Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.977
Filter
1.
Nat Commun ; 15(1): 4074, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744814

ABSTRACT

Esophageal adenocarcinoma is a prominent example of cancer characterized by frequent amplifications in oncogenes. However, the mechanisms leading to amplicons that involve breakage-fusion-bridge cycles and extrachromosomal DNA are poorly understood. Here, we use 710 esophageal adenocarcinoma cases with matched samples and patient-derived organoids to disentangle complex amplicons and their associated mechanisms. Short-read sequencing identifies ERBB2, MYC, MDM2, and HMGA2 as the most frequent oncogenes amplified in extrachromosomal DNAs. We resolve complex extrachromosomal DNA and breakage-fusion-bridge cycles amplicons by integrating of de-novo assemblies and DNA methylation in nine long-read sequenced cases. Complex amplicons shared between precancerous biopsy and late-stage tumor, an enrichment of putative enhancer elements and mobile element insertions are potential drivers of complex amplicons' origin. We find that patient-derived organoids recapitulate extrachromosomal DNA observed in the primary tumors and single-cell DNA sequencing capture extrachromosomal DNA-driven clonal dynamics across passages. Prospectively, long-read and single-cell DNA sequencing technologies can lead to better prediction of clonal evolution in esophageal adenocarcinoma.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Organoids/pathology , Gene Amplification , DNA Methylation , Oncogenes/genetics , Male , Sequence Analysis, DNA/methods , Clonal Evolution/genetics , Female
2.
Wiley Interdiscip Rev RNA ; 15(3): e1851, 2024.
Article in English | MEDLINE | ID: mdl-38702938

ABSTRACT

Long noncoding RNAs (lncRNA) are a class of non-coding RNAs greater than 200 bp in length with limited peptide-coding function. The transcription of LINC00152 is derived from chromosome 2p11.2. Many studies prove that LINC00152 influences the progression of various tumors via promoting the tumor cells malignant phenotype, chemoresistance, and immune escape. LINC00152 is regulated by multiple transcription factors and DNA hypomethylation. In addition, LINC00152 participates in the regulation of complex molecular signaling networks through epigenetic regulation, protein interactions, and competitive endogenous RNA (ceRNA). Here, we provide a systematic review of the upstream regulatory factors of LINC00152 expression level in different types of tumors. In addition, we revisit the main functions and mechanisms of LINC00152 as driver oncogene and biomarker in pan-cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Subject(s)
Neoplasms , Oncogenes , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes/genetics , Gene Expression Regulation, Neoplastic
3.
mBio ; 15(5): e0072924, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38624210

ABSTRACT

The integration of HPV DNA into human chromosomes plays a pivotal role in the onset of papillomavirus-related cancers. HPV DNA integration often occurs by linearizing the viral DNA in the E1/E2 region, resulting in the loss of a critical viral early polyadenylation signal (PAS), which is essential for the polyadenylation of the E6E7 bicistronic transcripts and for the expression of the viral E6 and E7 oncogenes. Here, we provide compelling evidence that, despite the presence of numerous integrated viral DNA copies, virus-host fusion transcripts originate from only a single integrated HPV DNA in HPV16 and HPV18 cervical cancers and cervical cancer-derived cell lines. The host genomic elements neighboring the integrated HPV DNA are critical for the efficient expression of the viral oncogenes that leads to clonal cell expansion. The fusion RNAs that are produced use a host RNA polyadenylation signal downstream of the integration site, and almost all involve splicing to host sequences. In cell culture, siRNAs specifically targeting the host portion of the virus-host fusion transcripts effectively silenced viral E6 and E7 expression. This, in turn, inhibited cell growth and promoted cell senescence in HPV16+ CaSki and HPV18+ HeLa cells. Showing that HPV E6 and E7 expression from a single integration site is instrumental in clonal cell expansion sheds new light on the mechanisms of HPV-induced carcinogenesis and could be used for the development of precision medicine tailored to combat HPV-related malignancies. IMPORTANCE: Persistent oncogenic HPV infections lead to viral DNA integration into the human genome and the development of cervical, anogenital, and oropharyngeal cancers. The expression of the viral E6 and E7 oncogenes plays a key role in cell transformation and tumorigenesis. However, how E6 and E7 could be expressed from the integrated viral DNA which often lacks a viral polyadenylation signal in the cancer cells remains unknown. By analyzing the integrated HPV DNA sites and expressed HPV RNAs in cervical cancer tissues and cell lines, we show that HPV oncogenes are expressed from only one of multiple chromosomal HPV DNA integrated copies. A host polyadenylation signal downstream of the integrated viral DNA is used for polyadenylation and stabilization of the virus-host chimeric RNAs, making the oncogenic transcripts targetable by siRNAs. This observation provides further understanding of the tumorigenic mechanism of HPV integration and suggests possible therapeutic strategies for the development of precision medicine for HPV cancers.


Subject(s)
DNA, Viral , Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Virus Integration , Humans , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Virus Integration/genetics , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , DNA, Viral/genetics , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Cell Line, Tumor , Oncogenes/genetics , Polyadenylation
4.
Int J Oncol ; 64(6)2024 06.
Article in English | MEDLINE | ID: mdl-38639179

ABSTRACT

The exosomal pathway is an essential mechanism that regulates the abnormal content of microRNAs (miRNAs) in hepatocellular carcinoma (HCC). The directional transport of miRNAs requires the assistance of RNA­binding proteins (RBPs). The present study found that RBPs participate in the regulation of miRNA content through the exosomal pathway in HCC cells. First, differential protein expression profiles in the serum exosomes of patients with HCC and benign liver disease were detected using mass spectrometry. The results revealed that ribosomal protein L9 (RPL9) was highly expressed in serum exosomes of patients with HCC. In addition, the downregulation of RPL9 markedly suppressed the proliferation, migration and invasion of HCC cells and reduced the biological activity of HCC­derived exosomes. In addition, using miRNA microarrays, the changes in exosomal miRNA profiles in HCC cells caused by RPL9 knockdown were examined. miR­24­3p and miR­185­5p were most differentially expressed, as verified by reverse transcription­quantitative PCR. Additionally, using RNA immunoprecipitation, it was found that RPL9 was directly bound to the two miRNAs and immunofluorescence assays confirmed that RPL9 was able to carry miRNAs into recipient cells via exosomes. Overexpression of miR­24­3p in cells increased the accumulation of miR­24­3p in exosomes and simultaneously upregulated RPL9. Excessive expression of miR­24­3p in exosomes also increased their bioactivity. Exosome­mediated miRNA regulation and transfer require the involvement of RBPs. RPL9 functions as an oncogene, can directly bind to specific miRNAs and can be co­transported to receptor cells through exosomes, thereby exerting its biological functions. These findings provide a novel approach for modulating miRNA profiles in HCC.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , MicroRNAs , Ribosomal Proteins , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogenes/genetics , Ribosomal Proteins/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
5.
Cancer Sci ; 115(5): 1656-1664, 2024 May.
Article in English | MEDLINE | ID: mdl-38450844

ABSTRACT

Driver oncogenes are investigated upfront at diagnosis using multi-CDx systems with next-generation sequencing techniques or multiplex reverse-transcriptase polymerase chain reaction assays. Additionally, from 2019, comprehensive genomic profiling (CGP) assays have been available in Japan for patients with advanced solid tumors who had completed or were expected to complete standard chemotherapy. These assays are expected to comprehensively detect the driver oncogenes, especially for patients with non-small cell lung cancer (NSCLC). However, there are no reports of nationwide research on the detection of driver oncogenes in patients with advanced NSCLC who undergo CGP assays, especially in those with undetected driver oncogenes at diagnosis. In this study, we investigated the proportion of driver oncogenes detected in patients with advanced NSCLC with undetectable driver oncogenes at initial diagnosis and in all patients with advanced NSCLC who underwent CGP assays. We retrospectively analyzed data from 986 patients with advanced NSCLC who underwent CGP assays between August 2019 and March 2022, using the Center for Cancer Genomics and Advanced Therapeutics database. The proportion of driver oncogenes newly detected in patients with NSCLC who tested negative for driver oncogenes at diagnosis and in all patients with NSCLC were investigated. Driver oncogenes were detected in 451 patients (45.7%). EGFR was the most common (16.5%), followed by KRAS (14.5%). Among the 330 patients with undetected EGFR, ALK, ROS1, and BRAF V600E mutations at diagnosis, 81 patients (24.5%) had newly identified driver oncogenes. CGP assays could be useful to identify driver oncogenes in patients with advanced NSCLC, including those initially undetected, facilitating personalized treatment.


Subject(s)
Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Oncogenes , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Female , Aged , Oncogenes/genetics , Middle Aged , Anaplastic Lymphoma Kinase/genetics , Retrospective Studies , Japan , High-Throughput Nucleotide Sequencing/methods , ErbB Receptors/genetics , Aged, 80 and over , Adult , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins/genetics , Gene Expression Profiling/methods , Genomics/methods , Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/genetics
6.
Gene ; 912: 148355, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38467314

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most prevalent malignant disease affecting women globally. PANoptosis, a novel form of cell death combining features of pyroptosis, apoptosis, and necroptosis, has recently gained attention. However, its precise function in BC and the predictive values of PANoptosis-related genes remain unclear. METHODS: We used the expression data and clinical information of BC tissues or normal breast tissues from public databases, and then successfully developed and verified a BC PANoptosis-related risk model through a combination of univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and Kaplan-Meier (KM) analysis. A nomogram was constructed to estimate survival probability, and its accuracy was assessed using calibration curves. RESULTS: Among 37 PANoptosis-related genes, we identified 4 differentially expressed genes related to overall survival (OS). Next, a risk model incorporating these four PANoptosis-related genes was established. Patients were stratified into low/high-risk groups based on the median risk score, with the low-risk group showing better prognoses and higher levels of immune infiltration. Utilizing the risk score and clinical features, we developed a nomogram to predict 1-, 3- and 5-year survival probability. X-linked inhibitor of apoptosis protein (XIAP) emerged as a potentially risky factor with the highest hazard ratio. In vitro experiments demonstrated that XIAP inhibition enhances the antitumor effect of doxorubicin through the PANoptosis pathway. CONCLUSION: PANoptosis holds an important role in BC prognosis and treatment.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics , Oncogenes/genetics , Doxorubicin , Apoptosis/genetics
7.
Oncogene ; 43(19): 1431-1444, 2024 May.
Article in English | MEDLINE | ID: mdl-38485737

ABSTRACT

MET amplification/mutations are important targetable oncogenic drivers in NSCLC, however, acquired resistance is inevitable and the majority of patients with targetable MET alterations fail to respond to MET tyrosine kinase inhibitors (TKIs). Furthermore, MET amplification is among the most common mediators of TKI resistance. As such, novel therapies to target MET pathway and overcome MET TKI resistance are clearly needed. Here we show that the epithelial-mesenchymal transition (EMT) transcription factor, TWIST1 is a key downstream mediator of HGF/MET induced resistance through suppression of p27 and targeting TWIST1 can overcome resistance. We found that TWIST1 is overexpressed at the time of TKI resistance in multiple MET-dependent TKI acquired resistance PDX models. We have shown for the first time that MET directly stabilized the TWIST protein leading to TKI resistance and that TWIST1 was required for MET-driven lung tumorigenesis as well as could induce MET TKI resistance when overexpressed. TWIST1 mediated MET TKI resistance through suppression of p27 expression and genetic or pharmacologic inhibition of TWIST1 overcame TKI resistance in vitro and in vivo. Our findings suggest that targeting TWIST1 may be an effective therapeutic strategy to overcome resistance in MET-driven NSCLC as well as in other oncogene driven subtypes in which MET amplification is the resistance mechanism.


Subject(s)
Drug Resistance, Neoplasm , Hepatocyte Growth Factor , Lung Neoplasms , Nuclear Proteins , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met , Twist-Related Protein 1 , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Animals , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Oncogenes/genetics , Xenograft Model Antitumor Assays
8.
Life Sci ; 341: 122490, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38336274

ABSTRACT

AIMS: The "Warburg effect" has been developed from the discovery that hypoxia-inducible factor 1α (HIF-1α) could promote the conversion of pyruvate to lactate. However, no studies have linked hypoxia and lactate metabolism to uterine corpus endometrial carcinoma (UCEC). MAIN METHODS: Sequencing and clinical data of patients with UCEC were extracted from The Cancer Genome Atlas (TCGA) database. Hypoxia-related lactate metabolism genes (HRLGs) were screened using Spearman's correlation analysis. A prognostic signature based on HRLGs was developed using the least absolute shrinkage and selection operator (LASSO) algorithm. A comprehensive analysis was conducted on the molecular features, immune environment, mutation patterns, and response to drugs between different risk groups. In vitro and in vivo experiments were performed to verify the function of KIF23. KEY FINDINGS: A five HRLG-based prognostic signature was identified. The prognostic outcome was unfavorable for the high-risk subgroup. Observation of increased pathway activities associated with cell proliferation and DNA damage repair was noted in the high-risk subgroup. Additionally, notable correlations were observed between risk score and immune microenvironment, mutational features, and drug responsiveness. Further, we confirmed KIF23 as a novel oncogene in UCEC, whose silencing decreased proliferation and promoted apoptosis of cancer cells. KIF23 knockdown reduced tumor growth in nude mice. We demonstrated that KIF23 was upregulated under hypoxic stress in a HIF-1α dependent manner. Moreover, KIF23 regulated lactate dehydrogenase A expression. SIGNIFICANCE: The developed HRLG-related signature was associated with prognosis, immune microenvironment, and drug sensitivity in UCEC. We also revealed KIF23 as a hypoxia-regulated lactate metabolism-related oncogene.


Subject(s)
Endometrial Neoplasms , Oncogenes , Animals , Mice , Humans , Female , Mice, Nude , Oncogenes/genetics , Mutation , Hypoxia , Endometrial Neoplasms/genetics , Tumor Microenvironment/genetics , Microtubule-Associated Proteins
9.
Mol Biotechnol ; 66(5): 1290-1302, 2024 May.
Article in English | MEDLINE | ID: mdl-38381376

ABSTRACT

Anoikis plays an important role in cancer invasion and metastasis. However, the role of anoikis-related genes, AnRGs, in lung adenocarcinoma (LUAD) is not clear. First, anoikis-related genes (AnRGs) were obtained from the Genecard database. Second, the prognostic risk model of AnRGs was established by univariate Cox analysis, the Least Absolute Shrinkage and Selection Operator (LASSO) analysis, and multivariate Cox analysis. Finally, in vitro cell experiments were carried out to determine the expression and function of the key gene AnRGs. Three AnRGs (angiopoietin-like 4, ANGPTL4; Cyclin-Dependent Kinase Inhibitor 3, CDKN3; Solute Carrier Organic Anion Transporter Family Member 1B3, SLCO1B3) were screened for the construction of risk prediction model. Additionally, ANGPTL4 was significantly highly expressed in tumor cells, and the knockdown of ANGPTL4 expression on tumor cells could inhibit tumor cell migration and apoptosis. Constructing a risk model based on anoikis-related genes can effectively differentiate the prognosis of LUAD. ANGPTL4 can be used as a potential new target for LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Angiopoietin-Like Protein 4 , Anoikis , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Angiopoietin-Like Protein 4/genetics , Angiopoietin-Like Protein 4/metabolism , Humans , Anoikis/genetics , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Female , Cell Movement/genetics , Male , Oncogenes/genetics , Middle Aged
10.
Methods Mol Biol ; 2769: 99-108, 2024.
Article in English | MEDLINE | ID: mdl-38315392

ABSTRACT

Cholangiocarcinoma (CCA) is a malignancy affecting the epithelial cells that line the bile ducts. This cancer shows a poor prognosis and current treatments remain inefficient. Orthotopic CCA mouse models are useful for the development of innovative therapeutic strategies. Here, we describe an orthotopic model of intrahepatic CCA that can be easily induced in mice within 5 weeks at a high incidence. It is achieved by expressing two oncogenes, namely, (i) the intracellular domain of the Notch1 receptor (NICD) and (ii) AKT, in hepatocytes by means of the sleeping beauty transposon system. These plasmid vectors are delivered by hydrodynamic injection into the tail vein. The present chapter also describes how to perform magnetic resonance imaging (MRI) of the livers to visualize intrahepatic CCA nodules.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Mice , Animals , Bile Ducts, Intrahepatic , Bile Duct Neoplasms/genetics , Cholangiocarcinoma/genetics , Oncogenes/genetics , Liver/pathology
11.
Oncoimmunology ; 13(1): 2303195, 2024.
Article in English | MEDLINE | ID: mdl-38235318

ABSTRACT

Many biological processes related to cell function and fate begin with chromatin alterations, and many factors associated with the efficacy of immune checkpoint inhibitors (ICIs) are actually downstream events of chromatin alterations, such as genome changes, neoantigen production, and immune checkpoint expression. However, the influence of genes as chromatin regulators on the efficacy of ICIs remains elusive, especially in gastric cancer (GC). In this study, thirty out of 1593 genes regulating chromatin associated with a favorable prognosis were selected for GC. CHAF1A, a well-defined oncogene, was identified as the highest linkage hub gene. High CHAF1A expression were associated with microsatellite instability (MSI), high tumor mutation burden (TMB), high tumor neoantigen burden (TNB), high expressions of PD-L1 and immune effector genes, and live infiltration of immune cells. High CHAF1A expression indicated a favorable response and prognosis in immunotherapy of several cohorts, which was independent of MSI, TMB, TNB, PD-L1 expression, immune phenotype and transcriptome scoring, and improved patient selection based on these classic biomarkers. In vivo, CHAF1A knockdown alone inhibited tumor growth but it impaired the effect of an anti-PD-1 antibody by increasing the relative tumor proliferation rate and decreasing the survival benefit, potentially through the activation of TGF-ß signaling. In conclusion, CHAF1A may be a novel biomarker for improving patient selection in immunotherapy.


Subject(s)
B7-H1 Antigen , Stomach Neoplasms , Humans , B7-H1 Antigen/genetics , Chromatin , Immunotherapy , Stomach Neoplasms/pathology , Oncogenes/genetics
12.
Gene ; 897: 148066, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38070791

ABSTRACT

Long noncoding RNAs (LncRNAs) are RNA transcripts ranging from 200 to 1000 nucleotides that have emerged as critical regulators of gene expression. Growing evidence highlights their involvement in tumor development. In particular, long intergenic non-protein coding RNA115 (Linc00115) has been identified as an oncogene across various human malignancies, with aberrant expression strongly linked to poor clinical outcomes in cancer patients. This review aims to delve into the expression patterns of Linc00115 and elucidate the underlying molecular mechanisms behind its oncogenic properties. Moreover, we discuss the potential utility of Linc00115 as a valuable diagnostic and prognostic biomarker in cancer.


Subject(s)
Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neoplasms/genetics , Oncogenes/genetics , Gene Expression Regulation, Neoplastic
13.
J Clin Endocrinol Metab ; 109(2): 505-515, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37622214

ABSTRACT

CONTEXT: Fusion oncogenes are involved in the underlying pathology of advanced differentiated thyroid cancer (DTC), and even the cause of radioactive iodine (RAI)-refractoriness. OBJECTIVE: We aimed to investigation between fusion oncogenes and clinicopathological characteristics involving a large-scale cohort of patients with advanced DTC. METHODS: We collected 278 tumor samples from patients with locally advanced (N1b or T4) or distant metastatic DTC. Targeted next-generation sequencing with a 26-gene ThyroLead panel was performed on these samples. RESULTS: Fusion oncogenes accounted for 29.86% of the samples (72 rearrangement during transfection (RET) fusions, 7 neurotrophic tropomyosin receptor kinase (NTRK) fusions, 4 anaplastic lymphoma kinase (ALK) fusions) and occurred more frequently in pediatric patients than in their adult counterparts (P = .003, OR 2.411, 95% CI 1.329-4.311) in our cohort. DTCs with fusion oncogenes appeared to have a more advanced American Joint Committee on Cancer (AJCC)_N and AJCC_M stage (P = .0002, OR 15.47, 95% CI 2.54-160.9, and P = .016, OR 2.35, 95% CI 1.18-4.81) than those without. DTCs with fusion oncogenes were associated with pediatric radioactive iodine (RAI) refractoriness compared with those without fusion oncogenes (P = .017, OR 4.85, 95% CI 1.29-15.19). However, in adult DTCs, those with fusion oncogenes were less likely to be associated with RAI refractoriness than those without (P = .029, OR 0.50, 95% CI 0.27-0.95), owing to a high occurrence of the TERT mutation, which was the most prominent genetic risk factor for RAI refractoriness in multivariate logistic regression analysis (P < .001, OR 7.36, 95% CI 3.14-17.27). CONCLUSION: Fusion oncogenes were more prevalent in pediatric DTCs than in their adult counterparts and were associated with pediatric RAI refractoriness, while in adult DTCs, TERT mutation was the dominant genetic contributor to RAI refractoriness rather than fusion oncogenes.


Subject(s)
Adenocarcinoma , Thyroid Neoplasms , Adult , Humans , Child , Thyroid Neoplasms/pathology , Iodine Radioisotopes , Oncogenes/genetics , Adenocarcinoma/genetics , Thyroidectomy
14.
Mol Cancer Res ; 22(2): 152-168, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37930255

ABSTRACT

11q13 amplification is a frequent event in human cancer and in particular in squamous cell carcinomas (SCC). Despite almost invariably spanning 10 genes, it is unclear which genetic components of the amplicon are the key driver events in SCC. A combination of computational, in vitro, ex vivo, and in vivo models leveraging efficient primary human keratinocyte genome editing by Cas9-RNP electroporation, identified ORAOV1, CCND1, and MIR548K as the critical drivers of the amplicon in head and neck SCC. CCND1 amplification drives the cell cycle in a CDK4/6/RB1-independent fashion and may confer a novel dependency on RRM2. MIR548K contributes to epithelial-mesenchymal transition. Finally, we identify ORAOV1 as an oncogene that acts likely via its ability to modulate reactive oxygen species. Thus, the 11q13 amplicon drives SCC through at least three independent genetic elements and suggests therapeutic targets for this morbid and lethal disease. IMPLICATIONS: This work demonstrates novel mechanisms and ways to target these mechanisms underlying the most common amplification in squamous cell carcinoma, one of the most prevalent and deadly forms of human cancer.


Subject(s)
Carcinoma, Squamous Cell , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Cycle , Cell Line, Tumor , Cyclin D1/genetics , Gene Amplification , Oncogenes/genetics
15.
Aging (Albany NY) ; 15(24): 15134-15160, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38147021

ABSTRACT

BACKGROUND: Type X collagen (COL10) is a homologous trimeric non-fibrillar collagen found in the extracellular matrix of human tissues, and it exhibits a distinctive white appearance. Type X collagen α1 chain (COL10A1) is a specific cleaved fragment of type X collagen. However, the expression, prognostic significance, clinicopathological attributes and immune-related associations of COL10A1 in prostate cancer as well as in pan-cancer contexts remain poorly understood. METHODS: Using bioinformatic analysis of data from the most recent databases (TCGA, GTEx and GEO databases), we have extensively elucidated the role played by COL10A1 in terms of its expression patterns, prognostic implications, and immune efficacy across a pan-cancer spectrum. Subsequently, the biological functions of COL10A1 in prostate cancer were elucidated by experimental validation. RESULTS: Our findings have confirmed that COL10A1 was highly expressed in most cancers and was associated with poorer prognosis in cancer patients. Immune correlation analysis of COL10A1 in various cancers showed its significant correlation with Tumor mutational burden (TMB), microsatellite instability (MSI) and immune cell infiltration. In addition, knockdown of COL10A1 in prostate cancer resulted in a substantial reduction in the proliferation, migration, and invasive potential of prostate cancer cells. CONCLUSION: Our pan-cancer analysis of COL10A1 gene provided novel insights into its pivotal role in cancer initiation, progression, and therapeutic implications, underscoring its potential significance in prognosis and immunotherapeutic interventions for cancer, particularly prostate cancer.


Subject(s)
Collagen Type X , Prostatic Neoplasms , Humans , Male , Collagen Type X/genetics , Oncogenes/genetics , Prognosis , Prostate , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy
16.
Nat Genet ; 55(12): 2224-2234, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957340

ABSTRACT

The biological functions of noncoding RNA N6-methyladenosine (m6A) modification remain poorly understood. In the present study, we depict the landscape of super-enhancer RNA (seRNA) m6A modification in pancreatic ductal adenocarcinoma (PDAC) and reveal a regulatory axis of m6A seRNA, H3K4me3 modification, chromatin accessibility and oncogene transcription. We demonstrate the cofilin family protein CFL1, overexpressed in PDAC, as a METTL3 cofactor that helps seRNA m6A methylation formation. The increased seRNA m6As are recognized by the reader YTHDC2, which recruits H3K4 methyltransferase MLL1 to promote H3K4me3 modification cotranscriptionally. Super-enhancers with a high level of H3K4me3 augment chromatin accessibility and facilitate oncogene transcription. Collectively, these results shed light on a CFL1-METTL3-seRNA m6A-YTHDC2/MLL1 axis that plays a role in the epigenetic regulation of local chromatin state and gene expression, which strengthens our knowledge about the functions of super-enhancers and their transcripts.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Chromatin/genetics , RNA , Epigenesis, Genetic , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Oncogenes/genetics , Methyltransferases/genetics
17.
C R Biol ; 346: 95-105, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37779381

ABSTRACT

Replication stress is an alteration in the progression of replication forks caused by a variety of events of endogenous or exogenous origin. In precancerous lesions, this stress is exacerbated by the deregulation of oncogenic pathways, which notably disrupts the coordination between replication and transcription, and leads to genetic instability and cancer development. It is now well established that transcription can interfere with genome replication in different ways, such as head-on collisions between polymerases, accumulation of positive DNA supercoils or formation of R-loops. These structures form during transcription when nascent RNA reanneals with DNA behind the RNA polymerase, forming a stable DNA:RNA hybrid. In this review, we discuss how these different cotranscriptional processes disrupt the progression of replication forks and how they contribute to genetic instability in cancer cells.


Le stress réplicatif correspond à une altération de la progression des fourches de réplication causé par une variété d'événements d'origine endogène ou exogène. Dans les lésions précancéreuses, ce stress est aggravé par la dérégulation de voies oncogéniques, qui perturbe notamment la coordination entre la réplication et la transcription du génome et entraine une instabilité génétique contribuant au développement du cancer. Il est maintenant bien établi que la transcription peut interférer avec la réplication du génome de différentes façons, telles que des collisions frontales entre polymérases, l'accumulation de supertours positifs de l'ADN ou la formation de R-loops. Ces structures se forment au cours de la transcription lorsque l'ARN naissant se réassocie avec l'ADN derrière l'ARN polymérase, formant un hybride ADN :ARN stable. Dans cette revue, nous discutons comment ces différents processus cotranscriptionnels perturbent la progression des fourches de réplication et comment ils contribuent à l'instabilité génétique des cellules cancéreuses.


Subject(s)
Neoplasms , Transcription, Genetic , R-Loop Structures , DNA Replication/genetics , DNA , Oncogenes/genetics , RNA , Neoplasms/genetics
18.
Nat Commun ; 14(1): 6422, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828026

ABSTRACT

Tumors acquire alterations in oncogenes and tumor suppressor genes in an adaptive walk through the fitness landscape of tumorigenesis. However, the interactions between oncogenes and tumor suppressor genes that shape this landscape remain poorly resolved and cannot be revealed by human cancer genomics alone. Here, we use a multiplexed, autochthonous mouse platform to model and quantify the initiation and growth of more than one hundred genotypes of lung tumors across four oncogenic contexts: KRAS G12D, KRAS G12C, BRAF V600E, and EGFR L858R. We show that the fitness landscape is rugged-the effect of tumor suppressor inactivation often switches between beneficial and deleterious depending on the oncogenic context-and shows no evidence of diminishing-returns epistasis within variants of the same oncogene. These findings argue against a simple linear signaling relationship amongst these three oncogenes and imply a critical role for off-axis signaling in determining the fitness effects of inactivating tumor suppressors.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Mice , Humans , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Oncogenes/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Mutation
19.
Nat Genet ; 55(10): 1613-1614, 2023 10.
Article in English | MEDLINE | ID: mdl-37749245
20.
Proc Natl Acad Sci U S A ; 120(38): e2303224120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695905

ABSTRACT

Cancer genomes are almost invariably complex with genomic alterations cooperating during each step of carcinogenesis. In cancers that lack a single dominant oncogene mutation, cooperation between the inactivation of multiple tumor suppressor genes can drive tumor initiation and growth. Here, we shed light on how the sequential acquisition of genomic alterations generates oncogene-negative lung tumors. We couple tumor barcoding with combinatorial and multiplexed somatic genome editing to characterize the fitness landscapes of three tumor suppressor genes NF1, RASA1, and PTEN, the inactivation of which jointly drives oncogene-negative lung adenocarcinoma initiation and growth. The fitness landscape was surprisingly accessible, with each additional mutation leading to growth advantage. Furthermore, the fitness landscapes remained fully accessible across backgrounds with the inactivation of additional tumor suppressor genes. These results suggest that while predicting cancer evolution will be challenging, acquiring the multiple alterations that drive the growth of oncogene-negative tumors can be facilitated by the lack of constraints on mutational order.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Oncogenes/genetics , Adenocarcinoma of Lung/genetics , Mutation , Lung Neoplasms/genetics , Cell Transformation, Neoplastic , p120 GTPase Activating Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...