Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.670
Filter
1.
Front Immunol ; 15: 1360412, 2024.
Article in English | MEDLINE | ID: mdl-38745652

ABSTRACT

A robust immune response is required for resistance to pulmonary tuberculosis (TB), the primary disease caused by Mycobacterium tuberculosis (Mtb). However, pharmaceutical inhibition of T cell immune checkpoint molecules can result in the rapid development of active disease in latently infected individuals, indicating the importance of T cell immune regulation. In this study, we investigated the potential role of CD200R during Mtb infection, a key immune checkpoint for myeloid cells. Expression of CD200R was consistently downregulated on CD14+ monocytes in the blood of subjects with active TB compared to healthy controls, suggesting potential modulation of this important anti-inflammatory pathway. In homogenized TB-diseased lung tissue, CD200R expression was highly variable on monocytes and CD11b+HLA-DR+ macrophages but tended to be lowest in the most diseased lung tissue sections. This observation was confirmed by fluorescent microscopy, which showed the expression of CD200R on CD68+ macrophages surrounding TB lung granuloma and found expression levels tended to be lower in macrophages closest to the granuloma core and inversely correlated with lesion size. Antibody blockade of CD200R in a biomimetic 3D granuloma-like tissue culture system led to significantly increased Mtb growth. In addition, Mtb infection in this system reduced gene expression of CD200R. These findings indicate that regulation of myeloid cells via CD200R is likely to play an important part in the immune response to TB and may represent a potential target for novel therapeutic intervention.


Subject(s)
Mycobacterium tuberculosis , Myeloid Cells , Tuberculosis, Pulmonary , Humans , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Orexin Receptors/metabolism , Macrophages/immunology , Macrophages/metabolism , Adult , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , Lung/immunology , Lung/microbiology , Lung/pathology , Lung/metabolism , Biomimetics , Monocytes/immunology , Monocytes/metabolism
2.
Sci Rep ; 14(1): 7690, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565870

ABSTRACT

Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.


Subject(s)
Ciona intestinalis , Animals , Humans , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexins/genetics , Orexins/metabolism , Ciona intestinalis/genetics , Ciona intestinalis/metabolism , HEK293 Cells , Signal Transduction , Vertebrates/metabolism , Carrier Proteins/metabolism
3.
Discov Med ; 36(183): 842-852, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665032

ABSTRACT

BACKGROUND: Following traumatic brain injury (TBI), an imbalance arises in the central nervous system within the hippocampus region, resulting in the proliferation of mossy cell fibers, causing abnormal membrane discharge. Moreover, disruptions in cellular neurotransmitter secretion induce post-traumatic epilepsy. Extensive experimental and clinical data indicate that the orexin system plays a regulatory role in the hippocampal central nervous system, but the specific regulatory effects are unclear. Therefore, further experimental evaluation of its relevance is needed. OBJECTIVE: This study aims to investigate the effects of orexin receptor agonists (OXA) on the seizure threshold and intensity in controlled cortical impact (CCI) mice, and to understand the role of the orexin system in post-traumatic epilepsy (PTE). METHODS: Male C57BL/6 mice weighing 18-22 g were randomly divided into three groups: Sham, CCI, and CCI+OXA. The three groups of mice were sequentially constructed with models, implanted with electrodes, and established drug-delivery cannulas. After a 30-day recovery, the Sham and CCI groups were injected with physiological saline through the administration cannulas, while the CCI+OXA group was injected with OXA. Subsequently, all mice underwent electrical stimulation every 30 minutes for a total of 15 times. Epileptic susceptibility, duration, intensity, and cognitive changes were observed. Concurrently, the expression levels and changes of GABAergic neurons in the hippocampus of each group were examined by immunofluorescence. RESULTS: Injecting OXA into hippocampal CA1 reduces the threshold of post-traumatic seizures, prolongs the post-discharge duration, prolongs seizure duration, reduces cognitive ability, and exacerbates the loss of GABAergic neurons in the hippocampal region. CONCLUSIONS: Based on the results, we can find that injecting OXA antagonists into the CA1 region of the hippocampus can treat or prevent the occurrence and progression of post-traumatic epilepsy.


Subject(s)
Brain Injuries, Traumatic , Mice, Inbred C57BL , Orexins , Animals , Male , Mice , Orexins/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Orexin Receptors/metabolism , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/metabolism , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Epilepsy/etiology , Epilepsy/metabolism , Seizures/etiology , Seizures/metabolism
4.
J Psychiatr Res ; 172: 291-299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428165

ABSTRACT

Treatment of Methamphetamine (METH) use disorder has become a crucial public health issue. The orexin system manipulation has provided promising evidence to attenuate addictive-like behaviors. This study explored the role of the orexin 1 receptor and orexin 2 receptor (OX1R and OX2R) in the CA1 area of the hippocampal formation in the acquisition and expression of METH-induced place preference. Animals were subjected to bilateral administration of different dosages (1, 3, 10, and 30 nmol/0.5 µl DMSO per side) of a selective OX1R antagonist, SB334867, or selective OX2R antagonist, TCS OX2 29 into the CA1 area throughout the conditioning phase or once on the post-conditioning phase in separate control and experimental groups. Behavioral data revealed that both OX1R (10 nmol; P < 0.01 and 30 nmol; P < 0.001) and OX2R (10 nmol; P < 0.05 and 30 nmol; P < 0.001) antagonism during the conditioning phase could block the formation of METH place preference dose-dependently. In addition, intra-CA1 microinjection of SB334867 on the post-conditioning phase attenuated the expression of METH place preference in a dose-dependent manner (3 nmol; P < 0.05, 10 nmol; P < 0.01 and 30 nmol; P < 0.001) whereas intra-CA1 administration of TCS OX2 29 only at the highest dosage (30 nmol) declined the expression of METH place preference (P < 0.01). It was also indicated that the suppressive effects of orexin receptor blockade on the METH-seeking behavior in the CA1 area were anatomically specific to this area. These findings support the possibility of targeting the orexin system to develop novel and successful pharmacological options for the treatment of METH dependence.


Subject(s)
Hippocampus , Methamphetamine , Rats , Animals , Orexin Receptors/metabolism , Orexins/metabolism , Rats, Wistar , Hippocampus/metabolism , Methamphetamine/pharmacology
5.
J Psychopharmacol ; 38(3): 305-308, 2024 03.
Article in English | MEDLINE | ID: mdl-38327032

ABSTRACT

In rodents, orexin neuropeptides regulate motivation and reward-seeking via orexin 1 receptor (OX1R) signaling in the mesolimbic dopaminergic system. This role is clearly established for rewards inherent to drugs of abuse but less so for natural rewards. Reported effects of the selective OX1R antagonist (SO1RA) SB-334867 on motivation for palatable food are ambiguous. In our experimental conditions neither SB-334867, nor two additional, structurally different SO1RAs, ACT-335827 and the clinical development candidate nivasorexant, affected effort-based responding for sucrose in rats. The positive control lisdexamfetamine, approved for psychiatric disorders associated with altered reward sensitivity such as binge eating disorder, increased effort-based responding.


Subject(s)
Benzoxazoles , Naphthyridines , Reward , Sucrose , Urea/analogs & derivatives , Humans , Rats , Animals , Orexins/pharmacology , Orexin Receptors , Sucrose/pharmacology , Conditioning, Operant
6.
Drug Des Devel Ther ; 18: 215-222, 2024.
Article in English | MEDLINE | ID: mdl-38312991

ABSTRACT

Purpose: Orexin receptors (OXRs) play a crucial role in modulating various physiological and neuropsychiatric functions within the central nervous system (CNS). Despite their significance, the precise role of OXRs in the brain remains elusive. Positron emission tomography (PET) imaging is instrumental in unraveling CNS functions, and the development of specific PET tracers for OXRs is a current research focus. Methods: The study investigated MDK-5220, an OX2R-selective agonist with promising binding properties (EC50 on OX2R: 0.023 µM, Ki on hOX2R: 0.14 µM). Synthesized and characterized as an OX2R PET probe, [11C]MDK-5220 was evaluated for its potential as a tracer. Biodistribution studies in mice were conducted to assess OX2R binding selectivity, with particular attention to its interaction with P-glycoprotein (P-gp) on the blood-brain barrier. Results: [11C]MDK-5220 exhibited promising attributes as an OX2R PET probe, demonstrating robust OX2R binding selectivity in biodistribution studies. However, an observed interaction with P-gp impacted its brain uptake. Despite this limitation, [11C]MDK-5220 presents itself as a potential candidate for further development. Discussion: The study provides insights into the functionality of the OX system and the potential of [11C]MDK-5220 as an OX2R PET probe. The observed interaction with P-gp highlights a consideration for future modifications to enhance brain uptake. The findings pave the way for innovative tracer development and propel ongoing research on OX systems, contributing to a deeper understanding of their role in the CNS. Conclusion: [11C]MDK-5220 emerges as a promising OX2R PET probe, despite challenges related to P-gp interaction. This study lays the foundation for further exploration and development of PET probes targeting OXRs, opening avenues for advancing our understanding of OX system functionality within the brain.


Subject(s)
Carbon Radioisotopes , Neuroimaging , Positron-Emission Tomography , Mice , Animals , Orexins , Tissue Distribution , Positron-Emission Tomography/methods , Orexin Receptors/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
7.
J Med Chem ; 67(4): 2337-2348, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38331429

ABSTRACT

The orexin system consists of two neuropeptides (orexins A and B) and two receptors (OX1 and OX2). Selective OX1 receptor antagonists (SO1RA) are gaining interest for their potential use in the treatment of CNS disorders, including substance abuse, eating, obsessive compulsive, or anxiety disorders. While blocking OX2 reduces wakefulness, the expected advantage of selectively antagonizing OX1 is the ability to achieve clinical efficacy without the promotion of sleep. Herein we report our discovery efforts starting from a dual orexin receptor antagonist and describe a serendipitous finding that triggered a medicinal chemistry program that culminated in the identification of the potent SO1RA ACT-539313. Efficacy in a rat model of schedule-induced polydipsia supported the decision to select the compound as a preclinical candidate. Nivasorexant (20) represents the first SO1RA to enter clinical development and completed a first proof of concept phase II clinical trial in binge eating disorder in 2022.


Subject(s)
Neuropeptides , Rats , Animals , Orexins , Neuropeptides/pharmacology , Orexin Receptors , Morpholines , Orexin Receptor Antagonists/pharmacology , Orexin Receptor Antagonists/therapeutic use
8.
Br J Anaesth ; 132(3): 466-468, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346840

ABSTRACT

A preclinical study in animals has further characterised a new 'arousal' agent. Danavorexton (TAK-925) is an agonist for orexin receptor 2 where it promotes recovery from inhalational and i.v. anaesthesia and opioid sedation. Although danavorexton reverses opioid sedation, it does not compromise analgesia. This could be a useful addition to the postoperative drug cupboard.


Subject(s)
Analgesics, Opioid , Arousal , Piperidines , Sulfonamides , Animals , Orexin Receptors , Orexins , Analgesics, Opioid/pharmacology
9.
Peptides ; 173: 171153, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38220091
10.
Bioorg Med Chem Lett ; 100: 129629, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38295907

ABSTRACT

Modulators of orexin receptors are being developed for neurological illnesses such as sleep disorders, addictive behaviours and other psychiatric diseases. We herein describe the discovery of CVN766, a potent orexin 1 receptor antagonist that has greater than 1000-fold selectivity for the orexin 1 receptor over the orexin 2 receptor and demonstrates low off target hits in a diversity screen. In agreement with its in vitro ADME data, CVN766 demonstrated moderate in vivo clearance in rodents and displayed good brain permeability and target occupancy. This drug candidate is currently being investigated in clinical trials for schizophrenia and related psychiatric conditions.


Subject(s)
Disclosure , Mental Disorders , Humans , Orexins , Orexin Receptor Antagonists/pharmacology , Orexin Receptors
11.
Structure ; 32(3): 352-361.e5, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38194963

ABSTRACT

Orexin neuropeptides have many physiological roles in the sleep-wake cycle, feeding behavior, reward demands, and stress responses by activating cognitive receptors, the orexin receptors (OX1R and OX2R), distributed in the brain. There are only subtle differences between OX1R and OX2R in the orthosteric site, which has hindered the rational development of subtype-selective antagonists. In this study, we utilized solution-state NMR to capture the structural plasticity of OX2R labeled with 13CH3-ε-methionine in complex with antagonists. Mutations in the orthosteric site allosterically affected the intracellular tip of TM6. Ligand exchange experiments with the subtype-selective EMPA and the nonselective suvorexant identified three methionine residues that were substantially perturbed. The NMR spectra suggested that the suvorexant-bound state exhibited more structural plasticity than the EMPA-bound state, which has not been foreseen from the close similarity of their crystal structures, providing insights into dynamic features to be considered in understanding the ligand recognition mode.


Subject(s)
Methionine , Humans , Orexins , Ligands , Orexin Receptors/genetics , Orexin Receptors/chemistry , Magnetic Resonance Spectroscopy
12.
Am J Drug Alcohol Abuse ; 50(1): 84-94, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38295363

ABSTRACT

Background: Methamphetamine use disorder (MUD) is a worldwide health concern. The hypothalamic orexin system regulates stress response and addictive behaviors. The genetic variation in the hypocretin receptor 2 (HCRTR2), rs2653349, is associated with substance use disorder.Objectives: We explored the gene-environment (GxE) interaction of rs2653349 and adverse childhood experiences (ACEs) associated with MUD susceptibility.Methods: Four hundred and one individuals (336 males, 65 females) with MUD and 348 healthy controls (288 males, 60 females) completed a self-report questionnaire evaluating ACEs, encompassing childhood abuse and household dysfunction categories, and were genotyped for SNP rs2653349. Methamphetamine use variables were collected using the Diagnostic Interview for Genetic Studies. We used regression analyses to assess the GxE effect on MUD risk.Results: The MUD group had a comparable genotypic distribution for rs2653349 to the control group, albeit with a higher prevalence and number of types of ACEs, correlating with an increased MUD risk (p < .05). No significant genetic impact of rs2653349 on MUD risk was found. However, we observed a GxE interaction effect between the minor allele of rs2653349 and the number of childhood abuse or household dysfunction types, correlating with a reduced MUD risk (OR = -0.71, p = .04, Benjamini-Hochberg adjusted p = .08 and OR = -0.59, p = .045, Benjamini-Hochberg adjusted p = .09, respectively).Conclusion: HCRTR2 SNP rs2653349 has no significant impact on MUD risk, but ACEs may increase this risk. GxE results suggest that rs2653349 could offer protection against developing MUD in individuals experiencing multiple types of ACEs.


Subject(s)
Adverse Childhood Experiences , Methamphetamine , Male , Female , Humans , Child , Orexin Receptors/genetics , Polymorphism, Single Nucleotide/genetics , Methamphetamine/adverse effects , Genotype
13.
Bioorg Med Chem Lett ; 99: 129624, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38272190

ABSTRACT

A structurally novel class of benzo- or pyrido-fused 1,3-dihydro-2H-imidazole-2-imines was designed and evaluated in an inositol phosphate accumulation assay for Gq signaling to measure agonistic activation of the orexin receptor type 2 (OX2R). These compounds were synthesized in 4-9 steps overall from readily available starting materials. Analogs that contain a stereogenic methyl or cyclopropyl substituent at the benzylic center, and a correctly configured alkyl ether, alkoxyalkyl ether, cyanoalkyl ether, or α-hydroxyacetamido substituted homobenzylic sidechain were identified as the most potent activators of OX2R coupled Gq signaling. Our results also indicate that agonistic activity was stereospecific at both the benzylic and homobenzylic stereogenic centra. We identified methoxyethoxy-substituted pyrido-fused dihydroimidazolimine analog 63c containing a stereogenic benzylic methyl group was the most potent agonist, registering a respectable EC50 of 339 nM and a maximal response (Emax) of 96 % in this assay. In vivo pharmacokinetic analysis indicated good brain exposure for several analogs. Our combined results provide important information towards a structurally novel class of orexin receptor agonists distinct from current chemotypes.


Subject(s)
Imidazoles , Imines , Orexin Receptors/agonists , Imines/pharmacology , Imidazoles/pharmacology , Pyridines , Ethers
14.
Sci Rep ; 14(1): 833, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191899

ABSTRACT

The orexin/hypocretin receptor type 1 (OX1R) plays a crucial role in regulating various physiological functions, especially feeding behavior, addiction, and reward. Genetic variations in the OX1R have been associated with several neurological disorders. In this study, we utilized a combination of sequence and structure-based computational tools to identify the most deleterious missense single nucleotide polymorphisms (SNPs) in the OX1R gene. Our findings revealed four highly conserved and structurally destabilizing missense SNPs, namely R144C, I148N, S172W, and A297D, located in the GTP-binding domain. Molecular dynamics simulations analysis demonstrated that all four most detrimental mutant proteins altered the overall structural flexibility and dynamics of OX1R protein, resulting in significant changes in the structural organization and motion of the protein. These findings provide valuable insights into the impact of missense SNPs on OX1R function loss and their potential contribution to the development of neurological disorders, thereby guiding future research in this field.


Subject(s)
Behavior, Addictive , Nervous System Diseases , Humans , Polymorphism, Single Nucleotide , Molecular Dynamics Simulation , Morphogenesis , Orexin Receptors
15.
Br J Anaesth ; 132(3): 541-552, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38296753

ABSTRACT

BACKGROUND: Delayed emergence from general anaesthesia, opioid-induced sedation, and opioid-induced respiratory depression is associated with perioperative complications. We characterised the preclinical effects of the orexin receptor 2 (OX2R)-selective agonist danavorexton (TAK-925) on emergence from anaesthesia and reversal of fentanyl-induced sedation, respiratory depression, and analgesia. METHODS: Emergence from isoflurane- or propofol-induced anaesthesia and fentanyl-induced sedation were investigated by righting reflex, rotarod, and electroencephalography in rats or monkeys. Fentanyl-induced respiratory depression was assessed by arterial blood gas analysis and whole-body plethysmography in rats and monkeys. Analgesia was evaluated using formalin- and skin incision-induced pain models in rats. RESULTS: Danavorexton shortened emergence from isoflurane- or propofol-induced anaesthesia and from fentanyl-induced sedation at 1 (P=0.005), 3 (P=0.006), and 3 mg kg-1 s.c. (P=0.022), respectively, by righting reflex in rats. Danavorexton (10 mg kg-1 s.c.) accelerated recovery from isoflurane-, propofol- and fentanyl-induced motor impairment in separate rotarod tests in rats (P=0.008, P=0.007, P=0.017, respectively), and reversed anaesthesia and fentanyl-induced delta-power increases. Danavorexton shortened emergence (return of righting reflex) from isoflurane- or propofol-induced anaesthesia at 1 (P=0.002) and 3 mg kg-1 (P=0.004), respectively, in cynomolgus monkeys. Danavorexton (10 mg kg-1 s.c.) reversed fentanyl-induced increase in Pco2 (P=0.006), and decrease in Po2 (P=0.015) and pH (P<0.001) in rats, and at 3 mg kg-1 s.c. reversed fentanyl-induced increase in Pco2 (P=0.007), and decrease in Po2 (P=0.013) and SO2 (P=0.036) in monkeys. Danavorexton increased minute volume and tidal volume in fentanyl-treated animals. Danavorexton at ≤10 mg kg-1 s.c. did not compromise fentanyl analgesia in rat formalin- and skin incision-induced pain models. CONCLUSIONS: Danavorexton promoted recovery from anaesthesia and fentanyl-induced sedation, and antagonised fentanyl-induced respiratory depression without compromising fentanyl analgesia.


Subject(s)
Analgesia , Isoflurane , Piperidines , Propofol , Respiratory Insufficiency , Sulfonamides , Rats , Animals , Analgesics, Opioid/adverse effects , Propofol/adverse effects , Orexin Receptors , Isoflurane/adverse effects , Haplorhini , Fentanyl , Respiratory Insufficiency/chemically induced , Anesthesia, General , Pain , Formaldehyde/adverse effects
16.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38199807

ABSTRACT

Orexins, which are produced within neurons of the lateral hypothalamic area, play a pivotal role in the regulation of various behaviors, including sleep/wakefulness, reward behavior, and energy metabolism, via orexin receptor type 1 (OX1R) and type 2 (OX2R). Despite the advanced understanding of orexinergic regulation of behavior at the circuit level, the precise distribution of orexin receptors in the brain remains unknown. Here, we develop a new branched in situ hybridization chain reaction (bHCR) technique to visualize multiple target mRNAs in a semiquantitative manner, combined with immunohistochemistry, which provided comprehensive distribution of orexin receptor mRNA and neuron subtypes expressing orexin receptors in mouse brains. Only a limited number of cells expressing both Ox1r and Ox2r were observed in specific brain regions, such as the dorsal raphe nucleus and ventromedial hypothalamic nucleus. In many brain regions, Ox1r-expressing cells and Ox2r-expressing cells belong to different cell types, such as glutamatergic and GABAergic neurons. Moreover, our findings demonstrated considerable heterogeneity in Ox1r- or Ox2r-expressing populations of serotonergic, dopaminergic, noradrenergic, cholinergic, and histaminergic neurons. The majority of orexin neurons did not express orexin receptors. This study provides valuable insights into the mechanism underlying the physiological and behavioral regulation mediated by the orexin system, as well as the development of therapeutic agents targeting orexin receptors.


Subject(s)
Dorsal Raphe Nucleus , Receptors, G-Protein-Coupled , Mice , Animals , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexins/metabolism , Receptors, G-Protein-Coupled/metabolism , Dorsal Raphe Nucleus/metabolism , Brain Mapping , In Situ Hybridization , RNA, Messenger
17.
Andrology ; 12(1): 198-210, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37084406

ABSTRACT

BACKGROUND: Orexins are hypothalamic neuropeptides associated with various neurophysiological activities such as sleep, arousal, and reward. However, there are few studies investigating the relationships between orexin receptors in the paraventricular nucleus and sexual behaviors. OBJECTIVES: To explore the roles of orexin receptors in the paraventricular nucleus on sexual behaviors and uncover its potential mechanisms in males. MATERIALS AND METHODS: Orexin A, orexin 1 receptor antagonist SB334867, and orexin 2 receptor antagonist TCS-OX2-29 were microinjected into the paraventricular nucleus to investigate the effects of orexin receptors on copulatory behavior testing of C57BL/6 mice. To explore if ejaculation could activate orexin 1 receptor-expressing neurons in the paraventricular nucleus, fluorescence immunohistochemical double staining was utilized. The levels of serum norepinephrine were measured and the lumbar sympathetic nerve activity was recorded to reflect the sympathetic nervous system activity. Moreover, the bulbospongiosus muscle-electromyogram was recorded and analyzed. To test whether perifornical/lateral hypothalamic area orexinergic neurons directly projected to the paraventricular nucleus, virus retrograde tracing technology was utilized. RESULTS: Orexin A significantly enhanced sexual performance by shortening the intromission and ejaculation latencies, and increasing the mount and intromission frequencies, while the opposite outcomes appeared with SB334867. However, TCS-OX2-29 had no significant effects on sexual behaviors. Moreover, orexin A increased lumbar sympathetic nerve activity and the levels of serum norepinephrine, while SB334867 decreased lumbar sympathetic nerve activity and norepinephrine, which caused a significant decrease in sympathetic nervous system outflow. Meanwhile, a robust increase in the bulbospongiosus muscle-electromyogram activity was identified after microinjecting orexin A. Furthermore, cFos immunopositive cells were increased and double stained with orexin 1 receptor-expressing neurons in the mating group. Additionally, the retrograde tracing results demonstrated that orexinergic neurons in the perifornical/lateral hypothalamic area directly projected to the paraventricular nucleus. CONCLUSIONS: Orexin 1 receptor in the paraventricular nucleus could influence the ejaculatory reflex via mediating the sympathetic nervous system activity, which might be of great importance in the treatment of premature ejaculation in the future.


Subject(s)
Norepinephrine , Paraventricular Hypothalamic Nucleus , Animals , Male , Mice , Orexin Receptors/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Orexins/metabolism , Mice, Inbred C57BL
18.
Cytometry A ; 105(4): 276-287, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38017661

ABSTRACT

Fluorescence confocal microscopy is commonly used to analyze the regulation membrane proteins expression such as G protein-coupled receptors (GPCRs). With this approach, the internal movement of GPCRs within the cell can be observed with a high degree of resolution. However, these microscopy techniques led to complex and time-consuming analysis and did not allow a large population of events to be sampled. A recent approach termed imaging flow cytometry (IFC), which combines flow cytometry and fluorescence microscopy, had two main advantages to study the regulation of GPCRs expression such as orexins receptors (OXRs): the ability (1) to analyze large numbers of cells and; (2) to visualize cell integrity and fluorescent markers localization. Here, we compare these two technologies using the orexin A (OxA) ligand coupled to rhodamine (OxA-rho) to investigate anti-tumoral OX1R expression in human digestive cancers. IFC has been adapted for cancer epithelial adherent cells and also to 3D cell culture tumoroids which partially mimic tumoral structures. In the absence of specific antibody, expression of OX1R is examined in the presence of OxA-rho. 2D-culture of colon cancer cells HT-29 exhibits a maximum level of OX1R internalization induced by OxA with 19% ± 3% colocalizing to early endosomes. In 3D-culture of HT-29 cells, internalization of OX1R/OxA-rho reached its maximum at 60 min, with 30.7% ± 6.4% of OX1R colocalizing with early endosomes. This is the first application of IFC to the analysis of the expression of a native GPCR, OX1R, in both 2D and 3D cultures of adherent cancer cells.


Subject(s)
Epithelial Cells , Receptors, G-Protein-Coupled , Humans , Flow Cytometry , Orexin Receptors/metabolism , Orexins/metabolism , Orexins/pharmacology , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Epithelial Cells/metabolism
19.
Pharmacol Biochem Behav ; 234: 173690, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061670

ABSTRACT

Orexin A (OX-A) and orexin B are neuropeptides produced in orexin neurons located in the lateral hypothalamus that exert multiple biological functions through the activation of orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R) throughout the central nervous system. OX1R and OX2R have distinct functions: OX1R is involved in reward seeking, whereas OX2R has a pivotal role in sleep/wake regulation. OX2R-selective agonists are in development as novel therapeutic agents for the treatment of hypersomnia. However, their potential to induce orexin release, which may indirectly stimulate both OX1R and OX2R in vivo, is unclear. Herein, we assessed the effects of the OX2R-selective agonist TAK-994 on wakefulness and orexin release in monkeys. Oral administration of TAK-994 at 10 mg/kg in the beginning of the sleep phase (zeitgeber time [ZT] 12) significantly increased wakefulness time in monkeys but did not increase OX-A levels in monkey cisternal cerebrospinal fluid (CSF). Moreover, oral administration of TAK-994 (10 mg/kg) during the active phase (ZT1) did not increase OX-A levels in monkey CSF. These findings indicate that the OX2R agonist TAK-994 selectively activates OX2R in vivo and would not robustly induce spontaneous orexin release during the daytime or nighttime in monkeys.


Subject(s)
Receptors, G-Protein-Coupled , Wakefulness , Animals , Orexin Receptors , Orexins/pharmacology , Macaca fascicularis
20.
Annu Rev Pharmacol Toxicol ; 64: 359-386, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37708433

ABSTRACT

Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.


Subject(s)
Alzheimer Disease , Orexin Receptor Antagonists , Humans , Aged , Aged, 80 and over , Orexins/pharmacology , Orexin Receptor Antagonists/pharmacology , Orexin Receptor Antagonists/therapeutic use , Orexin Receptors , Sleep/physiology , Alzheimer Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...