ethanolic extracts showed that those of Batna and Mila had the most important power. Conclusion - The obtained results favorably confirm the use of O.europaea leaves in traditional Algerian medicine for the treatment of various diseases.


Subject(s)
Humans , Therapeutics , Plant Extracts , Olea , Ethanol , Antioxidants , Plants, Medicinal , Oleaceae
14.
Electron. j. biotechnol ; 36: 1-8, nov. 2018. ilus, graf
Article in English | LILACS | ID: biblio-1047976

ABSTRACT

Background: Osmanthus fragrans is an important ornamental tree and has been widely planted in China because of its pleasant aroma, which is mainly due to terpenes. The monoterpenoid and sesquiterpenoid metabolic pathways of sweet osmanthus have been well studied. However, these studies were mainly focused on volatile small molecule compounds. The molecular regulation mechanism of synthesis of large molecule compounds (triterpenoids) remains unclear. Squalene synthase (SQS), squalene epoxidase (SQE), and beta-amyrin synthase (BETA-AS) are three critical enzymes of the triterpenoid biosynthesis pathway. Results: In this study, the full-length cDNA and gDNA sequences of OfSQS, OfSQE, and OfBETA-AS were isolated from sweet osmanthus. Phylogenetic analysis suggested that OfSQS and OfSQE had the closest relationship with Sesamum indicum, and OfBETA-AS sequence shared the highest similarity of 99% with that of Olea europaea. The qRT-PCR analysis revealed that the three genes were highly expressed in flowers, especially OfSQE and OfBETA-AS, which were predominantly expressed in the flowers of both "Boye" and "Rixiang" cultivars, suggesting that they might play important roles in the accumulation of triterpenoids in flowers of O. fragrans. Furthermore, the expression of OfBETA-AS in the two cultivars was significantly different during all the five flowering stages; this suggested that OfBETA-AS may be the critical gene for the differences in the accumulation of triterpenoids. Conclusion: The evidence indicates that OfBETA-AS could be the key gene in the triterpenoid synthesis pathway, and it could also be used as a critical gene resource in the synthesis of essential oils by using bioengineered bacteria.


Subject(s)
Triterpenes/metabolism , Cloning, Molecular , Oleaceae/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Oils, Volatile , Gene Expression , Polymerase Chain Reaction , Oleaceae/enzymology , Squalene Monooxygenase/metabolism , Odorants
15.
Article in English | WPRIM (Western Pacific) | ID: wpr-741611

ABSTRACT

Medicinal plants are potential sources of anticancer agents screening. A large number of phytochemicals, including triterpenoids, have been reported to have significant cytotoxic effects on cancer cells. From the fruits of Ligustrum japonicum Thunb., thirteen triterpenoids (1 – 13) were isolated and evaluated for their cytotoxic activity against Hela and HL-60 cells. As results, 8 (oleanolic acid) showed significant effects on Hela with IC50 values of 5.5 µM, and moderate effects on HL-60 cells with IC₅₀ values of 55.9 µM. Meanwhile, 10 (oleanderic acid) and 11 (3β-acetoxy-urs-12-en-28-oic acid) exhibited moderate inhibitory effects on Hela with IC₅₀ value of 55.0 and 68.8 µM, respectively. Moreover, 10 showed cytotoxic effect on HL-60 cell line with IC₅₀ value of 63.9 µM. To our knowledge, this is the first report that oleanderic acid was isolated from L. japonicum and investigated in cytotoxic effects on Hela and HL-60 cells.


Subject(s)
Humans , Antineoplastic Agents , Fruit , HL-60 Cells , Inhibitory Concentration 50 , Ligustrum , Mass Screening , Nerium , Oleaceae , Phytochemicals , Plants, Medicinal
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-330178

ABSTRACT

By Silica gel, Sephadex LH-20 and other materials for isolation and purification and by physicochemical methods and spectral analysis for structural identification, 32 compounds were isolated and identified from ethyl acetate portion of alcohol extract of the Osmanthus fragrans. Their structures were identified as boschniakinic acid (1), ursolaldehyde (2), augustic acid (3), arjunolic acid (4), 5-hydroxymethyl-2-furancarboxaldehyde (5), isoscutellarein (6), 6, 7-dihydroxycoumarin (7), 2α-hydroxy-oleanolic acid (8), quercetin-3-0-β-D-glu-copyranoside (9), D-allito (10), 5, 4'-dihydroxy-7- methoxyflavone-3-0-β-D-glucopyranoside (11), 5,7-dihydroxychromone (12), lupeol (13), naringenin (14), acetyloleanolic acid (15), chlorogenic acid (16), kaempferol-3-0-β- D-glucopyranoside (17), oleanolic acid (18), kaempferol-3-0-β-D-galactopyanoside (19), 3', 7-dihydroxy-4'-methoxyisoflavon (20), ergosta-4,6,8 (14), 22-tetraen-3-one (21), p-hydroxycinnamic acid (22), syringaresinol (23), 3,4-dihydroxyacetophenonel (24), β-sitosterol (25), ethyl p-hydroxyphenylacetate (26), benzoic acid (27), caffeic acid (28), coelonin (29), p-hydorxy-phenylacetic acid (30), p-hydroxyacetophenone (31), and methyl-p-hydroxphenylacetate (32). Except for compounds 2, 4, 5, 8-11, 13, 15, 18, 20, 25, and 27, the rest were isolated from the Osmanthus fragrans for the first time.


Subject(s)
Drugs, Chinese Herbal , Chemistry , Molecular Structure , Oleaceae , Chemistry , Plants, Medicinal , Chemistry , Spectrometry, Mass, Electrospray Ionization
17.
Article in English | WPRIM (Western Pacific) | ID: wpr-58187

ABSTRACT

BACKGROUND: Osmanthus matsumuranus, a species of Oleaceae, is found in East Asia and Southeast Asia. The bioactivities of O. matsumuranus have not yet been fully understood. Here, we studied on the molecular mechanisms underlying anti-cancer effect of ethanol extract of O. matsumuranus (EEOM). METHODS: Inhibitory effect of EEOM on cell growth and proliferation was determined by WST assay in various cancer cells. To investigate the mechanisms of EEOM-mediated cytotoxicity, HepG2 cells were treated with various concentration of EEOM and analyzed the cell cycle arrest and apoptosis induction by flow cytometry, Western blot analysis, 4,6-diamidino-2-phenylindole (DAPI) staining and DNA fragmentation. RESULTS: EEOM showed the cytotoxic activities in a dose-dependent manner in various cancer cell lines but not in normal cells, and HepG2 cells were most susceptible to EEOM-induced cytotoxicity. EEOM induced G2/M arrest in HepG2 cells associated with decreased expression of cyclin-dependent kinase 1 (CDK1), cyclin A and cylcin B, and increased expression of phospho-checkpoint kinase 2, p53 and CDK inhibitor p21. Immunofluorescence staining showed that EEOM-treated HepG2 increased doublet nuclei and condensed actin, resulting in cell rounding. Furthermore, EEOM-mediated apoptosis was determined by Annexin V staining, chromatin condensation and DNA fragmentation. EEOM caused upregulation of FAS and Bax, activation of caspase-3, -8, -9, and fragmentation of poly ADP ribose polymerase. CONCLUSIONS: These results suggest that EEOM efficiently inhibits proliferation of HepG2 cells by inducing both G2/M arrest and apoptosis via intrinsic and extrinsic pathways, and EEOM may be used as a cancer chemopreventive agent in the food or nutraceutical industry.


Subject(s)
Humans , Actins , Annexin A5 , Apoptosis , Asia, Southeastern , Blotting, Western , Carcinoma, Hepatocellular , Caspase 3 , CDC2 Protein Kinase , Cell Cycle Checkpoints , Cell Line , Chromatin , Cyclin A , Dietary Supplements , DNA Fragmentation , Ethanol , Asia, Eastern , Flow Cytometry , Fluorescent Antibody Technique , Hep G2 Cells , Oleaceae , Phosphotransferases , Poly(ADP-ribose) Polymerases , Up-Regulation
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-350673

ABSTRACT

<p><b>OBJECTIVE</b>To study the effect of different processing methods on the content and biological activity of main chemical constituents of Forsytiae Fructus, in order to provide the basis for rational processing of Forsytiae Fructus.</p><p><b>METHOD</b>The content of extracts was determined by the extract determination method of Chinese Pharmacopoeia. The effects of chemical constituents of Forsytiae Fructus under different processing conditions were compared by HPLC method. Furthermore, free radical scavenging DPPH method was used to assess the antioxidation effect, and the antibacterial effect of Forsytiae Fructus was evaluated according to the inhibition effect on staphylococcus aureus.</p><p><b>RESULT</b>Considering various factors, the optimum boiling process is that adding six-fold water and boiling for 8 min.</p><p><b>CONCLUSION</b>The content and activity of chemical constituents of Forsytiae Fructus are significantly different under different processing conditions.</p>


Subject(s)
Chemistry, Pharmaceutical , Methods , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Chemistry , Fruit , Chemistry , Oleaceae , Chemistry
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-287588

ABSTRACT

By Silica gel, Sephadex LH-20 and other materials for isolation and purification and by physicochemical methods and spectral analysis for structural identification, 23 compounds were isolated and identified from ethyl acetate portion of alcohol extract solution of Osmanthus fragrans fruits. Their structures were identified as nicotinamide (1), D-allitol (2), 5-hydroxymethyl-2-furancarboxaldehyde (3), acetyloleanolic acid (4), benzoic acid (5), ergosta-7,22-dien-3-one (6), beta-sitosterol (7), borreriagenin (8), cerevistero (9), c-veratroylglycol (10), methyl-2-O-beta-glucopyranosylbenzoate (11), 3', 7-dihydroxy-4'-methoxyisoflavon (12), umbelliferone (13), caffeic acid methyl ester (14), oleanolic acid (15), (-) -chicanine (16), dillapiol (17), 3beta,5alpha, 9alpha-trihydroxyergosta-7-22-dien-6-one (18), 2alpha-hydroxy-oleanolic acid (19), betulinic acid (20), betulin (21), 3, 3'-bisdemethylpinoresinol (22), and lupeol (23). All compounds were isolated from the osmanthus fruit for the first time. Except for compounds 4, 7, 15, 19, 23, the rest ones were isolated from the this plant for the first time.


Subject(s)
Drugs, Chinese Herbal , Chemistry , Fruit , Chemistry , Oleaceae , Chemistry
20.
Article in English | WPRIM (Western Pacific) | ID: wpr-812333

ABSTRACT

AIM@#To investigate the in vitro antioxidant activity and total phenolic content of the methanolic leaf extract of Nyctanthes arbor-tristis L. (NA).@*METHODS@#The sample was tested using five in vitro antioxidant methods (1, 1-diphenyl-2-picryl hydrazine radical scavenging activity (DPPH), hydroxyl radical-scavenging activity (-OH), nitric oxide scavenging activity (NO), superoxide radical-scavenging activity, and total antioxidant activity) to evaluate the in vitro antioxidant potential of NA and the total phenolic content (Folin-Ciocalteu method). The extract showed good free radical scavenging property which was calculated as an IC50 value.@*RESULTS@#IC50 (Half maximal inhibitory concentration) of the methanolic extract was found to be 57.93 μg·mL(-1) for DPPH, 98.61 μg·mL(-1) for -OH, 91.74 μg·mL(-1) for NO, and 196.07 μg·mL(-1) for superoxide radical scavenging activity. Total antioxidant capacity of the extract was found to be (1198 ± 24.05) mg ascorbic acid for the methanolic extract. Free radical scavenging activity observed in the extracts of NA showed a concentration-dependent reaction. The in vitro scavenging tested for free radicals was reported to be due to high phenolic content in the leaf extract. The leaf extract of NA showed the highest total phenolic content with a value of 78.48 ± 4.2 equivalent mg TAE/g (tannic acid equivalent).@*CONCLUSIONS@#N. arbor-tristis leaf extract exhibited potent free radical scavenging activity. The finding suggests that N. arbor-tristis leaves could be a potential source of natural antioxidant.


Subject(s)
Antioxidants , Chemistry , Oleaceae , Chemistry , Phenols , Chemistry , Plant Extracts , Chemistry , Plant Leaves , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL