Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.641
Filter
1.
Clin. transl. oncol. (Print) ; 26(2): 468-476, feb. 2024.
Article in English | IBECS | ID: ibc-230192

ABSTRACT

Objectives The purpose of this meta-analysis is to evaluate the efficacy and safety of TAS-102 in treating metastatic colorectal cancer (mCRC) using the most recent data available. Methods The literature on the efficacy and safety of TAS-102 versus placebo and/or best supportive care (BSC) in mCRC was obtained through a systematic search of PubMed, Embase, and Web of Science databases through January 2023. Identify the included literature and extract pertinent data, such as the overall survival (OS), progression-free survival (PFS), time to treatment failure (TTF), disease control rate (DCR), incidence of adverse events (AEs) and serious adverse events (SAEs). Results There were eight eligible articles that included 2903 patients (1964 TAS-102 versus 939 Placebo and/or BSC). In this meta-analysis, TAS-102 treatment resulted in longer OS, PFS, TTF, and higher DCR in patients with mCRC versus placebo and/or BSC. TAS-102 improved OS and PFS in subgroup analyses of mCRC patients with KRAS wild-type and KRAS mutant-type. In addition, TAS-102 did not increase the incidence of serious adverse events. Conclusion TAS-102 can enhance the prognosis of mCRC patients whose standard therapy has failed, regardless of KRAS mutation status, and its safety is acceptable (AU)


Subject(s)
Humans , Antineoplastic Combined Chemotherapy Protocols , Oncogene Protein p21(ras) , Pyrrolidines , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Thymine/administration & dosage , Trifluridine/administration & dosage , Uracil/administration & dosage
2.
Sci Rep ; 13(1): 23103, 2023 12 29.
Article in English | MEDLINE | ID: mdl-38158431

ABSTRACT

Glioma is the most common primary malignant brain tumor in adults and remains an incurable disease at present. Thus, there is an urgent need for progress in finding novel molecular mechanisms that control the progression of glioma which could be used as therapeutic targets for glioma patients. The RNA binding protein cytoplasmic polyadenylate element-binding protein 2 (CPEB2) is involved in the pathogenesis of several tumors. However, the role of CPEB2 in glioma progression is unknown. In this study, the functional characterization of the role and molecular mechanism of CPEB2 in glioma were examined using a series of biological and cellular approaches in vitro and in vivo. Our work shows CPEB2 is significantly downregulated in various glioma patient cohorts. Functional characterization of CPEB2 by overexpression and knockdown revealed that it inhibits glioma cell proliferation and promotes apoptosis. CPEB2 exerts an anti-tumor effect by increasing p21 mRNA stability and inducing G1 cell cycle arrest in glioma. Overall, this work stands as the first report of CPEB2 downregulation and involvement in glioma pathogenesis, and identifies CPEB2 as an important tumor suppressor gene through targeting p21 in glioma, which revealed that CPEB2 may become a promising predictive biomarker for prognosis in glioma patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma , Oncogene Protein p21(ras) , RNA Stability , RNA-Binding Proteins , RNA-Binding Proteins/blood , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Proliferation/genetics , Oncogene Protein p21(ras)/genetics , Oncogene Protein p21(ras)/metabolism , RNA Stability/genetics , Glioma/diagnosis , Glioma/physiopathology , Gene Knockdown Techniques , Apoptosis/genetics , Gene Expression Regulation, Neoplastic/genetics , Cell Cycle Checkpoints/genetics , Biomarkers, Tumor/blood , Down-Regulation/genetics , Cell Line, Tumor , Mice, Inbred BALB C , HEK293 Cells , Humans , Female , Animals , Mice
3.
Cancer Med ; 12(19): 19406-19413, 2023 10.
Article in English | MEDLINE | ID: mdl-37712717

ABSTRACT

BACKGROUND: The recurrence rate of non-small cell lung cancer (NSCLC) is as high as 30%, even in the cancer with pathological stage I disease. Therefore, identifying factors predictive of high-risk pathological recurrence is important. However, few studies have examined the genetic status of these tumors and its relationship to prognosis. MATERIALS AND METHODS: A cohort of 328 cases of primary lung cancer that underwent complete resection at Tokyo Medical and Dental University (TMDU) was screened for 440 cancer-associated genes using panel testing. Further analyses included 92 cases of pathological stage I NSCLC who did not receive adjuvant chemotherapy. Ridge regression was performed to identify association studies mutational status and postoperative recurrence. These data were then validated using clinical and genetic data from 56 patients in The Cancer Genome Atlas (TCGA). RESULTS: Mutations in TP53, RAS signaling genes KRAS and HRAS, and EGFR were recurrently detected. Ridge regression analysis relevant to recurrence, as well as survival analysis, performed using data from the TMDU cohort revealed significantly shorter relapse-free survival (RFS) for patients with RAS signaling or TP53 gene mutations than for those without (log-rank test, p = 0.00090). This statistical trend was also suggested in the TCGA cohort (log-rank test, p = 0.10). CONCLUSION: Mutations in RAS signaling genes and/or TP53 could be useful for the prediction of shorter RFS of patients with stage I NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Oncogene Protein p21(ras) , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/genetics , Lung Neoplasms/surgery , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prognosis , Tumor Suppressor Protein p53/genetics , ErbB Receptors/genetics , Oncogene Protein p21(ras)/genetics
5.
Cells ; 11(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35159317

ABSTRACT

Embryonic stem cell-expressed Ras (ERas) is an atypical constitutively active member of the Ras family and controls distinct signaling pathways, which are critical, for instance, for the maintenance of quiescent hepatic stellate cells (HSCs). Unlike classical Ras paralogs, ERas has a unique N-terminal extension (Nex) with as yet unknown function. In this study, we employed affinity pull-down and quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses and identified 76 novel binding proteins for human and rat ERas Nex peptides, localized in different subcellular compartments and involved in various cellular processes. One of the identified Nex-binding proteins is the nonmitochondrial, cytosolic arginase 1 (ARG1), a key enzyme of the urea cycle and involved in the de novo synthesis of polyamines, such as spermidine and spermine. Here, we show, for the first time, a high-affinity interaction between ERas Nex and purified ARG1 as well as their subcellular colocalization. The inhibition of ARG1 activity strikingly accelerates the activation of HSCs ex vivo, suggesting a central role of ARG1 activity in the maintenance of HSC quiescence.


Subject(s)
Arginase , Hepatic Stellate Cells , Oncogene Protein p21(ras) , Animals , Arginase/metabolism , Chromatography, Liquid , Embryonic Stem Cells/metabolism , Hepatic Stellate Cells/metabolism , Humans , Oncogene Protein p21(ras)/metabolism , Rats , Tandem Mass Spectrometry
6.
Molecules ; 26(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34946644

ABSTRACT

Aberrant activity of oncogenic rat sarcoma virus (RAS) protein promotes tumor growth and progression. RAS-driven cancers comprise more than 30% of all human cancers and are refractory to frontline treatment strategies. Since direct targeting of RAS has proven challenging, efforts have been centered on the exploration of inhibitors for RAS downstream effector kinases. Two major RAS downstream signaling pathways, including the Raf/MEK/Erk cascade and the phosphatidylinositol-3-kinase (PI3K) pathway, have become compelling targets for RAS-driven cancer therapy. However, the main drawback in the blockade of a single RAS effector is the multiple levels of crosstalk and compensatory mechanisms between these two pathways that contribute to drug resistance against monotherapies. A growing body of evidence reveals that the sequential or synergistic inhibition of multiple RAS effectors is a more convenient route for the efficacy of cancer therapy. Herein, we revisit the recent developments and discuss the most promising modalities targeting canonical RAS downstream effectors for the treatment of RAS-driven cancers.


Subject(s)
Drug Resistance, Neoplasm , MAP Kinase Signaling System , Neoplasms , Oncogene Protein p21(ras) , raf Kinases/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Oncogene Protein p21(ras)/genetics , Oncogene Protein p21(ras)/metabolism , raf Kinases/genetics
7.
Curr Biol ; 31(12): 2550-2560.e5, 2021 06 21.
Article in English | MEDLINE | ID: mdl-33891893

ABSTRACT

As we age, our tissues are repeatedly challenged by mutational insult, yet cancer occurrence is a relatively rare event. Cells carrying cancer-causing genetic mutations compete with normal neighbors for space and survival in tissues. However, the mechanisms underlying mutant-normal competition in adult tissues and the relevance of this process to cancer remain incompletely understood. Here, we investigate how the adult pancreas maintains tissue health in vivo following sporadic expression of oncogenic Kras (KrasG12D), the key driver mutation in human pancreatic cancer. We find that when present in tissues in low numbers, KrasG12D mutant cells are outcompeted and cleared from exocrine and endocrine compartments in vivo. Using quantitative 3D tissue imaging, we show that before being cleared, KrasG12D cells lose cell volume, pack into round clusters, and E-cadherin-based cell-cell adhesions decrease at boundaries with normal neighbors. We identify EphA2 receptor as an essential signal in the clearance of KrasG12D cells from exocrine and endocrine tissues in vivo. In the absence of functional EphA2, KrasG12D cells do not alter cell volume or shape, E-cadherin-based cell-cell adhesions increase and KrasG12D cells are retained in tissues. The retention of KRasG12D cells leads to the early appearance of premalignant pancreatic intraepithelial neoplasia (PanINs) in tissues. Our data show that adult pancreas tissues remodel to clear KrasG12D cells and maintain tissue health. This study provides evidence to support a conserved functional role of EphA2 in Ras-driven cell competition in epithelial tissues and suggests that EphA2 is a novel tumor suppressor in pancreatic cancer.


Subject(s)
Cell Competition , Genes, ras , Oncogene Protein p21(ras) , Pancreas , Pancreatic Neoplasms , Receptor, EphA2 , Animals , Female , Male , Mice , Cadherins/metabolism , Cell Adhesion , Cell Competition/genetics , Cells, Cultured , Genes, ras/genetics , Oncogene Protein p21(ras)/genetics , Pancreas/cytology , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Receptor, EphA2/metabolism , Tumor Suppressor Proteins/metabolism
8.
Biochem Biophys Res Commun ; 543: 15-22, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33503542

ABSTRACT

Oncogenic transformation enables cells to behave differently from their neighboring normal cells. Both cancer and normal cells recognize each other, often promoting the extrusion of the former from the epithelial cell layer. Here, we show that RasV12-transformed normal rat kidney 52E (NRK-52E) cells are extruded towards the basal side of the surrounding normal cells, which is concomitant with enhanced motility. The active migration of the basally extruded RasV12 cells is observed when surrounded by normal cells, indicating a non-cell-autonomous mechanism. Furthermore, specific inhibitor treatment and knockdown experiments elucidate the roles of PI3K and myosin IIA in the basal extrusion of Ras cells. Our findings reveal a new aspect of cancer cell invasion mediated by functional interactions with surrounding non-transformed cells.


Subject(s)
Mutation , Neoplasms/pathology , Nonmuscle Myosin Type IIA/metabolism , Oncogene Protein p21(ras)/genetics , Phosphatidylinositol 3-Kinases/metabolism , Valine/chemistry , Amino Acid Sequence , Animals , Cell Movement/physiology , Cells, Cultured , Dogs , Humans , Neoplasms/genetics , Neoplasms/metabolism , Rats , Signal Transduction , Valine/genetics
9.
Article in English | MEDLINE | ID: mdl-33276131

ABSTRACT

The seasonal cycle of growth and regression in the prostate gland of wild ground squirrel provide a unique research model to understand the morphological changes of prostate glands. Our previous studies showed that the local production of dihydrotestosterone could affect the morphology and function of the prostate gland in either an autocrine or paracrine manner. In the present study, we attempted to gain more insight into this process by investigating the expression of key factors implicated in cell proliferation, apoptosis, and the cell cycle, including mechanistic target of rapamycin (mTOR), cyclin-D2, p21, p27 and retinoblastoma 1 (pRB). Morphological and histological observations confirmed that the prostate increased significantly in both size and weight during the breeding season. Positive immunostaining for proliferating cell nuclear antigen (PCNA) was mainly localized to the prostate epithelial cells during the breeding season, which is significantly higher in the prostate gland during the breeding season (2470 ± 81/mm2) than that in the nonbreeding season (324 ± 54/mm2). However, there was no significant difference in the prostate gland when compared between the breeding and nonbreeding seasons, with regards to TUNEL staining. Moreover, cell cycle regulators were mainly localized to the epithelial cells, including mTOR, cyclin-D2, p21, p27 and pRB. the immunostaining of mTOR and cyclin D2 were stronger during the breeding season, whereas the immunostaining of p27 and pRB were stronger during the nonbreeding season. The mRNA expression levels of mTOR, cyclin D2, and PCNA, were higher during the breeding season while those of p27 and p21 were higher during the nonbreeding season. Collectively, this study profiled the distinct expression pattern of key cell cycle regulators throughout the breeding and nonbreeding seasons. Collectively, these factors may play important roles in regulating the seasonal growth and regression of the prostatic epithelium in the wild ground squirrel.


Subject(s)
Apoptosis , Cell Proliferation , Prostate/cytology , Sciuridae , Seasons , Animals , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclins/genetics , Cyclins/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Male , Oncogene Protein p21(ras)/metabolism , Prostate/metabolism , Reproduction , Retinoblastoma Protein/metabolism , Sciuridae/physiology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
10.
Nat Commun ; 11(1): 4586, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934222

ABSTRACT

Frequent mutation of the tumour suppressor RNF43 is observed in many cancers, particularly colon malignancies. RNF43, an E3 ubiquitin ligase, negatively regulates Wnt signalling by inducing degradation of the Wnt receptor Frizzled. In this study, we discover that RNF43 activity requires phosphorylation at a triplet of conserved serines. This phospho-regulation of RNF43 is required for zebrafish development and growth of mouse intestinal organoids. Cancer-associated mutations that abrogate RNF43 phosphorylation cooperate with active Ras to promote tumorigenesis by abolishing the inhibitory function of RNF43 in Wnt signalling while maintaining its inhibitory function in p53 signalling. Our data suggest that RNF43 mutations cooperate with KRAS mutations to promote multi-step tumorigenesis via the Wnt-Ras-p53 axis in human colon cancers. Lastly, phosphomimetic substitutions of the serine trio restored the tumour suppressive activity of extracellular oncogenic mutants. Therefore, harnessing phospho-regulation of RNF43 might be a potential therapeutic strategy for tumours with RNF43 mutations.


Subject(s)
Carcinogenesis/metabolism , Receptors, Wnt/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Carcinogenesis/genetics , Humans , Mice , Mice, Inbred BALB C , Oncogene Protein p21(ras)/genetics , Oncogene Protein p21(ras)/metabolism , Phosphorylation , Proteolysis , Receptors, Wnt/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics , Wnt Signaling Pathway
11.
Eur J Pharmacol ; 887: 173584, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32950500

ABSTRACT

Mutations of p53 in cancer cells not only subvert its antiproliferative properties but can also promote various oncogenic responses through a gain-of-function activity. Pharmacological manipulation of the mutant p53 pathway by specific compounds could be an effective strategy for cancer therapy. We show here that gain-of-function p53 mutation in gastric cancer cells promotes tumorigenesis by enhancing p53-EGFR (epidermal growth factor receptor) signaling pathway, and such process can be blocked by small molecule NA20, a naphthalimide derivative that exhibited selective inhibition in p53 mutant gastric cancer cell lines. We found that targeting DNA and blocking the mutant p53-drived carcinogenicity accounted for the primary antitumor effect of NA20 in gastric tumor models. NA20 bound to DNA and p53 identified by a combination of drug tracking, DNA relaxation assay and coimmunoprecipitation-mass spectrometry (CoIP-MS) detection, which led to the p21 activation and the suppression of EGFR signal cascading, thereby evoking cell cycle arrest and cell apoptosis, finally leading to cancer cell inhibition both in vitro and in vivo. Taken together, these results suggest that NA20 may be a potential candidate for gastric cancer therapy.


Subject(s)
DNA/drug effects , Genes, p53/drug effects , Naphthalimides/pharmacology , Signal Transduction/drug effects , Stomach Neoplasms/prevention & control , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , ErbB Receptors/drug effects , Humans , Male , Mice , Mice, Inbred BALB C , Oncogene Protein p21(ras)/drug effects , Xenograft Model Antitumor Assays
12.
Mol Biol Rep ; 47(7): 5451-5459, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32638317

ABSTRACT

Increased use of vancomycin for treating infections, and the associated risk of causing nephrotoxicity lead to the present study. The antioxidant and anti-apoptotic potential of Silybum marianum is used along with vancomycin to reduce adverse effects on the kidney. Vero cells (monkey kidney cells) and mice were used to test S. marianum extract on vancomycin induced nephrotoxicity. Vero cells were treated with different concentrations of vancomycin and S. marianum for 24 h for determination of cytotoxic potential and mRNA levels of apoptotic genes p53 , p21, and cyt-c were measured. For in-vivo studies mice were divided into five groups; G1 control (untreated), G2 vehicle (olive oil), G3 vancomycin treated (300 mg/kg body weight), G4 (S. marianum; 400 mg/kg bodyweight and vancomycin 300 mg/kg bodyweight simultaneously) and G5 (S. marianum 400 mg/kg bodyweight and vancomycin 300 mg/kg bodyweight treatment started after day 4 of S. marianum treatment). After 10 days histopathological analysis of mice kidneys was performed, serum urea and creatinine were analysed and mRNA expression of p53 , p21, and cyt-c was evaluated. Expression of p53, p21, and cyt-c in Vero cells was elevated in response to vancomycin treatment, whereas after S. marianum administration expression of these genes reduced. Vancomycin showed apoptosis in cells at the concentration of 6 mg/ml (LC50). Urea and creatinine levels in mice were increased in response to vancomycin administration and kidney histology showed an abnormality in functional units. The apoptotic cells were very visible in kidney structure in vancomycin treated group. These symptoms were however relieved in groups where treatment of S. marianum extract was given. mRNA expression of p53 , p21, and cyt-c also reduced in S. marianum treated groups of mice. S. marianum extract has protective effects against renal damage from vancomycin induced oxidative stress and relieves symptoms may be by downregulating apoptotic genes.


Subject(s)
Kidney/drug effects , Silybum marianum/metabolism , Vancomycin/toxicity , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Chlorocebus aethiops , Flavonoids/pharmacology , Kidney/metabolism , Kidney/pathology , Male , Mice , Oncogene Protein p21(ras)/metabolism , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Renal Insufficiency/pathology , Tumor Suppressor Protein p53/metabolism , Vancomycin/pharmacology , Vero Cells
13.
Hum Cell ; 33(4): 1186-1196, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32700262

ABSTRACT

Pancreatic cancer is the fourth most common lethal malignancy with an overall 5-year survival rate of less than 5%. ERas, a novel Ras family member, was first identified in murine embryonic stem cells and is upregulated in various cancers. However, the expression and potential role of ERas in pancreatic cancer have not been investigated. In this study, we found that ERas mRNA and protein were upregulated in pancreatic cancer tissues and cells compared with controls. Knockdown of ERas in pancreatic cancer cells by siRNA significantly decreased cell proliferation, colony formation, migration, and invasion and promoted cell apoptosis in vitro. Epithelial-mesenchymal transition (EMT) is closely related to tumor progression. We observed a significant decrease in N-cadherin expression in pancreatic cancer cells in response to ERas gene silencing by immunofluorescence assay and western blot. Furthermore, tumor growth and EMT were inhibited in xenografts derived from pancreatic cancer cells with ERas downregulation. We further investigated the regulatory mechanisms of ERas in pancreatic cancer and found that ERas may activate the Erk/Akt signaling pathway. Moreover, Erk inhibitor decreased pancreatic cancer cells proliferation and colony formation activities. Our data suggest that targeting ERas and its relevant signaling pathways might represent a novel therapeutic approach for the treatment of pancreatic cancer.


Subject(s)
Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , MAP Kinase Signaling System/genetics , Oncogene Protein p21(ras)/genetics , Oncogene Protein p21(ras)/physiology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Disease Progression , Humans , MAP Kinase Signaling System/physiology , Male , Mice, Nude , Molecular Targeted Therapy , Neoplasm Invasiveness/genetics , Oncogene Protein p21(ras)/metabolism , Pancreatic Neoplasms/therapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/therapeutic use , Signal Transduction/physiology , Up-Regulation/genetics
14.
Eur Rev Med Pharmacol Sci ; 24(9): 4627-4634, 2020 05.
Article in English | MEDLINE | ID: mdl-32432726

ABSTRACT

OBJECTIVE: Proliferative vitreoretinopathy (PVR) is a complex ocular disease that leads to detached retinas and irreversible vision loss. The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells plays a critical role in PVR occurrence. However, the core targets driven by the EMT process that lead to the pathogenesis of PVR remain unclear. In our study, the relationship between embryonic stem cell-expressed Ras (ERas) and EMT in RPE cells was investigated. PATIENTS AND METHODS: The subretinal and epiretinal membrane specimens of human PVR were examined for ERas and hallmarks of autophagy and EMT using Western blotting and immunofluorescence. EMT was induced by transforming growth factor (TGF)-ß1 or epidermal growth factor (EGF) in ARPE-19 cells. Autophagy was inhibited by U0126 or bafilomycin A1 in ARPE-19 cells. RESULTS: ERas was decreased and the classical autophagy biomarker microtubule associated protein 1 light chain 3 alpha (LC3) was upregulated in the subretinal and epiretinal membranes of PVR patients in vivo. Moreover, ERas was downregulated and autophagy was activated in RPE ARPE-19 cells in response to transforming growth factor (TGF)-ß1 and epidermal growth factor (EGF) induction. Finally, overexpression of ERas in RPE cells inhibited autophagy via impaired formation of autophagosomes and lysosomes. CONCLUSIONS: Our study revealed the role of ERas in the pathogenesis of PVR through EMT and provided a novel therapeutic target for PVR prevention and treatment.


Subject(s)
Cell Proliferation/physiology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/physiology , Oncogene Protein p21(ras)/metabolism , Retinal Pigments/metabolism , Vitreoretinopathy, Proliferative/metabolism , Adult , Aged , Autophagy/physiology , Cells, Cultured , Epithelial Cells/pathology , Female , Humans , Male , Middle Aged , Oncogene Protein p21(ras)/antagonists & inhibitors , Vitreoretinopathy, Proliferative/pathology
15.
Nat Commun ; 11(1): 73, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31911629

ABSTRACT

Cancer development is an evolutionary genomic process with parallels to Darwinian selection. It requires acquisition of multiple somatic mutations that collectively cause a malignant phenotype and continuous clonal evolution is often linked to tumor progression. Here, we show the clonal evolution structure in 15 myelofibrosis (MF) patients while receiving treatment with JAK inhibitors (mean follow-up 3.9 years). Whole-exome sequencing at multiple time points reveal acquisition of somatic mutations and copy number aberrations over time. While JAK inhibition therapy does not seem to create a clear evolutionary bottleneck, we observe a more complex clonal architecture over time, and appearance of unrelated clones. Disease progression associates with increased genetic heterogeneity and gain of RAS/RTK pathway mutations. Clonal diversity results in clone-specific expansion within different myeloid cell lineages. Single-cell genotyping of circulating CD34 + progenitor cells allows the reconstruction of MF phylogeny demonstrating loss of heterozygosity and parallel evolution as recurrent events.


Subject(s)
Clonal Evolution , Primary Myelofibrosis/genetics , Aged , Exome , Female , Follow-Up Studies , Genetic Heterogeneity , Humans , Male , Middle Aged , Mutation , Oncogene Protein p21(ras)/genetics , Prospective Studies , Single-Cell Analysis , Stem Cells/cytology
16.
Clin Cancer Res ; 26(2): 439-449, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31548343

ABSTRACT

PURPOSE: Although patients with advanced-stage non-small cell lung cancers (NSCLC) harboring MET exon 14 skipping mutations (METex14) often benefit from MET tyrosine kinase inhibitor (TKI) treatment, clinical benefit is limited by primary and acquired drug resistance. The molecular basis for this resistance remains incompletely understood. EXPERIMENTAL DESIGN: Targeted sequencing analysis was performed on cell-free circulating tumor DNA obtained from 289 patients with advanced-stage METex14-mutated NSCLC. RESULTS: Prominent co-occurring RAS-MAPK pathway gene alterations (e.g., in KRAS, NF1) were detected in NSCLCs with METex14 skipping alterations as compared with EGFR-mutated NSCLCs. There was an association between decreased MET TKI treatment response and RAS-MAPK pathway co-occurring alterations. In a preclinical model expressing a canonical METex14 mutation, KRAS overexpression or NF1 downregulation hyperactivated MAPK signaling to promote MET TKI resistance. This resistance was overcome by cotreatment with crizotinib and the MEK inhibitor trametinib. CONCLUSIONS: Our study provides a genomic landscape of co-occurring alterations in advanced-stage METex14-mutated NSCLC and suggests a potential combination therapy strategy targeting MAPK pathway signaling to enhance clinical outcomes.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Crizotinib/therapeutic use , Exons , MAP Kinase Signaling System/genetics , Oncogene Protein p21(ras)/genetics , Proto-Oncogene Proteins c-met/genetics , Aged , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Molecular Targeted Therapy/methods , Mutation , Protein Kinase Inhibitors/therapeutic use , Treatment Outcome , Tumor Cells, Cultured
17.
Nature ; 576(7787): 477-481, 2019 12.
Article in English | MEDLINE | ID: mdl-31827278

ABSTRACT

Oncogenic activation of RAS is associated with the acquisition of a unique set of metabolic dependencies that contribute to tumour cell fitness. Cells that express oncogenic RAS are able to internalize and degrade extracellular protein via a fluid-phase uptake mechanism termed macropinocytosis1. There is increasing recognition of the role of this RAS-dependent process in the generation of free amino acids that can be used to support tumour cell growth under nutrient-limiting conditions2. However, little is known about the molecular steps that mediate the induction of macropinocytosis by oncogenic RAS. Here we identify vacuolar ATPase (V-ATPase) as an essential regulator of RAS-induced macropinocytosis. Oncogenic RAS promotes the translocation of V-ATPase from intracellular membranes to the plasma membrane via a pathway that requires the activation of protein kinase A by a bicarbonate-dependent soluble adenylate cyclase. Accumulation of V-ATPase at the plasma membrane is necessary for the cholesterol-dependent plasma-membrane association of RAC1, a prerequisite for the stimulation of membrane ruffling and macropinocytosis. These observations establish a link between V-ATPase trafficking and nutrient supply by macropinocytosis that could be exploited to curtail the metabolic adaptation capacity of RAS-mutant tumour cells.


Subject(s)
Cell Membrane/enzymology , Oncogene Protein p21(ras)/metabolism , Pinocytosis , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Bicarbonates/metabolism , Carcinogenesis , Cell Line, Tumor , Cell Membrane/metabolism , Cholesterol/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Humans , Mice , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction , Sodium-Bicarbonate Symporters/metabolism
19.
Curr Top Med Chem ; 19(23): 2098-2113, 2019.
Article in English | MEDLINE | ID: mdl-31475898

ABSTRACT

Over the past decades, designing therapeutic strategies to target KRAS-mutant cancers, which is one of the most frequent mutant oncogenes among all cancer types, have proven unsuccessful regardless of many concerted attempts. There are key challenges for KRAS-mutant anticancer therapy, as the complex cellular processes involved in KRAS signaling has present. Herein, we highlight the emerging therapeutic approaches for inhibiting KRAS signaling and blocking KRAS functions, in hope to serve as a more effective guideline for future development of therapeutics.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Oncogene Protein p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Humans , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Oncogene Protein p21(ras)/genetics , Oncogene Protein p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
20.
Curr Top Med Chem ; 19(23): 2114-2127, 2019.
Article in English | MEDLINE | ID: mdl-31475899

ABSTRACT

The Ras proteins play an important role in cell growth, differentiation, proliferation and survival by regulating diverse signaling pathways. Oncogenic mutant K-Ras is the most frequently mutated class of Ras superfamily that is highly prevalent in many human cancers. Despite intensive efforts to combat various K-Ras-mutant-driven cancers, no effective K-Ras-specific inhibitors have yet been approved for clinical use to date. Since K-Ras proteins must be associated to the plasma membrane for their function, targeting K-Ras plasma membrane localization represents a logical and potentially tractable therapeutic approach. Here, we summarize the recent advances in the development of K-Ras plasma membrane localization inhibitors including natural product-based inhibitors achieved from high throughput screening, fragment-based drug design, virtual screening, and drug repurposing as well as hit-to-lead optimizations.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Drug Evaluation, Preclinical , Neoplasms/drug therapy , Neoplasms/metabolism , Oncogene Protein p21(ras)/metabolism , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Biological Products/chemistry , Biological Products/pharmacology , Drug Repositioning , Humans , Mutation , Neoplasms/genetics , Neoplasms/pathology , Oncogene Protein p21(ras)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...