Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 962
Filter
1.
N Engl J Med ; 386(21): 1998-2010, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35613022

ABSTRACT

BACKGROUND: Although hypomethylating agents are currently used to treat patients with cancer, whether they can also reactivate and up-regulate oncogenes is not well elucidated. METHODS: We examined the effect of hypomethylating agents on SALL4, a known oncogene that plays an important role in myelodysplastic syndrome and other cancers. Paired bone marrow samples that were obtained from two cohorts of patients with myelodysplastic syndrome before and after treatment with a hypomethylating agent were used to explore the relationships among changes in SALL4 expression, treatment response, and clinical outcome. Leukemic cell lines with low or undetectable SALL4 expression were used to study the relationship between SALL4 methylation and expression. A locus-specific demethylation technology, CRISPR-DNMT1-interacting RNA (CRISPR-DiR), was used to identify the CpG island that is critical for SALL4 expression. RESULTS: SALL4 up-regulation after treatment with hypomethylating agents was observed in 10 of 25 patients (40%) in cohort 1 and in 13 of 43 patients (30%) in cohort 2 and was associated with a worse outcome. Using CRISPR-DiR, we discovered that demethylation of a CpG island within the 5' untranslated region was critical for SALL4 expression. In cell lines and patients, we confirmed that treatment with a hypomethylating agent led to demethylation of the same CpG region and up-regulation of SALL4 expression. CONCLUSIONS: By combining analysis of patient samples with CRISPR-DiR technology, we found that demethylation and up-regulation of an oncogene after treatment with a hypomethylating agent can indeed occur and should be further studied. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).


Subject(s)
Antineoplastic Agents , Demethylation , Myelodysplastic Syndromes , Oncogenes , Up-Regulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Clustered Regularly Interspaced Short Palindromic Repeats , Demethylation/drug effects , Humans , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Oncogenes/drug effects , Oncogenes/physiology , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation/drug effects
2.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35216078

ABSTRACT

Metastasising cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumours in the clinic. We aimed to clarify how vimentin regulates the motility of metastasising fibroblasts. STED super-resolution microscopy, live-cell imaging and quantitative proteomics revealed that oncogene-expressing and metastasising fibroblasts show a less-elongated cell shape, reduced cell spreading, increased cell migration speed, reduced directionality, and stronger coupling between these migration parameters compared to normal control cells. In total, we identified and compared 555 proteins in the vimentin interactome. In metastasising cells, the levels of keratin 18 and Rab5C were increased, while those of actin and collagen were decreased. Inhibition of HDAC6 reversed the shape, spreading and migration phenotypes of metastasising cells back to normal. Inhibition of HDAC6 also decreased the levels of talin 1, tropomyosin, Rab GDI ß, collagen and emilin 1 in the vimentin interactome, and partially reversed the nanoscale vimentin organisation in oncogene-expressing cells. These findings describe the changes in the vimentin interactome and nanoscale distribution that accompany the defective cell shape, spreading and migration of metastasising cells. These results support the hypothesis that oncogenes can act through HDAC6 to regulate the vimentin binding of the cytoskeletal and cell-extracellular matrix adhesion components that contribute to the defective motility of metastasising cells.


Subject(s)
Cell Movement/physiology , Fibroblasts/metabolism , Fibroblasts/pathology , Vimentin/metabolism , Actins/metabolism , Animals , Cell Adhesion/physiology , Cell Shape/physiology , Cell-Matrix Junctions/metabolism , Cells, Cultured , Collagen/metabolism , Cytoskeleton/metabolism , Histone Deacetylase 6/metabolism , Humans , Mice , Oncogenes/physiology
3.
Int J Mol Sci ; 23(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35216190

ABSTRACT

Endometrial cancer (EC) is the most frequent gynaecologic cancer in postmenopausal women. We used 2D-DIGE and mass spectrometry to identify candidate biomarkers in endometrial cancer, analysing the serum protein contents of 10 patients versus 10 control subjects. Using gel-based proteomics, we identified 24 candidate biomarkers, considering only spots with a fold change in volume percentage ≥ 1.5 or intensity change ≤ 0.6, which were significantly different between cases and controls (p < 0.05). We used Western blotting analysis both in the serum and tissue of 43 patients for data validation. Among the identified proteins, we selected Suprabasin (SBSN), an oncogene previously associated with poor prognosis in different cancers. SBSN principal isoforms were subjected to Western blotting analysis in serum and surgery-excised tissue: both isoforms were downregulated in the tissue. However, in serum, isoform 1 was upregulated, while isoform 2 was downregulated. Data-mining on the TCGA and GTEx projects, using the GEPIA2.0 interface, indicated a diminished SBSN expression in the Uterine Corpus Endometrial Cancer (UCEC) database compared to normal tissue, confirming proteomic results. These results suggest that SBSN, specifically isoform 2, in tissue or serum, could be a potential novel biomarker in endometrial cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Endometrial Neoplasms/metabolism , Proteome/metabolism , Adult , Antigens, Differentiation/metabolism , Down-Regulation/physiology , Endometrium/metabolism , Female , Humans , Middle Aged , Oncogenes/physiology , Protein Isoforms/metabolism , Proteomics/methods , Two-Dimensional Difference Gel Electrophoresis/methods , Up-Regulation/physiology
4.
Cell Death Dis ; 13(2): 98, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110535

ABSTRACT

Long non-coding RNAs (lncRNAs) play critical functions in various cancers. Firre intergenic repeating RNA element (FIRRE), a lncRNA located in the nucleus, was overexpressed in colorectal cancer (CRC). However, the detailed mechanism of FIRRE in CRC remains elusive. Results of RNA sequence and qPCR illustrated overexpression of FIRRE in CRC cell lines and tissues. The aberrant expression of FIRRE was correlated with the migration, invasion, and proliferation in cell lines. In accordance, it was also associated with lymphatic metastasis and distant metastasis in patients with CRC. FIRRE was identified to physically interact with Polypyrimidine tract-binding protein (PTBP1) by RNA pull-down and RNA immunoprecipitation (RIP). Overexpression of FIRRE induced the translocation of PTBP1 from nucleus to cytoplasm, which was displayed by immunofluorescence and western blot. In turn, delocalization of FIRRE from nucleus to cytoplasm is observed after the loss of PTBP1. The RNA-protein complex in the cytoplasm directly bound to BECN1 mRNA, and the binding site was at the 3' end of the mRNA. Cells with FIRRE and PTBP1 depletion alone or in combination were treated by Actinomycin D (ACD). Results of qPCR showed FIRRE stabilized BECN1 mRNA in a PTBP1-medieated manner. In addition, FIRRE contributed to autophagy activity. These findings indicate FIRRE acts as an oncogenic factor in CRC, which induces tumor development through stabilizing BECN1 mRNA and facilitating autophagy in a PTBP1-mediated manner.


Subject(s)
Autophagy , Beclin-1/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Oncogenes/physiology , Polypyrimidine Tract-Binding Protein/metabolism , RNA, Long Noncoding/physiology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Can J Physiol Pharmacol ; 100(2): 158-166, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35080988

ABSTRACT

Nasopharyngeal carcinoma (NC) poses a threat to the life of patients. Long non-coding RNA (LncRNA) is a novel kind of non-coding RNA, which plays a pivotal role through sponge microRNA (miRNA). Abnormal expression of small nucleolar RNA host gene 8 (SNHG8) is involved in various tumors; however, the role of SNHG8 in NC remains unknown. Quantitative real-time PCR (qRT-PCR) and Western blotting was employed to detect the expression levels of SNHG8, miR-588, and high mobility group A2 (HMGA2). Cell proliferation, migration, and invasion were analyzed by CCK-8 and transwell assays. miR-588 binding sites in SNHG8 were predicted by LncBase analysis. Luciferase reporter and RNA pull-down assay were used to confirm the interaction of SNHG8 and miR-588. SNHG8 was highly expressed in NC cells. The prognosis of the patients with NC in the high expression levels of SNHG8 was poorer than that in the low expression levels. The expression of SNHG8 was closely related to tumor size, TNM stage, and distal metastasis. Knockdown of SNHG8 inhibited cell proliferation, migration, and invasion of NC. SNHG8 targeted miR-588. Inhibition of miR-588 could partially reverse the knockdown of SNHG8 in NC cells, and miR-588 targeted HMGA2. In conclusion, SNHG8 promotes proliferation, migration, and invasion of NC cells through miR-588/HMGA2 in NC as an oncogene.


Subject(s)
Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Gene Expression/genetics , Gene Expression/physiology , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Neoplasm Invasiveness/genetics , Oncogenes/genetics , Oncogenes/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/physiology , Cell Line, Tumor , Female , Humans , Male , Middle Aged , RNA, Long Noncoding/metabolism
6.
Oncogene ; 41(1): 138-145, 2022 01.
Article in English | MEDLINE | ID: mdl-34675406

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer characterized by loss of function TP53 and RB1 mutations in addition to mutations in other oncogenes including MYC. Overexpression of MYC together with Trp53 and Rb1 loss in pulmonary neuroendocrine cells of the mouse lung drives an aggressive neuroendocrine low variant subtype of SCLC. However, the transforming potential of MYC amplification alone on airway epithelium is unclear. Therefore, we selectively and conditionally overexpressed MYC stochastically throughout the airway or specifically in neuroendocrine, club, or alveolar type II cells in the adult mouse lung. We observed that MYC overexpression induced carcinoma in situ which did not progress to invasive disease. The formation of adenoma or SCLC carcinoma in situ was dependent on the cell of origin. In contrast, MYC overexpression combined with conditional deletion of both Trp53 and Rb1 exclusively gave rise to SCLC, irrespective of the cell lineage of origin. However, cell of origin influenced disease latency, metastatic potential, and the transcriptional profile of the SCLC phenotype. Together this reveals that MYC overexpression alone provides a proliferative advantage but when combined with deletion of Trp53 and Rb1 it facilitates the formation of aggressive SCLC from multiple cell lineages.


Subject(s)
Lung Neoplasms/genetics , Oncogenes/physiology , Retinoblastoma Protein/metabolism , Small Cell Lung Carcinoma/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Humans , Lung Neoplasms/pathology , Mice , Small Cell Lung Carcinoma/pathology
7.
Biochem Pharmacol ; 196: 114725, 2022 02.
Article in English | MEDLINE | ID: mdl-34384758

ABSTRACT

Aberrant cholesterol metabolism and homeostasis in the form of elevated cholesterol biosynthesis and dysregulated efflux and metabolism is well recognized as a major feature of metabolic reprogramming in solid tumors. Recent studies have emphasized on major drivers and regulators such as Myc, mutant p53, SREBP2, LXRs and oncogenic signaling pathways that play crucial roles in tumor cholesterol metabolic reprogramming. Therapeutics such as statins targeting the mevalonate pathway were tried at the clinic without showing consistent benefits to cancer patients. Nuclear receptors are prominent regulators of mammalian metabolism. Their de-regulation often drives tumorigenesis. RORγ and its immune cell-specific isoform RORγt play important functions in control of mammalian metabolism, circadian rhythm and immune responses. Although RORγ, together with its closely related members RORα and RORß were identified initially as orphan receptors, recent studies strongly support the conclusion that specific intermediates and metabolites of cholesterol pathways serve as endogenous ligands of RORγ. More recent studies also reveal a critical role of RORγ in tumorigenesis through major oncogenic pathways including acting a new master-like regulator of tumor cholesterol biosynthesis program. Importantly, an increasing number of RORγ orthosteric and allosteric ligands are being identified that display potent activities in blocking tumor growth and autoimmune disorders in preclinical models. This review summarizes the recent preclinical and clinical progress on RORγ with emphasis on its role in reprogramming tumor cholesterol metabolism and its regulation. It will also discuss RORγ functional mechanisms, context-specificity and its value as a therapeutic target for effective cancer treatment.


Subject(s)
Anticholesteremic Agents/administration & dosage , Autoimmune Diseases/metabolism , Cholesterol/biosynthesis , Neoplasms/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Oncogenes/physiology , Animals , Antineoplastic Agents/administration & dosage , Autoimmune Diseases/drug therapy , Drug Delivery Systems/trends , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Neoplasms/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Oncogenes/drug effects
8.
Reprod Sci ; 28(12): 3406-3416, 2021 12.
Article in English | MEDLINE | ID: mdl-34708395

ABSTRACT

Long non-coding RNAs (lncRNAs) have been reported to exert critical functions in the malignant development of many cancers. lncRNA HLA complex group 18 (HCG18) has been confirmed to have a promoting effect on various cancers. However, whether HCG18 functions in PC is still unclear. Therefore, the current study aimed at unveiling the role of HCG18 in PC progression and its regulatory mechanism on the biological behaviors of PC. Here, RT-qPCR was utilized to detect HCG18 expression, and then, functional experiments were conducted to verify the effects of HCG18 on PC cell proliferation, migration, invasion, and apoptosis. According to the results, HCG18 was significantly up-regulated in PC cells and it facilitated cell proliferation, migration, and invasion in PC. Furthermore, a series of mechanism experiments were carried out to verify the relationship among HCG18, miR-370-3p, and DEAD-box helicase 3 X-linked(DDX3X) in PC cells. Final rescue assays showed that DDX3X overexpression could reverse the inhibitory function of silencing HCG18 on PC progression. In summary, our study showed that lncRNA HCG18 accelerated cell proliferation, invasion, and migration of PC via up-regulating DDX3X through sponging miR-370-3p, providing a novel finding about PC-related regulatory mechanism.


Subject(s)
Cell Movement/physiology , Cell Proliferation/physiology , DEAD-box RNA Helicases/biosynthesis , MicroRNAs/biosynthesis , Prostatic Neoplasms/metabolism , RNA, Long Noncoding/biosynthesis , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , Histocompatibility Antigens Class I/biosynthesis , Histocompatibility Antigens Class I/genetics , Humans , Male , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Oncogenes/physiology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Long Noncoding/genetics
9.
Cells ; 10(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-34359950

ABSTRACT

The heterogeneity of tumor cell mass and the plasticity of cancer cell phenotypes in solid tumors allow for the insurgence of resistant and metastatic cells, responsible for cancer patients' clinical management's main challenges. Among several factors that are responsible for increased cancer aggression, metabolic reprogramming is recently emerging as an ultimate cancer hallmark, as it is central for cancer cell survival and self-renewal, metastasis and chemoresistance. The P2X7 receptor, whose expression is upregulated in many solid and hematological malignancies, is also emerging as a good candidate in cancer metabolic reprogramming and the regulation of stem cell proliferation and differentiation. Metabostemness refers to the metabolic reprogramming of cancer cells toward less differentiated (CSCs) cellular states, and we believe that there is a strong correlation between metabostemness and P2X7 receptor functions in oncogenic processes. Here, we summarize important aspects of P2X7 receptor functions in normal and tumor tissues as well as essential aspects of its structure, regulation, pharmacology and its clinical use. Finally, we review current knowledge implicating P2X7 receptor functions in cancer-related molecular pathways, in metabolic reprogramming and in metabostemness.


Subject(s)
Carcinogenesis/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Oncogenes/physiology , Receptors, Purinergic P2X7/metabolism , Cell Differentiation/physiology , Humans , Neoplastic Stem Cells/pathology
10.
Neoplasia ; 23(9): 1016-1027, 2021 09.
Article in English | MEDLINE | ID: mdl-34403880

ABSTRACT

Tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, dasatinib, and ponatinib have significantly improved the life expectancy of Philadelphia chromosome-positive (Ph+) acute lymphocytic leukemia (ALL) patients; however, resistance to TKIs remains a major clinical challenge. Point mutations in the tyrosine kinase domain (TKD) of BCR-ABL1 have emerged as the predominant cause of acquired resistance. In approximately 30% of patients, the mechanism of resistance to TKIs remains elusive. This study aimed to investigate mechanisms of nonmutational resistance in Ph+ ALL. Here we report the development of a nonmutational resistance cell line SupB15-RT; conferring resistance to approved ABL kinase inhibitors (AKIs) and allosteric inhibitors GNF-2, ABL001, and crizotinib, except for dasatinib (IC90 50nM), a multitarget kinase inhibitor. We found that the AKT/mTOR pathway is activated in these cells and their proliferation inhibited by Torin-1 with an IC50 of 24.7 nM. These observations were confirmed using 3 different ALL patient-derived long term cultures (PDLTCs): (1) HP (BCR-ABL1 negative), (2) PH (BCR-ABL1 positive and responsive to TKIs) and (3) BV (BCR-ABL1 positive and nonmutational resistant to TKIs). Furthermore, Torin-1 and NVP-BEZ235 induced apoptosis in PH and BV cells but not in HP cells. Our experiments provide evidence of the involvement of AKT/mTOR pathway in the evolution of nonmutational resistance in Ph+ ALL which will assist in developing novel targeted therapy for Ph+ ALL patients with BCR-ABL1 independent nonmutational resistance.


Subject(s)
Drug Resistance, Neoplasm/physiology , Oncogenes/physiology , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Humans , Jurkat Cells , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Oncogenes/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Tumor Cells, Cultured
11.
Clin Cancer Res ; 27(20): 5669-5680, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34433651

ABSTRACT

PURPOSE: The epigenetic mechanisms involved in transcriptional regulation leading to malignant phenotype in gliomas remains poorly understood. Topoisomerase IIB (TOP2B), an enzyme that decoils and releases torsional forces in DNA, is overexpressed in a subset of gliomas. Therefore, we investigated its role in epigenetic regulation in these tumors. EXPERIMENTAL DESIGN: To investigate the role of TOP2B in epigenetic regulation in gliomas, we performed paired chromatin immunoprecipitation sequencing for TOP2B and RNA-sequencing analysis of glioma cell lines with and without TOP2B inhibition and in human glioma specimens. These experiments were complemented with assay for transposase-accessible chromatin using sequencing, gene silencing, and mouse xenograft experiments to investigate the function of TOP2B and its role in glioma phenotypes. RESULTS: We discovered that TOP2B modulates transcription of multiple oncogenes in human gliomas. TOP2B regulated transcription only at sites where it was enzymatically active, but not at all native binding sites. In particular, TOP2B activity localized in enhancers, promoters, and introns of PDGFRA and MYC, facilitating their expression. TOP2B levels and genomic localization was associated with PDGFRA and MYC expression across glioma specimens, which was not seen in nontumoral human brain tissue. In vivo, TOP2B knockdown of human glioma intracranial implants prolonged survival and downregulated PDGFRA. CONCLUSIONS: Our results indicate that TOP2B activity exerts a pleiotropic role in transcriptional regulation of oncogenes in a subset of gliomas promoting a proliferative phenotype.


Subject(s)
Brain Neoplasms/genetics , DNA Topoisomerases, Type II/physiology , Epigenesis, Genetic/physiology , Glioma/genetics , Introns/physiology , Oncogenes/physiology , Poly-ADP-Ribose Binding Proteins/physiology , Promoter Regions, Genetic/physiology , Animals , Brain Neoplasms/enzymology , Gene Expression Regulation, Neoplastic , Glioma/enzymology , Humans , Mice
12.
Biomolecules ; 11(6)2021 06 05.
Article in English | MEDLINE | ID: mdl-34198889

ABSTRACT

Head and neck squamous cell carcinoma is the sixth most common cancer worldwide, with 890,000 new cases and 450,000 deaths in 2018, and although the survival statistics for some patient groups are improving, there is still an urgent need to find a fast and reliable biomarker that allows early diagnosis. This niche can be filled by microRNA, small single-stranded non-coding RNA molecules, which are expressed in response to specific events in the body. This article presents the potential use of microRNAs in the diagnosis of HNSCC, compares the advances in this field to other diseases, especially other cancers, and discusses the detailed use of miRNA as a biomarker in profiling and predicting the treatment outcome with radiotherapy and immunotherapy. Potential problems and difficulties related to the development of this promising technology, and areas on which future research should be focused in order to overcome these difficulties, were also indicated.


Subject(s)
Biomarkers, Tumor/blood , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/diagnosis , MicroRNAs/blood , Biomarkers, Tumor/genetics , Head and Neck Neoplasms/genetics , Humans , MicroRNAs/genetics , Oncogenes/physiology
13.
Cancer Lett ; 519: 211-225, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34311033

ABSTRACT

The transient receptor potential canonical (TRPC) channels have been implicated in various types of malignancies including gastric cancer (GC). However, the detailed mechanisms of TRPC channels underlying cell proliferation and apoptosis of GC cells remain largely unknown. Here, we report that TRPC3 was highly expressed in clinical GC specimens and correlated with GC malignant progression and poor prognosis. Forced expression of TRPC3 in GC cells enhanced both receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) and promoted the nuclear factor of activated T cell 2 (NFATc2) nuclear translocation by AKT/GSK-3ß and CNB2 signaling. Pharmacological inhibition of TRPC3 or CRISPR/Cas9-mediated TRPC3 knockout effectively inhibited the growth of GC cells both in vitro and in vivo. These effects were reversible by the rescue of TRPC3 expression. Furthermore, we confirmed the role of TRPC3 and the ROCE-AKT/GSK3ß-CNB2/NFATc2 signaling cascade in regulating cell cycle checkpoint, apoptosis cascade, and intracellular ROS production in GC. Overall, our findings suggest an oncogenic role of TRPC3 in GC and may highlight a potential target of TRPC3 for therapeutic intervention of GC and its malignant progression.


Subject(s)
Carcinogenesis/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , NFATC Transcription Factors/metabolism , Signal Transduction/physiology , Stomach Neoplasms/metabolism , TRPC Cation Channels/metabolism , Animals , Apoptosis/physiology , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Humans , Mice , Oncogenes/physiology , Protein Transport/physiology , Reactive Oxygen Species/metabolism , Stomach Neoplasms/pathology
14.
Cells ; 10(6)2021 05 23.
Article in English | MEDLINE | ID: mdl-34071075

ABSTRACT

Chronic hepatitis B virus (HBV) infection is the major etiology of hepatocellular carcinoma (HCC), frequently with HBV integrating into the host genome. HBV integration, found in 85% of HBV-associated HCC (HBV-HCC) tissue samples, has been suggested to be oncogenic. Here, we investigated the potential of HBV-HCC driver identification via the characterization of recurrently targeted genes (RTGs). A total of 18,596 HBV integration sites from our in-house study and others were analyzed. RTGs were identified by applying three criteria: at least two HCC subjects, reported by at least two studies, and the number of reporting studies. A total of 396 RTGs were identified. Among the 28 most frequent RTGs, defined as affected in at least 10 HCC patients, 23 (82%) were associated with carcinogenesis and 5 (18%) had no known function. Available breakpoint positions from the three most frequent RTGs, TERT, MLL4/KMT2B, and PLEKHG4B, were analyzed. Mutual exclusivity of TERT promoter mutation and HBV integration into TERT was observed. We present an RTG consensus through comprehensive analysis to enable the potential identification and discovery of HCC drivers for drug development and disease management.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/etiology , Hepatitis B virus/drug effects , Hepatitis B, Chronic/drug therapy , Liver Neoplasms/drug therapy , Aged , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Disease Management , Female , Humans , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Male , Middle Aged , Oncogenes/drug effects , Oncogenes/physiology
15.
Biomed Pharmacother ; 137: 111351, 2021 May.
Article in English | MEDLINE | ID: mdl-33550046

ABSTRACT

Circular RNAs (circRNAs) are a class of endogenous noncoding RNA, which were previously considered as a byproduct of RNA splicing error. Numerous studies have demonstrated the altered expression of circRNAs in organ tissues during pathological conditions and their involvements in disease pathogenesis and progression, including cancers. In colorectal cancer (CRC), multiple circRNAs have been identified and characterized as "oncogenic", given their involvements in the downregulation of tumor suppressor genes and induction of tumor initiation, progression, invasion, and metastasis. Additionally, other circRNAs have been identified in CRC and characterized as "tumor suppressive" based on their ability of inhibiting the expression of oncogenic genes and suppressing tumor growth and proliferation. circRNAs could serve as potential diagnostic and prognostic biomarkers, and therapeutic targets or vectors to be utilized in cancer therapies. This review briefly describes the dynamic changes of the tumor microenvironment inducing immunosuppression and tumorigenesis, and outlines the biogenesis and characteristics of circRNAs and recent findings indicating their roles and functions in the CRC tumor microenvironment. It also discusses strategies and technologies, which could be employed in the future to overcome current cancer therapy challenges associated with circRNAs.


Subject(s)
Colorectal Neoplasms/genetics , RNA, Circular/physiology , Tumor Microenvironment/genetics , Animals , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor/physiology , Humans , Oncogenes/physiology , RNA, Circular/biosynthesis , RNA, Circular/classification
16.
Pathol Res Pract ; 219: 153355, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33626405

ABSTRACT

BACKGROUD: The 5'-3' exoribonuclease 2 (XRN2) has been reported involved in several tumors. However, the clinical significance and molecular mechanism of XRN2 in oral squamous cell carcinoma (OSCC) have not been elucidated. MATERIALS AND METHODS: Immunohistochemistry (IHC) was used to investigate the expression of XRN2 in OSCC and adjacent noncancerous tissues, which was further identified by western blot and GEPIA2 database analysis. Moreover, the relationship between XRN2 expression and the clinicopathological characteristics and prognosis of OSCC patients was evaluated. In addition, in vitro, the effects of XRN2 on OSCC cells were evaluated by Cell Counting Kit-8 (CCK8) assay, colony formation assay, apoptosis assay, wound healing assay, and transwell assays. RESULTS: XRN2 was overexpressed in 44 of 77 (57.1 %) OSCC tissues. High expression of XRN2 was significantly associated with tumor differentiation (P=0.003), pathological clinical stage (P=0.045), lymph node metastasis (P=0.041), and poor overall survival (P=0.0013). Furthermore, the multivariate analysis suggested that XRN2 expression(P=0.002) was determined as an independent prognostic factor for patients with OSCC. Additionally, with functional assays in vitro, we found that downregulation of XRN2 inhibited cell proliferation, migration, and invasion, while promoted apoptosis of OSCC cells. Furthermore, knockdown of XRN2 in OSCC cells could increase the expression of E-cadherin but reduce the expression of Vimentin, which changes the characteristic of epithelial-mesenchymal transition (EMT). CONCLUSION: XRN2 is significantly overexpressed in OSCC tissues and its upregulation was closely associated with poor prognosis of OSCC patients. XRN2 could be a useful prognostic biomarker and a potential therapeutic target for OSCC.


Subject(s)
Exoribonucleases/metabolism , Mouth Neoplasms/diagnosis , Oncogenes/physiology , Squamous Cell Carcinoma of Head and Neck/diagnosis , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/pathology , Cell Movement/physiology , Cell Proliferation/physiology , Epithelial-Mesenchymal Transition/physiology , Female , Humans , Male , Middle Aged , Mouth Neoplasms/pathology , Oncogenes/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Up-Regulation
17.
Cell Death Dis ; 12(1): 71, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436558

ABSTRACT

Protein O-glucosylation is a crucial form of O-glycosylation, which involves glucose (Glc) addition to a serine residue within a consensus sequence of epidermal growth factor epidermal growth factor (EGF)-like repeats found in several proteins, including Notch. Glc provides stability to EGF-like repeats, is required for S2 cleavage of Notch, and serves to regulate the trafficking of Notch, crumbs2, and Eyes shut proteins to the cell surface. Genetic and biochemical studies have shown a link between aberrant protein O-glucosylation and human diseases. The main players of protein O-glucosylation, protein O-glucosyltransferases (POGLUTs), use uridine diphosphate (UDP)-Glc as a substrate to modify EGF repeats and reside in the endoplasmic reticulum via C-terminal KDEL-like signals. In addition to O-glucosylation activity, POGLUTs can also perform protein O-xylosylation function, i.e., adding xylose (Xyl) from UDP-Xyl; however, both activities rely on residues of EGF repeats, active-site conformations of POGLUTs and sugar substrate concentrations in the ER. Impaired expression of POGLUTs has been associated with initiation and progression of human diseases such as limb-girdle muscular dystrophy, Dowling-Degos disease 4, acute myeloid leukemia, and hepatocytes and pancreatic dysfunction. POGLUTs have been found to alter the expression of cyclin-dependent kinase inhibitors (CDKIs), by affecting Notch or transforming growth factor-ß1 signaling, and cause cell proliferation inhibition or induction depending on the particular cell types, which characterizes POGLUT's cell-dependent dual role. Except for a few downstream elements, the precise mechanisms whereby aberrant protein O-glucosylation causes diseases are largely unknown, leaving behind many questions that need to be addressed. This systemic review comprehensively covers literature to understand the O-glucosyltransferases with a focus on POGLUT1 structure and function, and their role in health and diseases. Moreover, this study also raises unanswered issues for future research in cancer biology, cell communications, muscular diseases, etc.


Subject(s)
Glucosyltransferases/metabolism , Oncogenes/physiology , Humans
18.
Life Sci ; 265: 118793, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33220287

ABSTRACT

Dysregulation of pseudogenes is involved in the progression of various types of cancer, including glioblastoma (GBM). Proliferation associated-2G4 (PA2G4) pseudogene 4 (PA2G4P4) has been shown to play an oncogenic role in bladder cancer development. Our study aimed to explore the role and mechanism of PA2G4P4 in GBM progression. PA2G4P4 and PA2G4 expression in GBM tissues was analyzed using the GEPIA database. Cell viability, apoptosis, and activities of caspase-3 and caspase-9 in GBM cells were explored by CCK-8, flow cytometry analysis, and colorimetric activity assay kits, respectively. GEPIA database showed that PA2G4P4 and PA2G4 were both upregulated in GBM tissues. PA2G4P4 expression was also boosted in GBM cells. Knockdown of PA2G4P4 or PA2G4 inhibited cell viability, induced apoptosis, and increased caspase-3 and caspase-9 activities in GBM cells. Data from UALCAN database showed that among top 15 genes correlated with PA2G4P4, PA2G4 had the highest correlation coefficient. Additionally, knockdown of PA2G4P4 inhibited PA2G4 expression and nuclear translocation in GBM cells. Overexpression of PA2G4 abolished the functions of PA2G4P4 knockdown on viability and apoptosis in GBM cells. Summarily, pseudogene PA2G4P4 promotes oncogene PA2G4 expression and nuclear translocation to affect cell viability and apoptosis in GBM cells.


Subject(s)
Adaptor Proteins, Signal Transducing/biosynthesis , Apoptosis/physiology , Cell Survival/physiology , Glioblastoma/metabolism , Oncogenes/physiology , Pseudogenes/physiology , RNA-Binding Proteins/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Humans , RNA-Binding Proteins/genetics , Translocation, Genetic/physiology
19.
Article in English | MEDLINE | ID: mdl-32552658

ABSTRACT

MicroRNAs are a class of small non-coding RNAs that perform a crucial function in posttranscriptional gene regulation. Dysregulation of these microRNAs is associated with many types of cancer progression. In tumorigenesis, downregulated microRNAs might function as a tumour suppressor by repressing oncogenes, whereas overexpressed miRs might function as oncogenes by suppressing tumour suppressor. Similarly, Metadherin (also known as AEG-1/ LYRIC), is an oncogene, the levels of which are found to be very high in various cancers and play a crucial role in the proliferation of cells and invasion. Our review focuses on the study, which shows the alteration of microRNA expression profile and suppression of carcinogenesis when MTDH/AEG-1 is targeted. It summarises the studies where downregulation and upregulation of AEG-1 and microRNAs, respectively, alter the biological functions of the cell, such as proliferation and apoptosis. Studies have reported that AEG-1 can be direct or indirect target of microRNA, which could provide a new-insight to know the underlying molecular mechanism and might contribute to the progress of new therapeutic strategies for the disease.


Subject(s)
Colonic Neoplasms/pathology , Membrane Proteins/physiology , MicroRNAs/genetics , RNA-Binding Proteins/physiology , Animals , Apoptosis/genetics , Colonic Neoplasms/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/genetics , Oncogenes/genetics , Oncogenes/physiology , RNA-Binding Proteins/genetics
20.
Oncogene ; 40(4): 806-820, 2021 01.
Article in English | MEDLINE | ID: mdl-33262460

ABSTRACT

Uveal melanoma (UM) is a currently untreatable form of melanoma with a 50% mortality rate. Characterization of the essential signaling pathways driving this cancer is critical to develop target therapies. Activating mutations in the Gαq signaling pathway at the level of GNAQ, GNA11, or rarely CYSLTR2 or PLCß4 are considered alterations driving proliferation in UM and several other neoplastic disorders. Here, we systematically examined the oncogenic signaling output of various mutations recurrently identified in human tumors. We demonstrate that CYSLTR2 → GNAQ/11 → PLCß act in a linear signaling cascade that, via protein kinase C (PKC), activates in parallel the MAP-kinase and FAK/Yes-associated protein pathways. Using genetic ablation and pharmacological inhibition, we show that the PKC/RasGRP3/MAPK signaling branch is the essential component that drives the proliferation of UM. Only inhibition of the MAPK branch but not the FAK branch synergizes with inhibition of the proximal cascade, providing a blueprint for combination therapy. All oncogenic signaling could be extinguished by the novel GNAQ/11 inhibitor YM-254890, in all UM cells with driver mutation in the Gαq subunit or the upstream receptor. Our findings highlight the GNAQ/11 → PLCß â†’ PKC → MAPK pathway as the central signaling axis to be suppressed pharmacologically to treat for neoplastic disorders with Gαq pathway mutations.


Subject(s)
Melanoma/genetics , Oncogenes/physiology , Uveal Neoplasms/genetics , Animals , Cell Line, Tumor , Focal Adhesion Kinase 1/physiology , GTP-Binding Protein alpha Subunits/physiology , GTP-Binding Protein alpha Subunits, Gq-G11/physiology , Humans , MAP Kinase Signaling System , Melanoma/pathology , Mice , Mutation , Phospholipase C beta/physiology , Protein Kinase C/physiology , Receptors, Leukotriene/physiology , Signal Transduction/physiology , Uveal Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL