Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 313
Filter
1.
Neurobiol Dis ; 196: 106514, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663633

ABSTRACT

The olfactory bulb is involved early in the pathophysiology of Parkinson's disease (PD), which is consistent with the early onset of olfactory dysfunction. Identifying the molecular mechanisms through which PD affects the olfactory bulb could lead to a better understanding of the pathophysiology and etiology of olfactory dysfunction in PD. We specifically aimed to assess gene expression changes, affected pathways and co-expression network by whole transcriptomic profiling of the olfactory bulb in subjects with clinicopathologically defined PD. Bulk RNA sequencing was performed on frozen human olfactory bulbs of 20 PD and 20 controls without dementia or any other neurodegenerative disorder, from the Arizona Study of Aging and Neurodegenerative disorders and the Brain and Body Donation Program. Differential expression analysis (19 PD vs 19 controls) revealed 2164 significantly differentially expressed genes (1090 upregulated and 1074 downregulated) in PD. Pathways enriched in downregulated genes included oxidative phosphorylation, olfactory transduction, metabolic pathways, and neurotransmitters synapses while immune and inflammatory responses as well as cellular death related pathways were enriched within upregulated genes. An overrepresentation of microglial and astrocyte-related genes was observed amongst upregulated genes, and excitatory neuron-related genes were overrepresented amongst downregulated genes. Co-expression network analysis revealed significant modules highly correlated with PD and olfactory dysfunction that were found to be involved in the MAPK signaling pathway, cytokine-cytokine receptor interaction, cholinergic synapse, and metabolic pathways. LAIR1 (leukocyte associated immunoglobulin like receptor 1) and PPARA (peroxisome proliferator activated receptor alpha) were identified as hub genes with a high discriminative power between PD and controls reinforcing an important role of neuroinflammation in the olfactory bulb of PD subjects. Olfactory identification test score positively correlated with expression of genes coding for G-coupled protein, glutamatergic, GABAergic, and cholinergic receptor proteins and negatively correlated with genes for proteins expressed in glial olfactory ensheathing cells. In conclusion, this study reveals gene alterations associated with neuroinflammation, neurotransmitter dysfunction, and disruptions of factors involved in the initiation of olfactory transduction signaling that may be involved in PD-related olfactory dysfunction.


Subject(s)
Olfaction Disorders , Olfactory Bulb , Parkinson Disease , Sequence Analysis, RNA , Humans , Olfactory Bulb/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Male , Olfaction Disorders/genetics , Female , Aged , Sequence Analysis, RNA/methods , Middle Aged , Aged, 80 and over , Gene Expression Profiling/methods , Transcriptome
2.
Brain Behav ; 14(1): e3354, 2024 01.
Article in English | MEDLINE | ID: mdl-38376048

ABSTRACT

INTRODUCTION: Olfactory deficit often occurs during the prodromal stage of Alzheimer's disease (AD). Although olfactory deficit is a useful measure for screening AD-related amnestic disorder, little is known about the cause of this deficit. Human and animal studies indicate that loss of the actin binding protein, drebrin, is closely related to cognitive dysfunction in AD. We hypothesized that the olfactory deficit in AD is caused by the loss of drebrin from the spine. METHODS: To verify this hypothesis, we performed the buried food test in two types of drebrin knockout mice, such as drebrin-double (E and A) knockout (DXKO) mice, and drebrin A-specific knockout (DAKO) mice. RESULTS: The DXKO mice spent a significantly longer time to find food compared with the wild-type (WT) littermates. In contrast, the DAKO mice, in which drebrin E rather than drebrin A is expressed in the postsynaptic sites of mature neurons, spent an equivalent time trying to find food compared to that of the WT. The DXKO mice showed comparable food motivation and sensory functions other than olfaction, including visual and auditory functions. CONCLUSION: These results indicate that drebrin is necessary for normal olfactory function. Further study is needed to determine whether it is necessary for normal olfaction to express drebrin E during the developmental stage or to have drebrin (whether E or A) present after maturation.


Subject(s)
Alzheimer Disease , Neuropeptides , Olfaction Disorders , Animals , Humans , Mice , Alzheimer Disease/metabolism , Mice, Knockout , Neurons/metabolism , Olfaction Disorders/genetics
3.
CNS Neurosci Ther ; 30(2): e14632, 2024 02.
Article in English | MEDLINE | ID: mdl-38366763

ABSTRACT

BACKGROUND: Olfactory dysfunction is known to be an early manifestation of Alzheimer's disease (AD). However, the underlying mechanism, particularly the specific molecular events that occur during the early stages of olfactory disorders, remains unclear. METHODS: In this study, we utilized transcriptomic sequencing, bioinformatics analysis, and biochemical detection to investigate the specific pathological and molecular characteristics of the olfactory bulb (OB) in 4-month-old male triple transgenic 3xTg-AD mice (PS1M146V/APPSwe/TauP301L). RESULTS: Initially, during the early stages of olfactory impairment, no significant learning and memory deficits were observed. Correspondingly, we observed significant accumulation of amyloid-beta (Aß) and Tau pathology specifically in the OB, but not in the hippocampus. In addition, significant axonal morphological defects were detected in the olfactory bulb, cortex, and hippocampal brain regions of 3xTg-AD mice. Transcriptomic analysis revealed a significant increase in the expression of neuroinflammation-related genes, accompanied by a significant decrease in neuronal activity-related genes in the OB. Moreover, immunofluorescence and immunoblotting demonstrated an activation of glial cell biomarkers Iba1 and GFAP, along with a reduction in the expression levels of neuronal activity-related molecules Nr4a2 and FosB, as well as olfaction-related marker OMP. CONCLUSION: In sum, the early accumulation of Aß and Tau pathology induces neuroinflammation, which subsequently leads to a decrease in neuronal activity within the OB, causing axonal transport deficits that contribute to olfactory disorders. Nr4a2 and FosB appear to be promising targets for intervention aimed at improving early olfactory impairment in AD.


Subject(s)
Alzheimer Disease , Olfaction Disorders , Mice , Animals , Male , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Smell , Neuroinflammatory Diseases , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Olfaction Disorders/genetics , Disease Models, Animal , tau Proteins/genetics , tau Proteins/metabolism
4.
Clin Genet ; 105(4): 376-385, 2024 04.
Article in English | MEDLINE | ID: mdl-38148624

ABSTRACT

An estimated 1 in 10 000 people are born without the ability to smell, a condition known as congenital anosmia, and about one third of those people have non-syndromic, or isolated congenital anosmia (ICA). Despite the significant impact of olfaction for our quality of life, the underlying causes of ICA remain largely unknown. Using whole exome sequencing (WES) in 10 families and 141 individuals with ICA, we identified a candidate list of 162 rare, segregating, deleterious variants in 158 genes. We confirmed the involvement of CNGA2, a previously implicated ICA gene that is an essential component of the olfactory transduction pathway. Furthermore, we found a loss-of-function variant in SREK1IP1 from the family gene candidate list, which was also observed in 5% of individuals in an additional non-family cohort with ICA. Although SREK1IP1 has not been previously associated with olfaction, its role in zinc ion binding suggests a potential influence on olfactory signaling. This study provides a more comprehensive understanding of the spectrum of genetic alterations and their etiology in ICA patients, which may improve the diagnosis, prognosis, and treatment of this disorder and lead to better understanding of the mechanisms governing basic olfactory function.


Subject(s)
Olfaction Disorders , Olfaction Disorders/congenital , Quality of Life , Humans , Olfaction Disorders/genetics , Olfaction Disorders/diagnosis , Mutation , Signal Transduction , Smell/genetics , Cyclic Nucleotide-Gated Cation Channels/genetics
5.
Parkinsonism Relat Disord ; 115: 105815, 2023 10.
Article in English | MEDLINE | ID: mdl-37611509

ABSTRACT

INTRODUCTION: Olfactory impairment and Parkinson's disease (PD) may share common genetic and environmental risk factors. This study investigates the association of a PD polygenic risk score (PRS) with olfaction, and whether the associations are modified by environmental exposures of PM2.5, NO2, or smoking. METHODS: This analysis included 3358 women (aged 50-80) from the Sister Study with genetic data and results from the Brief Smell Identification Test (B-SIT) administered in 2018-2019. PD PRS was calculated using 90 single nucleotide polymorphisms. Olfactory impairment was defined with different B-SIT cutoffs, and PD diagnosis was adjudicated via expert review. We report odds ratios (ORs) and 95% confidence intervals (CIs) from multivariable logistic regression. RESULTS: As expected, PD PRS was strongly associated with the odds of having PD (OR highest vs. lowest quartile = 3.79 (1.64, 8.73)). The highest PRS quartile was also associated with olfactory impairment, with OR ranging from 1.24 (0.98, 1.56) for a B-SIT cutoff of 9 to 1.42 (1.04, 1.92) for a cutoff of 6. For individual B-SIT items, the highest PRS quartile was generally associated with lower odds of correctly identifying the odorant, albeit only statistically significant for pineapple (0.72 (0.56, 0.94), soap (0.76 (0.58, 0.99)) and rose (0.70 (0.54, 0.92)). The association of PD PRS with olfactory impairment was not modified by airborne environmental exposures or smoking. CONCLUSION: These preliminary data suggest that high PD genetic susceptibility is associated with olfactory impairment in middle-aged and older women.


Subject(s)
Olfaction Disorders , Parkinson Disease , Middle Aged , Humans , Female , Aged , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Parkinson Disease/complications , Smell/genetics , Olfaction Disorders/genetics , Risk Factors , Smoking
6.
Chem Senses ; 482023 01 01.
Article in English | MEDLINE | ID: mdl-37586060

ABSTRACT

Smell detection depends on nasal airflow, which can make absorption of odors to the olfactory epithelium by diffusion through the mucus layer. The odors then act on the chemo-sensitive epithelium of olfactory sensory neurons (OSNs). Therefore, any pathological changes in the olfactory area, for instance, dry nose caused by Sjögren's Syndrome (SS) may interfere with olfactory function. SS is an autoimmune disease in which aquaporin (AQP) 5 autoantibodies have been detected in the serum. However, the expression of AQP5 in olfactory mucosa and its function in olfaction is still unknown. Based on the study of the expression characteristics of AQP5 protein in the nasal mucosa, the olfaction dysfunction in AQP5 knockout (KO) mice was found by olfactory behavior analysis, which was accompanied by reduced secretion volume of Bowman's gland by using in vitro secretion measure system, and the change of acid mucin in nasal mucus layer was identified. By excluding the possibility that olfactory disturbance was caused by changes in OSNs, the result indicated that AQP5 contributes to olfactory functions by regulating the volume and composition of OE mucus layer, which is the medium for the dissolution of odor molecules. Our results indicate that AQP5 can affect the olfactory functions by regulating the water supply of BGs and the mucus layer upper the OE that can explain the olfactory loss in the patients of SS, and AQP5 KO mice might be used as an ideal model to study the olfactory dysfunction.


Subject(s)
Olfaction Disorders , Sjogren's Syndrome , Mice , Humans , Animals , Smell , Olfactory Mucosa/metabolism , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Aquaporin 5/genetics , Aquaporin 5/metabolism , Olfaction Disorders/genetics , Olfaction Disorders/metabolism
7.
Eur Arch Otorhinolaryngol ; 280(10): 4509-4517, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37258792

ABSTRACT

INTRODUCTION: Olfactory dysfunction (OD), one of the most common non-motor symptoms in Parkinson's disease (PD), is a cardinal prodromal symptom that can appear years before the onset of motor symptoms. Ongoing studies have demonstrated that microRNAs (miRNAs) are suitable biomarkers for PD, while there is a lack of robust miRNAs that can serve as markers for OD in PD. METHODS: The concordantly differentially expressed miRNAs (DE miRNAs) in the damaged olfactory system were first identified in 2 OD-related Gene Expression Omnibus (GEO) datasets. Then, they were verified in another PD-related GEO dataset and only one miRNA (miR-20a) was found to be significantly altered. Serum levels of miR-20a were further measured by qPCR in 79 PD patients with OD (PD-OD), 52 PD patients without OD (PD-NOD), and 52 healthy controls (HC). Objective measure of OD was defined by 16-item Sniffin' Sticks odor identification test. All the participants underwent a demographic and comprehensive PD-related clinical assessment. RESULTS: Our results proved that miR-20a was significantly downregulated in PD-OD compared with PD-NOD and the area under curve (AUC) for OD detection by miR-20a was 0.803 (95% confidence interval, 0.724-0.883). In addition, PD-OD had higher scores of Movement Disorder Society-Unified Parkinson's Disease Rating Scale (UPDRS) II, Hoehn and Yahr stage (H-Y), Non-Motor Symptoms Scale (NMSS) 3, NMSS 5, NMSS 9, Hamilton Rating Scale for Depression (HAMD), Hamilton Anxiety Scale (HAMA), Activity of Daily Living (ADL), and lower scores of Mini-Mental State Examination (MMSE) and 39-item PD Quality of Life Questionnaire (PDQ-39) than PD-NOD. Binary regression model further presented that lower expressions of miR-20a and poorer cognitive function acted as promoting factors in the development of OD. CONCLUSION: Our results suggest that miR-20a could be a novel biomarker for OD in PD and PD-OD patients tend to have higher disease stage, poorer motor aspects of experiences of daily living, worse cognitive scores, and inferior quality of life, and were more likely to have mental disorders. Cognitive function, in particular, is strongly associated with OD in PD patients.


Subject(s)
MicroRNAs , Olfaction Disorders , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Quality of Life , Biomarkers , Olfaction Disorders/etiology , Olfaction Disorders/genetics
8.
Genes (Basel) ; 14(4)2023 03 30.
Article in English | MEDLINE | ID: mdl-37107588

ABSTRACT

CNGB1 gene mutations are a well-known cause of autosomal recessive retinitis pigmentosa (RP), which was recently associated with olfactory dysfunction. The purpose of this study was to report the molecular spectrum and the ocular and olfactory phenotypes of a multiethnic cohort with CNGB1-associated RP. A cross-sectional case series was conducted at two ophthalmic genetics referral centers. Consecutive patients with molecularly confirmed CNGB1-related RP were included. All patients underwent a complete ophthalmological examination complemented by psychophysical olfactory evaluation. Fifteen patients (10 families: 8 Portuguese, 1 French, and 1 Turkish), mean aged 57.13 ± 15.37 years old (yo), were enrolled. Seven disease-causing variants were identified, two of which are reported for the first time: c.2565_2566del and c.2285G > T. Although 11/15 patients reported onset of nyctalopia before age 10, diagnosis was only established after 30 yo in 9/15. Despite widespread retinal degeneration being present in 14/15 probands, a relatively preserved visual acuity was observed throughout follow-up. Olfactory function was preserved in only 4/15 patients, all of whom carried at least one missense variant. Our study supports previous reports of an autosomal recessive RP-olfactory dysfunction syndrome in association with certain disease-causing variants in the CNGB1 gene and expands the mutational spectrum of CNGB1-related disease by reporting two novel variants.


Subject(s)
Olfaction Disorders , Retinitis Pigmentosa , Humans , Cross-Sectional Studies , Cyclic Nucleotide-Gated Cation Channels/genetics , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , Mutation , Phenotype , Olfaction Disorders/genetics
9.
Aust N Z J Psychiatry ; 57(10): 1367-1374, 2023 10.
Article in English | MEDLINE | ID: mdl-36967530

ABSTRACT

OBJECTIVE: Olfactory impairments, including identification, have been reported in patients with schizophrenia, while few studies have examined the olfactory function of unaffected first-degree relatives of patients with schizophrenia, and the sample sizes of first-degree relatives were relatively small. Here, we investigated olfactory identification ability among patients with schizophrenia, first-degree relatives and healthy controls (HCs) using relatively large sample sizes at a single institute. METHODS: To assess olfactory identification ability, the open essence odorant identification test was administered to 172 schizophrenia patients, 75 first-degree relatives and 158 healthy controls. Differences in olfactory identification and correlations between olfactory ability and clinical variables were examined among these participants. RESULTS: We found a significant difference in olfactory identification ability among the diagnostic groups (p = 7.65 × 10-16). Schizophrenia patients displayed lower olfactory identification ability than first-degree relatives (Cohen's d = -0.57, p = 3.13 × 10-6) and healthy controls (d = -1.00, p = 2.19 × 10-16). Furthermore, first-degree relatives had lower olfactory identification ability than healthy controls (d = -0.29, p = 0.039). Olfactory identification ability moderately and negatively correlated with the duration of illness (r = -0.41, p = 1.88 × 10-8) and negative symptoms (r = -0.28, p = 1.99 × 10-4) in schizophrenia patients, although the correlation with the duration of illness was affected by aging (r = -0.24). CONCLUSIONS: Our results demonstrated that schizophrenia patients have impaired olfactory identification ability compared with first-degree relatives and healthy controls, and the impaired olfactory identification ability of first-degree relatives was intermediate between those in schizophrenia patients and healthy controls. Olfactory identification ability was relatively independent of clinical variables. Therefore, olfactory identification ability might be an intermediate phenotype for schizophrenia.


Subject(s)
Olfaction Disorders , Schizophrenia , Humans , Schizophrenia/diagnosis , Healthy Volunteers , Family , Smell/genetics , Olfaction Disorders/diagnosis , Olfaction Disorders/genetics
10.
Cells ; 12(3)2023 01 28.
Article in English | MEDLINE | ID: mdl-36766771

ABSTRACT

The omicron variant is thought to cause less olfactory dysfunction than previous variants of SARS-CoV-2, but the reported prevalence differs greatly between populations and studies. Our systematic review and meta-analysis provide information regarding regional differences in prevalence as well as an estimate of the global prevalence of olfactory dysfunction based on 62 studies reporting information on 626,035 patients infected with the omicron variant. Our estimate of the omicron-induced prevalence of olfactory dysfunction in populations of European ancestry is 11.7%, while it is significantly lower in all other populations, ranging between 1.9% and 4.9%. When ethnic differences and population sizes are considered, the global prevalence of omicron-induced olfactory dysfunction in adults is estimated to be 3.7%. Omicron's effect on olfaction is twofold to tenfold lower than that of the alpha or delta variants according to previous meta-analyses and our analysis of studies that directly compared the prevalence of olfactory dysfunction between omicron and previous variants. The profile of the prevalence differences between ethnicities mirrors the results of a recent genome-wide association study that connected a gene locus encoding an odorant-metabolizing enzyme, UDP glycosyltransferase, to the extent of COVID-19-related loss of smell. Our analysis is consistent with the hypothesis that this enzyme contributes to the observed population differences.


Subject(s)
COVID-19 , Olfaction Disorders , Adult , Humans , SARS-CoV-2/genetics , Smell , Genome-Wide Association Study , Prevalence , Olfaction Disorders/epidemiology , Olfaction Disorders/genetics
11.
J Neurosci ; 43(6): 1051-1071, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36596700

ABSTRACT

Parkinson's disease (PD) is characterized by multiple symptoms including olfactory dysfunction, whose underlying mechanisms remain unclear. Here, we explored pathologic changes in the olfactory pathway of transgenic (Tg) mice of both sexes expressing the human A30P mutant α-synuclein (α-syn; α-syn-Tg mice) at 6-7 and 12-14 months of age, representing early and late-stages of motor progression, respectively. α-Syn-Tg mice at late stages exhibited olfactory behavioral deficits, which correlated with severe α-syn pathology in projection neurons (PNs) of the olfactory pathway. In parallel, olfactory bulb (OB) neurogenesis in α-syn-Tg mice was reduced in the OB granule cells at six to seven months and OB periglomerular cells at 12-14 months, respectively, both of which could contribute to olfactory dysfunction. Proteomic analyses showed a disruption in endocytic and exocytic pathways in the OB during the early stages which appeared exacerbated at the synaptic terminals when the mice developed olfactory deficits at 12-14 months. Our data suggest that (1) the α-syn-Tg mice recapitulate the olfactory functional deficits seen in PD; (2) olfactory structures exhibit spatiotemporal disparities for vulnerability to α-syn pathology; (3) α-syn pathology is restricted to projection neurons in the olfactory pathway; (4) neurogenesis in adult α-syn-Tg mice is reduced in the OB; and (5) synaptic endocytosis and exocytosis defects in the OB may further explain olfactory deficits.SIGNIFICANCE STATEMENT Olfactory dysfunction is a characteristic symptom of Parkinson's disease (PD). Using the human A30P mutant α-synuclein (α-syn)-expressing mouse model, we demonstrated the appearance of olfactory deficits at late stages of the disease, which was accompanied by the accumulation of α-syn pathology in projection neurons (PNs) of the olfactory system. This dysfunction included a reduction in olfactory bulb (OB) neurogenesis as well as changes in synaptic vesicular transport affecting synaptic function, both of which are likely contributing to olfactory behavioral deficits.


Subject(s)
Olfaction Disorders , Parkinson Disease , Male , Female , Mice , Humans , Animals , Parkinson Disease/genetics , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Smell , Proteomics , Mice, Transgenic , Neurogenesis , Olfaction Disorders/genetics , Disease Models, Animal
12.
Chem Senses ; 472022 01 01.
Article in English | MEDLINE | ID: mdl-36433800

ABSTRACT

Olfaction, as one of our 5 senses, plays an important role in our daily lives. It is connected to proper nutrition, social interaction, and protection mechanisms. Disorders affecting this sense consequently also affect the patients' general quality of life. Because the underlying genetics of congenital olfactory disorders (COD) have not been thoroughly investigated yet, this systematic review aimed at providing information on genes that have previously been reported to be mutated in patients suffering from COD. This was achieved by systematically reviewing existing literature on 3 databases, namely PubMed, Ovid Medline, and ISI Web of Science. Genes and the type of disorder, that is, isolated and/or syndromic COD were included in this study, as were the patients' associated abnormal features, which were categorized according to the affected organ(-system). Our research yielded 82 candidate genes/chromosome loci for isolated and/or syndromic COD. Our results revealed that the majority of these are implicated in syndromic COD, a few accounted for syndromic and isolated COD, and the least underly isolated COD. Most commonly, structures of the central nervous system displayed abnormalities. This study is meant to assist clinicians in determining the type of COD and detecting potentially abnormal features in patients with confirmed genetic variations. Future research will hopefully expand this list and thereby further improve our understanding of COD.


Subject(s)
Olfaction Disorders , Smell , Humans , Smell/genetics , Quality of Life , Olfaction Disorders/genetics
13.
Ann Clin Transl Neurol ; 9(12): 1884-1897, 2022 12.
Article in English | MEDLINE | ID: mdl-36300915

ABSTRACT

OBJECTIVE: Accumulation evidence has reported that olfactory impairment may be an essential clinical marker and predictor of mild cognitive impairment or Alzheimer's disease. METHOD: Participants were enrolled in the population-based, prospective study in Fuxin county, Liaoning province, China between 2019 and 2021. An inverse probability weighting logistic regression and mixed-effect models were performed to explore the association between dysosmia and cognition and rate of change in cognition, respectively. Besides, we utilized the Robust Rank Aggregation method to integrated three eligible datasets from the Gene Expression Omnibus to identify differential expressed genes. RESULTS: A total of 4695 participants were enrolled and 4221 of those were eligible for our cross-sectional study. The mean (SD) age was 59.93(9.78) years, 64.8% were men. Over a 2-year follow-up, of the 2088 participants who completed follow-up, 1559 participants were eligible for our longitude cohort study. We observed an association between dysosmia and an increased risk of cognitive impairment (OR, 0.47, [95% CI, 0.35-0.64]; p < 0.001). The OR (95% CI) for cognition in females with dysosmia was higher than (OR, 0.73[0.51, 1.05], p = .007) that for males with dysosmia (OR, 0.25[0.15, 0.42], p < 0.001; P for interaction <0.001). Dysosmia was also associated with more rapid decline in calculation ability (p < 0.001). Besides, several DEGs were identified, which are mainly associated with olfactory transduction, detection of chemical stimulus involved in sensory perception of smell, sensory perception of smell, olfactory receptor activity and odorant binding. INTERPRETATION: These findings proved novel insight into identifying olfactory dysfunction as potential biomarker for diagnosis of cognitive impairment.


Subject(s)
Cognitive Dysfunction , Olfaction Disorders , Male , Female , Humans , Middle Aged , Cohort Studies , Cross-Sectional Studies , Prospective Studies , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Olfaction Disorders/etiology , Olfaction Disorders/genetics , Biomarkers
14.
Front Cell Infect Microbiol ; 12: 905757, 2022.
Article in English | MEDLINE | ID: mdl-36250059

ABSTRACT

In early 2020, one of the most prevalent symptoms of SARS-CoV-2 infection was the loss of smell (anosmia), found in 60-70% of all cases. Anosmia used to occur early, concomitantly with other symptoms, and often persisted after recovery for an extended period, sometimes for months. In addition to smell disturbance, COVID-19 has also been associated with loss of taste (ageusia). The latest research suggests that SARS-CoV-2 could spread from the respiratory system to the brain through receptors in sustentacular cells localized to the olfactory epithelium. The virus invades human cells via the obligatory receptor, angiotensin-converting enzyme II (ACE2), and a priming protease, TMPRSS2, facilitating viral penetration. There is an abundant expression of both ACE2 and TMPRSS2 in sustentacular cells. In this study, we evaluated 102 COVID-19 hospitalized patients, of which 17.60% presented anosmia and 9.80% ageusia. ACE1, ACE2, and TMPRSS2 gene expression levels in nasopharyngeal tissue were obtained by RT-qPCR and measured using ΔCT analysis. ACE1 Alu287bp association was also evaluated. Logistic regression models were generated to estimate the effects of variables on ageusia and anosmia Association of ACE2 expression levels with ageusia. was observed (OR: 1.35; 95% CI: 1.098-1.775); however, no association was observed between TMPRSS2 and ACE1 expression levels and ageusia. No association was observed among the three genes and anosmia, and the Alu287bp polymorphism was not associated with any of the outcomes. Lastly, we discuss whetherthere is a bridge linking these initial symptoms, including molecular factors, to long-term COVID-19 health consequences such as cognitive dysfunctions.


Subject(s)
Ageusia , Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Olfaction Disorders , Ageusia/etiology , Anosmia , COVID-19/genetics , Cognition , Gene Expression , Humans , Olfaction Disorders/genetics , Receptors, Angiotensin , SARS-CoV-2
15.
J Cell Mol Med ; 26(19): 5008-5020, 2022 10.
Article in English | MEDLINE | ID: mdl-36029194

ABSTRACT

Olfactory impairment is an initial non-motor symptom of Parkinson's disease that causes the deposition of aggregated α-synuclein (α-syn) in olfactory neurons. Transient receptor potential canonical (TRPC) channels are a diverse group of non-selective Ca2+ entry channels involved in the progression or pathogenesis of PD via Ca2+ homeostatic regulation. However, the relationship between TRPC and α-syn pathology in an olfactory system remains unclear. To address this issue, we assessed the olfactory function in α-syn transgenic mice. In contrast with control mice, the transgenic mice exhibited impaired olfaction, TRPC3 activation and apoptotic neuronal cell death in the olfactory system. Similar results were observed in primary cultures of olfactory neurons, that is TRPC3 activation, increasing intracellular Ca2+ concentration and apoptotic cell death in the α-syn-overexpressed neurons. These changes were significantly attenuated by TRPC3 knockdown. Therefore, our findings suggest that TRPC3 activation and calcium dyshomeostasis play a key role in α-syn-induced olfactory dysfunction in mice.


Subject(s)
Olfaction Disorders , TRPC Cation Channels , alpha-Synuclein , Animals , Calcium/metabolism , Mice , Mice, Transgenic , Olfaction Disorders/genetics , Phosphorylation , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
16.
Neurology ; 99(8): e814-e823, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35995594

ABSTRACT

BACKGROUND AND OBJECTIVES: There is clinical and phenotypic heterogeneity in LRRK2 G2019S Parkinson disease (PD), including loss of smell. Olfactory scores have defined subgroups of LRRK2 PD at baseline. We now extend this work longitudinally to better determine features associated with olfactory classes and to gain further insight into this heterogeneity. METHODS: Evaluation of 162 patients with LRRK2 PD and 198 patients with idiopathic PD (IPD) from the LRRK2 Ashkenazi Jewish Consortium was performed, with follow-up available for 92 patients with LRRK2 PD and 74 patients with IPD. Olfaction (University of Pennsylvania Smell Identification Test [UPSIT]), motor function (Unified Parkinson Disease Rating Scale), and cognition (Montreal Cognitive Assessment), as well as sleep, nonmotor, and mood, were measured. Gaussian mixture models were applied on the UPSIT percentile score to determine subgroups based on olfactory performance. Linear mixed effects models, using PD duration as the time scale, assessed the relationship between UPSIT subgroup membership and motor/cognitive change. RESULTS: Baseline olfaction was better in LRRK2 PD compared with IPD (mean UPSIT ± SD: 24.2 ± 8.8 vs 18.9 ± 7.6), with higher mean percentile scores (difference: 15.3 ± 11.6) (p < 0.001) and less frequent hyposmia (55.6% vs 85.4%; p < 0.001). Analysis suggested 3 classes among LRRK2 PD. Age at onset in LRRK2 PD was earlier in the worst olfaction group (group 1), compared with groups 2 and 3 (54.5 ± 11.1 vs 61.7 ± 9.3) (p = 0.012), and separately in the hyposmic group overall (55.0 ± 11.3 vs 61.7 ± 9.1) (p < 0.001). Longitudinal motor deterioration in LRRK2 PD was also significantly faster in the worst UPSIT group than the best UPSIT group (group 3 vs group 1: B = 0.31, SE = 0.35 vs B = 0.96, SE = 0.28) (rate difference = -0.65, SE = 0.29) (p = 0.03). However, olfactory group membership was not significantly associated with cognitive decline. DISCUSSION: In this large LRRK2 cohort with longitudinal analysis, we extend prior work demonstrating subgroups defined by olfaction in LRRK2 G2019S PD and show that the worst olfaction group has earlier age at PD onset and more rapid motor decline. This supports a subgroup of LRRK2 PD that might show more rapid change in a clinical trial of LRRK2-related agents and highlights the need to integrate careful phenotyping into allocation schema in clinical trials of LRRK2-related agents. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that worse olfactory scores were associated with an earlier age at symptomatic onset and a faster rate of motor deterioration in patients with LRRK2 PD.


Subject(s)
Olfaction Disorders , Parkinson Disease , Age of Onset , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics , Olfaction Disorders/complications , Olfaction Disorders/genetics , Parkinson Disease/complications , Parkinson Disease/genetics , Smell
17.
J Alzheimers Dis ; 88(2): 721-729, 2022.
Article in English | MEDLINE | ID: mdl-35694921

ABSTRACT

BACKGROUND: Olfactory dysfunction is one of the earliest signs of Alzheimer's disease (AD), highlighting its potential use as a biomarker for early detection. It has also been linked to progression from mild cognitive impairment (MCI) to dementia. OBJECTIVE: To study olfactory function and its associations with markers of AD brain pathology in non-demented mutation carriers of an autosomal dominant AD (ADAD) mutation and non-carrier family members. METHODS: We analyzed cross-sectional data from 16 non-demented carriers of the Presenilin1 E280A ADAD mutation (mean age [SD]: 40.1 [5.3], and 19 non-carrier family members (mean age [SD]: 36.0 [5.5]) from Colombia, who completed olfactory and cognitive testing and underwent amyloid and tau positron emission tomography (PET) imaging. RESULTS: Worse olfactory identification performance was associated with greater age in mutation carriers (r = -0.52 p = 0.037). In carriers, worse olfactory identification performance was related to worse MMSE scores (r = 0.55, p = 0.024) and CERAD delayed recall (r = 0.63, p = 0.007) and greater cortical amyloid-ß (r = -0.53, p = 0.042) and tau pathology burden (entorhinal: r = -0.59, p = 0.016; inferior temporal: r = -0.52, p = 0.038). CONCLUSION: Worse performance on olfactory identification tasks was associated with greater age, a proxy for disease progression in this genetically vulnerable ADAD cohort. In addition, this is the first study to report olfactory dysfunction in ADAD mutation carriers with diagnosis of MCI and its correlation with abnormal accumulation of tau pathology in the entorhinal region. Taken together, our findings suggest that olfactory dysfunction has promise as an early marker of brain pathology and future risk for dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Olfaction Disorders , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Biomarkers , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging/methods , Olfaction Disorders/etiology , Olfaction Disorders/genetics , Positron-Emission Tomography/methods , tau Proteins/genetics , tau Proteins/metabolism
18.
An Pediatr (Engl Ed) ; 97(4): 247-254, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34238712

ABSTRACT

INTRODUCTION: Congenital hypogonadotropic hypogonadism (CHH) can present alone or in association with anosmia or other congenital malformations. More than 30 genes have been identified as being involved in the pathogenesis of CHH with different patterns of inheritance, and the increasing availability of next generation sequencing (NGS) has increased the diagnostic yield. METHODS: We analysed the diagnostic yield of NGS in patients with CHH using the clinical exome filtered with virtual panels. We also assessed whether designing panels based on the presence/absence of microsmia increased the diagnostic yield. RESULTS: The use of a 34-gene virtual panel confirmed the diagnosis of CHH in 5 out of 9 patients (55%) patients. In 2 out of 9 (22%), the findings were inconclusive. Applying the presence/absence of microsmia criterion to choose genes for analysis did not improve the diagnostic yield. CONCLUSIONS: The approach to the genetic study of patients with CHH varies depending on the resources of each healthcare facility, so the sensitivity of testing may vary substantially depending on whether panels, clinical exome sequencing or whole exome sequencing (WES) are used. The analysis of all genes related to CHH regardless of the presence/absence of microsmia seems to be the best approach.


Subject(s)
Hypogonadism , Olfaction Disorders , Exome , Humans , Hypogonadism/diagnosis , Hypogonadism/genetics , Mutation , Olfaction Disorders/genetics , Exome Sequencing
19.
Auris Nasus Larynx ; 49(2): 209-214, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34348847

ABSTRACT

OBJECTIVE: This study examined olfactory dysfunction in LATY136F knock-in mice and its pathogenic mechanism. METHODS: The olfactory function of LATY136F knock-in mice was assessed by a behavioral test using cycloheximide solution, which has been used as a mice repellant because of its peculiar smell and unpleasant taste. The tests were administered to each group of LATY136F knock-in mice and WT mice at 8, 12, 16, 20, and 24 weeks of age. After the behavioral tests to evaluate olfactory function, the mice were sacrificed for evaluations by immunohistochemistry. RESULTS: Behavioral tests to evaluate olfactory function showed that the LATY136F knock-in mice had a statistically significant level of olfactory dysfunction (P < 0.05). Histological analysis showed that the thickness of the olfactory epithelium in these mice was thinner than that in the age-matched wild type mice. There was no IgG4-RD like lesion in the olfactory epithelium of LATY136F knock-in mice. Olfactory marker protein and growth-associated protein 43 expressions in the olfactory epithelium of the LATY136F knock-in mice were markedly lesser than those in the wild type mice (P < 0.05). CONCLUSION: The present study demonstrated that olfactory disturbances occurred in LATY136F knock-in mice. Furthermore, the mechanism was suggested to be reduced regeneration of the olfactory epithelium.


Subject(s)
Immunoglobulin G4-Related Disease , Olfaction Disorders , Animals , Immunoglobulin G4-Related Disease/pathology , Mice , Olfaction Disorders/genetics , Olfactory Marker Protein , Olfactory Mucosa/pathology , Smell/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...