Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Med Chem ; 28(13): 115489, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32482533

ABSTRACT

Here, we present the design, synthesis, and SAR of dual orexin 1 and 2 receptor antagonists, which were optimized by balancing the antagonistic activity for orexin receptors and lipophilicity. Based on the prototype compound 1, ring construction and the insertion of an additional heteroatom into the resulting ring led to the discovery of orexin 1 and 2 receptor antagonists, which were 3-benzoyl-1,3-oxazinane derivatives. Within these derivatives, (-)-3h enabled a high dual orexin receptor antagonistic activity and a low lipophilicity. Compound (-)-3h exhibited potent sleep-promoting effects at a po dose of 1 mg/kg in a rat polysomnogram study, and optimal PK properties with a rapid Tmax and short half-lives in rats and dogs were observed, indicating a predicted human half-life of 0.9-2.0 h. Thus, (-)-3h (ORN0829; investigation code name, TS-142) was selected as a viable candidate and is currently in clinical development for the treatment of insomnia.


Subject(s)
Orexin Receptor Antagonists/chemical synthesis , Orexin Receptors/metabolism , Orexins/chemistry , Sleep Initiation and Maintenance Disorders/drug therapy , Animals , Dogs , Dose-Response Relationship, Drug , Drug Design , Humans , Male , Molecular Structure , Orexin Receptor Antagonists/pharmacokinetics , Orexins/pharmacokinetics , Rats, Wistar , Sleep/drug effects , Stereoisomerism , Structure-Activity Relationship
2.
ACS Chem Neurosci ; 9(2): 358-368, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29035509

ABSTRACT

Intranasal drug delivery is a noninvasive drug delivery route that can enhance systemic delivery of therapeutics with poor oral bioavailability by exploiting the rich microvasculature within the nasal cavity. The intranasal delivery route has also been targeted as a method for improved brain uptake of neurotherapeutics, with a goal of harnessing putative, direct nose-to-brain pathways. Studies in rodents, nonhuman primates, and humans have pointed to the efficacy of intranasally delivered neurotherapeutics, while radiolabeling studies have analyzed brain uptake following intranasal administration. In the present study, we employed carbon-11 radioactive methylation to assess the pharmacokinetic mechanism of intranasal delivery of Orexin A, a native neuropeptide and prospective antinarcoleptic drug that binds the orexin receptor 1. Using physicochemical and pharmacological analysis, we identified the methylation sites and confirmed the structure and function of methylated Orexin A (CH3-Orexin A) prior to monitoring its brain uptake following intranasal administration in rodent and nonhuman primate. Through positron emission tomography (PET) imaging of [11C]CH3-Orexin A, we determined that the brain exposure to Orexin A is poor after intranasal administration. Additional ex vivo analysis of brain uptake using [125I]Orexin A indicated intranasal administration of Orexin A affords similar brain uptake when compared to intravenous administration across most brain regions, with possible increased brain uptake localized to the olfactory bulbs.


Subject(s)
Brain/drug effects , Brain/diagnostic imaging , Carbon Radioisotopes , Orexins/administration & dosage , Positron-Emission Tomography , Wakefulness-Promoting Agents/administration & dosage , Administration, Intranasal , Animals , Brain/metabolism , Macaca mulatta , Male , Methylation , Molecular Structure , Orexins/chemical synthesis , Orexins/chemistry , Orexins/pharmacokinetics , Positron-Emission Tomography/methods , Raclopride/administration & dosage , Raclopride/pharmacokinetics , Rats, Sprague-Dawley , Wakefulness-Promoting Agents/chemical synthesis , Wakefulness-Promoting Agents/chemistry , Wakefulness-Promoting Agents/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL