Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 28(19): 4278-4291, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35736214

ABSTRACT

PURPOSE: Patients with MYC-amplified medulloblastoma (MB) have poor prognosis and frequently develop recurrence, thus new therapeutic approaches to prevent recurrence are needed. EXPERIMENTAL DESIGN: We evaluated OLIG2 expression in a panel of mouse Myc-driven MB tumors, patient MB samples, and patient-derived xenograft (PDX) tumors and analyzed radiation sensitivity in OLIG2-high and OLIG2-low tumors in PDX lines. We assessed the effect of inhibition of OLIG2 by OLIG2-CRISPR or the small molecule inhibitor CT-179 combined with radiotherapy on tumor progression in PDX models. RESULTS: We found that MYC-associated MB can be stratified into OLIG2-high and OLIG2-low tumors based on OLIG2 protein expression. In MYC-amplified MB PDX models, OLIG2-low tumors were sensitive to radiation and rarely relapsed, whereas OLIG2-high tumors were resistant to radiation and consistently developed recurrence. In OLIG2-high tumors, irradiation eliminated the bulk of tumor cells; however, a small number of tumor cells comprising OLIG2- tumor cells and rare OLIG2+ tumor cells remained in the cerebellar tumor bed when examined immediately post-irradiation. All animals harboring residual-resistant tumor cells developed relapse. The relapsed tumors mirrored the cellular composition of the primary tumors with enriched OLIG2 expression. Further studies demonstrated that OLIG2 was essential for recurrence, as OLIG2 disruption with CRISPR-mediated deletion or with the small molecule inhibitor CT-179 prevented recurrence from the residual radioresistant tumor cells. CONCLUSIONS: Our studies reveal that OLIG2 is a biomarker and an effective therapeutic target in a high-risk subset of MYC-amplified MB, and OLIG2 inhibitor combined with radiotherapy represents a novel effective approach for treating this devastating disease.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Biomarkers , Cell Line, Tumor , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Disease Models, Animal , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/radiotherapy , Mice , Neoplasm Recurrence, Local/genetics , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/therapeutic use , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
2.
Metab Brain Dis ; 36(7): 2101-2110, 2021 10.
Article in English | MEDLINE | ID: mdl-34342813

ABSTRACT

It has been shown that following demyelination, Oligodendrocyte Progenitor Cells (OPCs) migrate to the lesion site and begin to proliferate, and differentiate. This study aimed to investigate the effects of Hydroxychloroquine (HCQ) on the expression of OLIG-2 and PDGFR-α markers during the myelination process. C57BL/6 mice were fed cuprizone pellets for 5 weeks to induce demyelination and return to a normal diet for 1 week to stimulate remyelination. During the Phase I all of the animals except CPZ and Vehicle groups were exposed to HCQ (2.5, 10, and 100 mg/kg) via drinking water. At the end of the study, animals were euthanized, perfused and the brain samples were assessed for myelination and immunohistochemistry evaluation. What is remarkable is the high rate of Olig2 + cells in the groups treated with 10 and 100 mg/kg HCQ in the demyelination phase and its decreasing trend in the remyelination phase. However, there was no significant difference between groups during phase I and Phase II based on the percentage of olig-2+/total cells in the corpus callosum region. The number of PDGFR-α+ cells in the group treated with 10 mg/kg HCQ was significant in the first phase (p value < 0.05). Considering that the 100 mg/kg HCQ group had the highest level of PDGFR-α as well as the highest level of myelin repair in LFB staining, it could be inferred that it was the most effective dose in inducing proliferation and migration of OPCs.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Animals , Corpus Callosum/pathology , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Disease Models, Animal , Hydroxychloroquine/pharmacology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/chemically induced , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Myelin Sheath/metabolism , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendrocyte Transcription Factor 2/pharmacology , Oligodendrocyte Transcription Factor 2/therapeutic use , Oligodendroglia/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Receptors, Platelet-Derived Growth Factor/pharmacology , Receptors, Platelet-Derived Growth Factor/therapeutic use
3.
Med Sci Monit ; 23: 4834-4840, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28989170

ABSTRACT

BACKGROUND The pathogenesis of schizophrenia is complex and oligodendrocyte abnormality is an important component of the pathogenesis found in schizophrenia. This study was designed to evaluate the function of olig2 in cuprizone-induced schizophrenia-like symptoms in a mouse model, and to assess the related mechanisms. MATERIAL AND METHODS The schizophrenia-like symptoms were modeled by administration of cuprizone in mice. Open-field and elevated-plus maze tests were applied to detect behavioral changes. Adenovirus encoding olig2 siRNA was designed to silence olig2 expression. Real-time PCR and western blotting were applied to detect myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), glial fibrillary acidic protein (GFAP) and olig2 expressions. RESULTS Open field test showed that the distance and time spent in the center area were significantly decreased in cuprizone mice (model mice) when compared with control mice (p<0.05). By contrast, olig2 silence could significantly increase the time and distance spent in the center area compared with the model mice (p<0.05). As revealed by elevated-plus maze test, the mice in the model group preferred the open arm and spent more time and distance in the open arm compared with control mice (p<0.05), while olig2 silence significantly reversed the abnormalities (p<0.05). Mechanically, MBP and CNPase expression were reduced in the model group compared with the control (p<0.05). However, olig2 silence reversed the reduction caused by cuprizone modeling (p<0.05). In addition, GFAP was elevated after cuprizone modeling compared with control (p<0.05), and was significantly inhibited by olig2 silence compared with model (p<0.05). CONCLUSIONS Cuprizone-induced schizophrenia-like symptoms involved olig2 upregulation. The silence of olig2 could prevent changes, likely through regulating MBP, CNPase, and GFAP expressions.


Subject(s)
Oligodendrocyte Transcription Factor 2/therapeutic use , Schizophrenia/metabolism , 2',3'-Cyclic-Nucleotide Phosphodiesterases/analysis , 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain/pathology , Cuprizone/administration & dosage , Disease Models, Animal , Glial Fibrillary Acidic Protein/analysis , Glial Fibrillary Acidic Protein/metabolism , Mice , Mice, Inbred C57BL , Myelin Basic Protein/analysis , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Nerve Tissue Proteins/metabolism , Oligodendrocyte Transcription Factor 2/analysis , Oligodendrocyte Transcription Factor 2/physiology , Oligodendroglia/pathology , Oligodendroglia/physiology , Schizophrenia/chemically induced , Up-Regulation
4.
CNS Neurosci Ther ; 23(6): 475-487, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28452182

ABSTRACT

AIMS: Olig2 is one of the most critical factors during CNS development, which belongs to b-HLH transcription factor family. Previous reports have shown that Olig2 regulates the remyelination processes in CNS demyelination diseases models. However, the role of Olig2 in contusion spinal cord injury (SCI) and the possible therapeutic effects remain obscure. This study aims to investigate the effects of overexpression Olig2 by lentivirus on adult spinal cord injury rats. METHODS: Lenti-Olig2 expression and control Lenti-eGFP vectors were prepared, and virus in a total of 5 µL (108 TU/mL) was locally injected into the injured spinal cord 1.5 mm rostral and caudal near the epicenter. Immunostaining, Western blot, electron microscopy, and CatWalk analyzes were employed to investigate the effects of Olig2 on spinal cord tissue repair and functional recovery. RESULTS: Injection of Lenti-Olig2 significantly increased the number of oligodendrocytes lineage cells and enhanced myelination after SCI. More importantly, the introduction of Olig2 greatly improved hindlimb locomotor performances. Other oligodendrocyte-related transcription factors, which were downregulated or upregulated after injury, were reversed by Olig2 induction. CONCLUSIONS: Our findings provided the evidence that overexpression Olig2 promotes myelination and locomotor recovery of contusion SCI, which gives us more understanding of Olig2 on spinal cord injury treatment.


Subject(s)
Oligodendrocyte Transcription Factor 2/therapeutic use , Recovery of Function/drug effects , Spinal Cord Injuries/therapy , Animals , Disease Models, Animal , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/genetics , Evoked Potentials, Somatosensory/drug effects , Evoked Potentials, Somatosensory/genetics , Exploratory Behavior/drug effects , Female , Gangliosides/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Hindlimb/drug effects , Hindlimb/physiopathology , Ki-67 Antigen/metabolism , Lentivirus/genetics , Locomotion/drug effects , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Myelin Sheath/pathology , Myelin Sheath/ultrastructure , Nerve Tissue Proteins/metabolism , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/pharmacology , Oligodendrocyte Transcription Factor 2/ultrastructure , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology , Spinal Cord Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...