Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 477
Filter
1.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38548335

ABSTRACT

Neuroprotection after injury or in neurodegenerative disease remains a major goal for basic and translational neuroscience. Retinal ganglion cells (RGCs), the projection neurons of the eye, degenerate in optic neuropathies after axon injury, and there are no clinical therapies to prevent their loss or restore their connectivity to targets in the brain. Here we demonstrate a profound neuroprotective effect of the exogenous expression of various Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in mice. A dramatic increase in RGC survival following the optic nerve trauma was elicited by the expression of constitutively active variants of multiple CaMKII isoforms in RGCs using adeno-associated viral (AAV) vectors across a 100-fold range of AAV dosing in vivo. Despite this neuroprotection, however, short-distance RGC axon sprouting was suppressed by CaMKII, and long-distance axon regeneration elicited by several pro-axon growth treatments was likewise inhibited even as CaMKII further enhanced RGC survival. Notably, in a dose-escalation study, AAV-expressed CaMKII was more potent for axon growth suppression than the promotion of survival. That diffuse overexpression of constitutively active CaMKII strongly promotes RGC survival after axon injury may be clinically valuable for neuroprotection per se. However, the associated strong suppression of the optic nerve axon regeneration demonstrates the need for understanding the intracellular domain- and target-specific CaMKII activities to the development of CaMKII signaling pathway-directed strategies for the treatment of optic neuropathies.


Subject(s)
Neurodegenerative Diseases , Optic Nerve Diseases , Optic Nerve Injuries , Mice , Animals , Retinal Ganglion Cells/metabolism , Optic Nerve Injuries/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Axons/metabolism , Neurodegenerative Diseases/metabolism , Nerve Regeneration/physiology , Optic Nerve Diseases/metabolism , Protein Isoforms/metabolism , Cell Survival/physiology
2.
Nat Commun ; 15(1): 2206, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467611

ABSTRACT

Previous studies of neuronal survival have primarily focused on identifying intrinsic mechanisms controlling the process. This study explored how intercellular communication contributes to retinal ganglion cell (RGC) survival following optic nerve crush based on single-cell RNA-seq analysis. We observed transcriptomic changes in retinal cells in response to the injury, with astrocytes and Müller glia having the most interactions with RGCs. By comparing RGC subclasses characterized by distinct resilience to cell death, we found that the high-survival RGCs tend to have more ligand-receptor interactions with neighboring cells. We identified 47 interactions stronger in high-survival RGCs, likely mediating neuroprotective effects. We validated one identified target, the µ-opioid receptor (Oprm1), to be neuroprotective in three retinal injury models. Although the endogenous Oprm1 is preferentially expressed in intrinsically photosensitive RGCs, its neuroprotective effect can be transferred to other subclasses by pan-RGC overexpression of Oprm1. Lastly, manipulating the Oprm1 activity improved visual functions in mice.


Subject(s)
Neuroprotective Agents , Optic Nerve Injuries , Animals , Mice , Cell Communication , Cell Death , Cell Survival , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Optic Nerve/metabolism , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/physiology
3.
J Pharmacol Sci ; 154(4): 326-333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485351

ABSTRACT

PURPOSE: To determine whether combination of topical ripasudil and brimonidine has more effective neuroprotection on retinal ganglion cells (RGCs) following injury to axons composing the optic nerve. METHODS: Topical ripasudil, brimonidine, or mixture of both drugs were administered to adult mice after optic nerve injury (ONI). The influence of drug conditions on RGC health were evaluated by the quantifications of surviving RGCs, phosphorylated p38 mitogen-activated protein kinase (phospho-p38), and expressions of trophic factors and proinflammatory mediators in the retina. RESULTS: Topical ripasudil and brimonidine suppressed ONI-induced RGC death respectively, and mixture of both drugs further stimulated RGC survival. Topical ripasudil and brimonidine suppressed ONI-induced phospho-p38 in the whole retina. In addition, topical ripasudil suppressed expression levels of TNFα, IL-1ß and monocyte chemotactic protein-1 (MCP-1), whereas topical brimonidine increased the expression level of basic fibroblast growth factor (bFGF). CONCLUSIONS: Combination of topical ripasudil and brimonidine may enhance RGC protection by modulating multiple signaling pathways in the retina.


Subject(s)
Isoquinolines , Optic Nerve Injuries , Sulfonamides , Mice , Animals , Brimonidine Tartrate , Optic Nerve Injuries/drug therapy , Optic Nerve Injuries/metabolism , Neuroprotection , Drug Combinations
4.
Exp Neurol ; 375: 114741, 2024 May.
Article in English | MEDLINE | ID: mdl-38395216

ABSTRACT

Nuclear factor erythroid 2 like (Nfe2l) gene family members 1-3 mediate cellular response to oxidative stress, including in the central nervous system (CNS). However, neuronal functions of Nfe2l3 are unknown. Here, we comparatively evaluated expression of Nfe2l1, Nfe2l2, and Nfe2l3 in singe cell RNA-seq (scRNA-seq)-profiled cortical and retinal ganglion cell (RGC) CNS projection neurons, investigated whether Nfe2l3 regulates neuroprotection and axon regeneration after CNS injury in vivo, and characterized a gene network associated with Nfe2l3 in neurons. We showed that, Nfe2l3 expression transiently peaks in developing immature cortical and RGC projection neurons, but is nearly abolished in adult neurons and is not upregulated after injury. Furthermore, within the retina, Nfe2l3 is enriched in RGCs, primarily neonatally, and not upregulated in injured RGCs, whereas Nfe2l1 and Nfe2l2 are expressed robustly in other retinal cell types as well and are upregulated in injured RGCs. We also found that, expressing Nfe2l3 in injured RGCs through localized intralocular viral vector delivery promotes neuroprotection and long-distance axon regeneration after optic nerve injury in vivo. Moreover, Nfe2l3 provided a similar extent of neuroprotection and axon regeneration as viral vector-targeting of Pten and Klf9, which are prominent regulators of neuroprotection and long-distance axon regeneration. Finally, we bioinformatically characterized a gene network associated with Nfe2l3 in neurons, which predicted the association of Nfe2l3 with established mechanisms of neuroprotection and axon regeneration. Thus, Nfe2l3 is a novel neuroprotection and axon regeneration-promoting factor with a therapeutic potential for treating CNS injury and disease.


Subject(s)
Axons , Optic Nerve Injuries , Humans , Axons/physiology , Neuroprotection , Nerve Regeneration/physiology , Retinal Ganglion Cells/metabolism , Retina/metabolism , Optic Nerve Injuries/metabolism
5.
Proc Natl Acad Sci U S A ; 121(6): e2305947121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289952

ABSTRACT

Optic neuropathies, characterized by injury of retinal ganglion cell (RGC) axons of the optic nerve, cause incurable blindness worldwide. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) represent a promising "cell-free" therapy for regenerative medicine; however, the therapeutic effect on neural restoration fluctuates, and the underlying mechanism is poorly understood. Here, we illustrated that intraocular administration of MSC-sEVs promoted both RGC survival and axon regeneration in an optic nerve crush mouse model. Mechanistically, MSC-sEVs primarily targeted retinal mural cells to release high levels of colony-stimulating factor 3 (G-CSF) that recruited a neural restorative population of Ly6Clow monocytes/monocyte-derived macrophages (Mo/MΦ). Intravitreal administration of G-CSF, a clinically proven agent for treating neutropenia, or donor Ly6Clow Mo/MΦ markedly improved neurological outcomes in vivo. Together, our data define a unique mechanism of MSC-sEV-induced G-CSF-to-Ly6Clow Mo/MΦ signaling in repairing optic nerve injury and highlight local delivery of MSC-sEVs, G-CSF, and Ly6Clow Mo/MΦ as therapeutic paradigms for the treatment of optic neuropathies.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Optic Nerve Injuries , Mice , Animals , Axons/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Nerve Regeneration/physiology , Optic Nerve Injuries/therapy , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/physiology , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Macrophages/metabolism
6.
Neurosci Lett ; 823: 137662, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38286398

ABSTRACT

Numerous micro-RNAs (miRNAs) affect neurodevelopment and neuroprotection, but potential roles of many miRNAs in regulating these processes are still unknown. Here, we used the retinal ganglion cell (RGC) central nervous system (CNS) projection neuron and optic nerve crush (ONC) injury model, to optimize a mature miRNA arm-specific quantification method for characterizing the developmental regulation of miR-1247-5p in RGCs, investigated whether injury affects its expression, and tested whether upregulating miR-1247-5p-mimic in RGCs promotes neuroprotection and axon regeneration. We found that, miR-1247-5p is developmentally-downregulated in RGCs, and is further downregulated after ONC. Importantly, RGC-specific upregulation of miR-1247-5p promoted neuroprotection and axon regeneration after injury in vivo. To gain insight into the underlying mechanisms, we analyzed by bulk-mRNA-seq embryonic and adult RGCs, along with adult RGCs transduced by miR-1247-5p-expressing viral vector, and identified developmentally-regulated cilial and mitochondrial biological processes, which were reinstated to their embryonic levels in adult RGCs by upregulation of miR-1247-5p. Since axon growth is also a developmentally-regulated process, in which mitochondrial dynamics play important roles, it is possible that miR-1247-5p promoted neuroprotection and axon regeneration through regulating mitochondrial functions.


Subject(s)
MicroRNAs , Optic Nerve Injuries , Humans , Neuroprotection/physiology , Axons/metabolism , Up-Regulation , Nerve Regeneration/genetics , Optic Nerve Injuries/genetics , Optic Nerve Injuries/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
7.
Exp Eye Res ; 239: 109784, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199261

ABSTRACT

Transient receptor potential vanilloid (TRPV) channels are members of the TRP channel superfamily, which are ion channels that sense mechanical and osmotic stimuli and participate in Ca2+ signalling across the cell membrane. TRPV channels play important roles in maintaining the normal functions of an organism, and defects or abnormalities in TRPV channel function cause a range of diseases, including cardiovascular, neurological and urological disorders. Glaucoma is a group of chronic progressive optic nerve diseases with pathological changes that can occur in the tissues of the anterior and posterior segments of the eye, including the ciliary body, trabecular meshwork, Schlemm's canal, and retina. TRPV channels are expressed in these tissues and play various roles in glaucoma. In this article, we review various aspects of the pathogenesis of glaucoma, the structure and function of TRPV channels, the relationship between TRPV channels and systemic diseases, and the relationship between TRPV channels and ocular diseases, especially glaucoma, and we suggest future research directions. This information will help to further our understanding of TRPV channels and provide new ideas and targets for the treatment of glaucoma and optic nerve damage.


Subject(s)
Glaucoma , Optic Nerve Injuries , Humans , Sclera/pathology , Retina/pathology , Trabecular Meshwork/metabolism , Optic Nerve Injuries/metabolism , Optic Nerve/pathology
8.
Exp Eye Res ; 239: 109787, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211683

ABSTRACT

Retinal ganglion cell (RGC) death and axonal loss cause irreversible vision loss upon optic nerve (ON) injury. We have independently demonstrated that mesenchymal stem cells (MSCs) and green tea extract (GTE) promote RGC survival and axonal regeneration in rats with ON injury. Here we aimed to evaluate the combined treatment effect of human bone marrow-derived MSCs (hBM-MSCs) and GTE on RGC survival and axonal regeneration after ON injury. Combined treatment of hBM-MSCs and GTE promoted RGC survival and neurite outgrowth/axonal regeneration in ex vivo retinal explant culture and in rats after ON injury. GTE increased Stat3 activation in the retina after combined treatment, and enhanced brain-derived neurotrophic factor secretion from hBM-MSCs. Treatment of 10 µg/mL GTE would not induce hBM-MSC apoptosis, but inhibited their proliferation, migration, and adipogenic and osteogenic differentiation in vitro with reducing matrix metalloproteinase secretions. In summary, this study revealed that GTE can enhance RGC protective effect of hBM-MSCs, suggesting that stem cell priming could be a prospective strategy enhancing the properties of stem cells for ON injury treatment.


Subject(s)
Mesenchymal Stem Cells , Optic Nerve Injuries , Rats , Humans , Animals , Optic Nerve Injuries/therapy , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/metabolism , Osteogenesis , Tea/metabolism , Nerve Regeneration/physiology , Cell Survival/physiology , Axons/metabolism
9.
Genomics ; 116(1): 110776, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163571

ABSTRACT

The death of retinal ganglion cells (RGCs) can cause irreversible injury in visual function. Clarifying the mechanism of RGC degeneration is critical for the development of therapeutic strategies. Circular RNAs (circRNAs) are important regulators in many biological and pathological processes. Herein, we performed circRNA microarrays to identify dysregulated circRNAs following optic nerve crush (ONC). The results showed that 221 circRNAs were differentially expressed between ONC retinas and normal retinas. Notably, the levels of circular RNA-Dcaf6 (cDcaf6) expression in aqueous humor of glaucoma patients were higher than that in cataract patients. cDcaf6 silencing could reduce oxidative stress-induced RGC apoptosis in vitro and alleviate retinal neurodegeneration in vivo as shown by increased neuronal nuclei antigen (NeuN, neuronal bodies) and beta-III-tubulin (TUBB3, neuronal filaments) staining and reduced glial fibrillary acidic protein (GFAP, activated glial cells) and vimentin (activated glial cells) staining. Collectively, this study identifies a promising target for treating retinal neurodegeneration.


Subject(s)
Optic Nerve Injuries , RNA, Circular , Animals , Humans , Disease Models, Animal , Optic Nerve/metabolism , Optic Nerve/pathology , Optic Nerve Injuries/genetics , Optic Nerve Injuries/drug therapy , Optic Nerve Injuries/metabolism , Retina , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , RNA, Circular/genetics , RNA, Circular/metabolism
10.
J Clin Invest ; 134(3)2024 02 01.
Article in English | MEDLINE | ID: mdl-38015636

ABSTRACT

Current treatments for neurodegenerative diseases and neural injuries face major challenges, primarily due to the diminished regenerative capacity of neurons in the mammalian CNS as they mature. Here, we investigated the role of Ezh2, a histone methyltransferase, in regulating mammalian axon regeneration. We found that Ezh2 declined in the mouse nervous system during maturation but was upregulated in adult dorsal root ganglion neurons following peripheral nerve injury to facilitate spontaneous axon regeneration. In addition, overexpression of Ezh2 in retinal ganglion cells in the CNS promoted optic nerve regeneration via both histone methylation-dependent and -independent mechanisms. Further investigation revealed that Ezh2 fostered axon regeneration by orchestrating the transcriptional silencing of genes governing synaptic function and those inhibiting axon regeneration, while concurrently activating various factors that support axon regeneration. Notably, we demonstrated that GABA transporter 2, encoded by Slc6a13, acted downstream of Ezh2 to control axon regeneration. Overall, our study underscores the potential of modulating chromatin accessibility as a promising strategy for promoting CNS axon regeneration.


Subject(s)
Axons , Optic Nerve Injuries , Animals , Mice , Axons/metabolism , Ganglia, Spinal/metabolism , Mammals , Nerve Regeneration/genetics , Optic Nerve Injuries/genetics , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/metabolism
11.
Nature ; 626(7999): 574-582, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086421

ABSTRACT

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Subject(s)
Astrocytes , Neuroprotection , Adenylyl Cyclases/metabolism , Astrocytes/cytology , Astrocytes/enzymology , Astrocytes/metabolism , Cell Differentiation , Cell Nucleus/metabolism , Cell Survival , Cyclic AMP/metabolism , Cytoplasm/metabolism , Macrophages/metabolism , Macrophages/pathology , Microglia/metabolism , Microglia/pathology , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Optic Nerve Injuries/therapy , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , White Matter/metabolism , White Matter/pathology , Glaucoma/pathology , Glaucoma/therapy
12.
J Drug Target ; 32(1): 93-99, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38105766

ABSTRACT

Aims: Nerve growth factor is a well characterised neurotrophic factor that play a critical role in the survival, growth and differentiation of neurons both in central and peripheral nervous system. However, it is difficult for the conventional exogenous nerve growth factor administration delivery to the central nervous system due to the biological barrier in human bodies.Results: We validated a series of cell penetrating peptides and found that L-PenetraMax significantly enhanced the efficiency of recombinant human nerve growth factor entry into the rat retina. In the optic nerve crush mice model, eye drop administration of recombinant human nerve growth factor alone promoted retinal ganglion cell survival and axon regeneration at high dose, while the combination of recombinant human nerve growth factor with L-PenetraMax significantly enhanced the neuroprotective efficacy at lower dose, thus potentially enhancing the availability of recombinant human nerve growth factor eye drops in patients with optic neuropathy.Conclusions: This study provides the evidence that the noncovalent coadministration of recombinant human nerve growth factor with L-PenetraMax could be a potent strategy for the non-invasive and sustained ocular delivery of therapeutic proteins for improving the optic nerve injury.


Subject(s)
Cell-Penetrating Peptides , Optic Nerve Injuries , Mice , Rats , Humans , Animals , Optic Nerve Injuries/drug therapy , Optic Nerve Injuries/metabolism , Axons/metabolism , Nerve Regeneration , Retina/metabolism , Cell Survival , Disease Models, Animal
13.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958624

ABSTRACT

Glial reactivity is considered a hallmark of damage-induced innate immune responses in the central nervous system. In the visual system, unilateral optic nerve damage elicits dramatic glial reactivity in the retina directly affected by the lesion and a similar, albeit more modest, effect in the contralateral eye. Evaluation of astrocyte changes in a mouse model of optic nerve crush indicates that astrocyte reactivity, as a function of retinal coverage and cellular hypertrophy, occurs within both the experimental and contralateral retinas, although the hypertrophic response of the astrocytes in the contralateral eyes is delayed for at least 24 h. Evaluation of astrocytic reactivity as a function of Gfap expression indicates a similar, muted but significant, response in contralateral eyes. This constrained glial response is completely negated by conditional knock out of Panx1 in both astrocytes and Müller cells. Further studies are required to identify if this is an autocrine or a paracrine suppression of astroglial reactivity.


Subject(s)
Astrocytes , Optic Nerve Injuries , Mice , Animals , Astrocytes/metabolism , Neuroglia/metabolism , Retina/metabolism , Optic Nerve Injuries/metabolism , Optic Nerve/pathology , Glial Fibrillary Acidic Protein/metabolism , Nerve Tissue Proteins/metabolism , Connexins/metabolism
14.
Cell Death Dis ; 14(10): 661, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816735

ABSTRACT

We previously found that global deletion of the mitochondrial enzyme arginase 2 (A2) limits optic nerve crush (ONC)-induced neuronal death. Herein, we examined the cell-specific role of A2 in this pathology by studies using wild type (WT), neuronal-specific calbindin 2 A2 KO (Calb2cre/+ A2 f/f), myeloid-specific A2 KO (LysMcre/+ A2f/f), endothelial-specific A2 KO (Cdh5cre/+ A2f/f), and floxed controls. We also examined the impact of A2 overexpression on mitochondrial function in retinal neuronal R28 cells. Immunolabeling showed increased A2 expression in ganglion cell layer (GCL) neurons of WT mice within 6 h-post injury and inner retinal neurons after 7 days. Calb2 A2 KO mice showed improved neuronal survival, decreased TUNEL-positive neurons, and improved retinal function compared to floxed littermates. Neuronal loss was unchanged by A2 deletion in myeloid or endothelial cells. We also found increased expression of neurotrophins (BDNF, FGF2) and improved survival signaling (pAKT, pERK1/2) in Calb2 A2 KO retinas within 24-hour post-ONC along with suppression of inflammatory mediators (IL1ß, TNFα, IL6, and iNOS) and apoptotic markers (cleavage of caspase3 and PARP). ONC increased GFAP and Iba1 immunostaining in floxed controls, and Calb2 A2 KO dampened this effect. Overexpression of A2 in R28 cells increased Drp1 expression, and decreased mitochondrial respiration, whereas ABH-induced inhibition of A2 decreased Drp1 expression and improved mitochondrial respiration. Finally, A2 overexpression or excitotoxic treatment with glutamate significantly impaired mitochondrial function in R28 cells as shown by significant reductions in basal respiration, maximal respiration, and ATP production. Further, glutamate treatment of A2 overexpressing cells did not induce further deterioration in their mitochondrial function, indicating that A2 overexpression or glutamate insult induce comparable alterations in mitochondrial function. Our data indicate that neuronal A2 expression is neurotoxic after injury, and A2 deletion in Calb2 expressing neurons limits ONC-induced retinal neurodegeneration and improves visual function.


Subject(s)
Arginase , Optic Nerve Injuries , Animals , Mice , Apoptosis , Arginase/genetics , Arginase/metabolism , Calbindin 2 , Disease Models, Animal , Endothelial Cells/metabolism , Glutamates , Nerve Crush , Optic Nerve/metabolism , Optic Nerve Injuries/metabolism
15.
J Control Release ; 363: 641-656, 2023 11.
Article in English | MEDLINE | ID: mdl-37820984

ABSTRACT

Optic neuropathy is the leading cause of irreversible blindness and is characterized by progressive degeneration of retinal ganglion cells (RGCs). Several studies have demonstrated that transplantation of Schwann cells (SCs) is a promising candidate therapy for optic neuropathy and that intravitreally transplanted cells exert their effect via paracrine actions. Extracellular vesicle (EV)-based therapies are increasingly recognized as a potential strategy for cell replacement therapy. In this study, we aimed to investigate the neuroprotective and regenerative effects of SC-EVs following optic nerve injury. We found that SC-EVs were internalized by RGCs in vitro and in vivo without any transfection reagents. Intriguingly, SC-EVs significantly enhanced the survival and axonal growth of primary RGCs in a coculture system. In a rat optic nerve crush model, SC-EVs mitigated RGC degeneration, prevented RGC loss, and preserved the thickness of the ganglion cell complex, as demonstrated by the statistically significant improvement in RGC counts and thickness measurements. Mechanistically, SC-EVs activated the cAMP-response element binding protein (CREB) signaling pathway and regulated reactive gliosis in ONC rats, which is crucial for RGC protection and axonal regeneration. These findings provide novel insights into the neuroprotective and regenerative properties of SC-EVs, suggesting their potential as a cell-free therapeutic strategy and natural biomaterials for neurodegenerative diseases of the central nervous system.


Subject(s)
Axons , Optic Nerve Injuries , Rats , Animals , Axons/metabolism , Retinal Ganglion Cells/metabolism , Optic Nerve/metabolism , Optic Nerve Injuries/drug therapy , Optic Nerve Injuries/metabolism , Schwann Cells/metabolism , Disease Models, Animal
16.
Macromol Rapid Commun ; 44(23): e2300389, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37661804

ABSTRACT

Traumatic optic neuropathy (TON) is a severe condition characterized by retinal ganglion cell (RGC) death, often leading to irreversible vision loss, and the death of RGCs is closely associated with oxidative stress. Unfortunately, effective treatment options for TON are lacking. To address this, catalase (CAT) is encapsulated in a tannic acid (TA)/poly(ethylenimine)-crosslinked hollow nanoreactor (CAT@PTP), which exhibited enhanced anchoring in the retina due to TA-collagen adhesion. The antioxidative activity of both CAT and TA synergistically eliminated reactive oxygen species (ROS) to save RGCs in the retina, thereby treating TON. In vitro experiments demonstrated that the nanoreactors preserve the enzymatic activity of CAT and exhibit high adhesion to type I collagen. The combination of CAT and TA-based nanoreactors enhanced ROS elimination while maintaining high biocompatibility. In an optic nerve crush rat model, CAT@PTP is effectively anchored to the retina via TA-collagen adhesion after a single vitreous injection, and RGCs are significantly preserved without adverse events. CAT@PTP exhibited a protective effect on retinal function. Given the abundance of collagen that exists in ocular tissues, these findings may contribute to the further application of this multifunctional nanoreactor in ocular diseases to improve therapeutic efficacy and reduce adverse effects.


Subject(s)
Optic Nerve Injuries , Retinal Ganglion Cells , Rats , Animals , Retinal Ganglion Cells/metabolism , Collagen Type I/metabolism , Reactive Oxygen Species/metabolism , Optic Nerve/metabolism , Optic Nerve Injuries/metabolism , Nanotechnology , Cell Survival , Disease Models, Animal
17.
Cell Rep ; 42(10): 113165, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37751356

ABSTRACT

Retinal ganglion cell (RGC) degeneration drives vision loss in blinding conditions. RGC death is often triggered by axon degeneration in the optic nerve. Here, we study the contributions of dynamic and homeostatic Ca2+ levels to RGC death from axon injury. We find that axonal Ca2+ elevations from optic nerve injury do not propagate over distance or reach RGC somas, and acute and chronic Ca2+ dynamics do not affect RGC survival. Instead, we discover that baseline Ca2+ levels vary widely between RGCs and predict their survival after axon injury, and that lowering these levels reduces RGC survival. Further, we find that well-surviving RGC types have higher baseline Ca2+ levels than poorly surviving types. Finally, we observe considerable variation in the baseline Ca2+ levels of different RGCs of the same type, which are predictive of within-type differences in survival.


Subject(s)
Optic Nerve Injuries , Humans , Animals , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/metabolism , Calcium/metabolism , Axons/metabolism , Optic Nerve/metabolism , Cell Survival , Disease Models, Animal
18.
Exp Eye Res ; 235: 109627, 2023 10.
Article in English | MEDLINE | ID: mdl-37619829

ABSTRACT

The main purpose of this study is to analyze the effects of unilateral optic nerve crush in the gene expression of pro- and anti-inflammatory mediators, and gliosis markers in injured and contralateral retinas. Retinas from intact, unilaterally optic nerve injured or sham-operated C57BL/6J mice were analyzed 1, 3, 9 and 30 days after the surgery (n = 5/group and time point) and the relative expression of TGF-ß1, IL-1ß, TNF-α, Iba1, AQP4, GFAP, MHCII, and TSPO was analyzed in injured and contralateral using qPCR. The results indicated that compared with intact retinas, sham-operated animals showed an early (day 1) upregulation of IL-1ß, TNF-α and TSPO and a late (day 30) upregulation of TNF-α. In sham-contralateral retinas, TNF-α and TSPO mRNA expression were upregulated and day 30 while GFAP, Iba1, AQP4 and MHCII downregulated at day 9. Compared with sham-operated animals, in retinas affected by optic nerve crush GFAP and TSPO upregulated at day 1 and TNF-α, Iba1, AQP4 and MHCII at day 3. In the crushed-contralateral retinas, TGF-ß1, TNF-α, Iba1 and MHCII were upregulated at day 1. TSPO was upregulated up to day 30 whereas TGF-ß1 and Iba1 downregulated after day 9. In conclusion, both sham surgery and optic nerve crush changed the profile of inflammatory and gliosis markers in the injured and contralateral retinas, changes that were more pronounced for optic nerve crush when compared to sham.


Subject(s)
Optic Nerve Injuries , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/pharmacology , Retinal Ganglion Cells/metabolism , Gliosis/metabolism , Optic Nerve Injuries/genetics , Optic Nerve Injuries/metabolism , Neuroinflammatory Diseases , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Retina/metabolism , Optic Nerve/metabolism , Nerve Crush/methods
19.
Mol Med Rep ; 28(3)2023 09.
Article in English | MEDLINE | ID: mdl-37539744

ABSTRACT

The degeneration of retinal ganglion cells (RGCs) often causes irreversible vision impairment. Prevention of RGC degeneration can prevent or delay the deterioration of visual function. The present study aimed to investigate retinal metabolic profiles following optic nerve transection (ONT) injury and identify the potential metabolic targets for the prevention of RGC degeneration. Retinal samples were dissected from ONT group and non­ONT group. The untargeted metabolomics were carried out using liquid chromatography­tandem mass spectrometry. The involved pathways and biomarkers were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and MetaboAnalyst 5.0. In the ONT group, 689 disparate metabolites were detected, including lipids and lipid­like molecules. A total of 122 metabolites were successfully annotated and enriched in 50 KEGG pathways. Among them, 'sphingolipid metabolism' and 'primary bile acid biosynthesis' were identified involved in RGC degeneration. A total of five metabolites were selected as the candidate biomarkers for detecting RGC degeneration with an AUC value of 1. The present study revealed that lipid­related metabolism was involved in the pathogenesis of retinal neurodegeneration. Taurine, taurochenodesoxycholic acid, taurocholic acid (TCA), sphingosine, and galabiosylceramide are shown as the promising biomarkers for the diagnosis of RGC degeneration.


Subject(s)
Optic Nerve Injuries , Humans , Optic Nerve Injuries/metabolism , Optic Nerve/metabolism , Retina/metabolism , Metabolomics , Biomarkers/metabolism , Lipids
20.
Clin Exp Ophthalmol ; 51(6): 627-641, 2023 08.
Article in English | MEDLINE | ID: mdl-37317890

ABSTRACT

The retinal ganglion cells (RGCs) are the sole output neurons that connect information from the retina to the brain. Optic neuropathies such as glaucoma, trauma, inflammation, ischemia and hereditary optic neuropathy can cause RGC loss and axon damage, and lead to partial or total loss of vision, which is an irreversible process in mammals. The accurate diagnoses of optic neuropathies are crucial for timely treatments to prevent irrevocable RGCs loss. After severe ON damage in optic neuropathies, promoting RGC axon regeneration is vital for restoring vision. Clearance of neuronal debris, decreased intrinsic growth capacity, and the presence of inhibitory factors have been shown to contribute to the failure of post-traumatic CNS regeneration. Here, we review the current understanding of manifestations and treatments of various common optic neuropathies. We also summarise the current known mechanisms of RGC survival and axon regeneration in mammals, including specific intrinsic signalling pathways, key transcription factors, reprogramming genes, inflammation-related regeneration factors, stem cell therapy, and combination therapies. Significant differences in RGC subtypes in survival and regenerative capacity after injury have also been found. Finally, we highlight the developmental states and non-mammalian species that are capable of regenerating RGC axons after injury, and cellular state reprogramming for neural repair.


Subject(s)
Optic Nerve Diseases , Optic Nerve Injuries , Humans , Animals , Axons , Optic Nerve Injuries/therapy , Optic Nerve Injuries/metabolism , Nerve Regeneration/physiology , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...