Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.947
Filter
1.
Front Immunol ; 15: 1393852, 2024.
Article in English | MEDLINE | ID: mdl-38711526

ABSTRACT

Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.


Subject(s)
Genital Neoplasms, Female , Mitochondria , Organelles , Humans , Female , Genital Neoplasms, Female/pathology , Genital Neoplasms, Female/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Organelles/metabolism , Cell Survival , Animals , Lysosomes/metabolism , Endoplasmic Reticulum/metabolism , Autophagy , Energy Metabolism , Signal Transduction
2.
Adv Drug Deliv Rev ; 209: 115327, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703895

ABSTRACT

Due to the editability, functionality, and excellent biocompatibility of peptides, in situ self-assembly of peptides in cells is a powerful strategy for biomedical applications. Subcellular organelle targeting of peptides assemblies enables more precise drug delivery, enhances selectivity to disease cells, and mitigates drug resistance, providing an effective strategy for disease diagnosis and therapy. This reviewer first introduces the triggering conditions, morphological changes, and intracellular locations of self-assembling peptides. Then, the functions of peptide assemblies are summarized, followed by a comprehensive understanding of the interactions between peptide assemblies and subcellular organelles. Finally, we provide a brief outlook and the remaining challenges in this field.


Subject(s)
Drug Delivery Systems , Neoplasms , Organelles , Peptides , Humans , Peptides/chemistry , Organelles/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Animals
3.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38748249

ABSTRACT

Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).


Subject(s)
Bacteria , Mitochondria , Humans , Bacteria/metabolism , Mitochondria/metabolism , Animals , Organelles/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/microbiology , Lysosomes/metabolism , Lysosomes/microbiology , Host-Pathogen Interactions
4.
Methods Mol Biol ; 2800: 231-244, 2024.
Article in English | MEDLINE | ID: mdl-38709488

ABSTRACT

In this chapter, we describe protocols for using the CellOrganizer software on the Jupyter Notebook platform to analyze and model cell and organelle shape and spatial arrangement. CellOrganizer is an open-source system for using microscope images to learn statistical models of the structure of cell components and how those components are organized relative to each other. Such models capture the statistical variation in the organization of cellular components by jointly modeling the distributions of their number, shape, and spatial distributions. These models can be created for different cell types or conditions and compared to reflect differences in their spatial organizations. The models are also generative, in that they can be used to synthesize new cell instances reflecting what a model learned and to provide well-structured cell geometries that can be used for biochemical simulations.


Subject(s)
Software , Image Processing, Computer-Assisted/methods , Models, Biological , Humans , Computer Simulation , Organelles/metabolism
5.
Nat Commun ; 15(1): 3767, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704407

ABSTRACT

Tools for accessing and studying organelles remain underdeveloped. Here, we present a method by which giant organelle vesicles (GOVs) are generated by submitting cells to a hypotonic medium followed by plasma membrane breakage. By this means, GOVs ranging from 3 to over 10 µm become available for micromanipulation. GOVs are made from organelles such as the endoplasmic reticulum, endosomes, lysosomes and mitochondria, or in contact with one another such as giant mitochondria-associated ER membrane vesicles. We measure the mechanical properties of each organelle-derived GOV and find that they have distinct properties. In GOVs procured from Cos7 cells, for example, bending rigidities tend to increase from the endoplasmic reticulum to the plasma membrane. We also found that the mechanical properties of giant endoplasmic reticulum vesicles (GERVs) vary depending on their interactions with other organelles or the metabolic state of the cell. Lastly, we demonstrate GERVs' biochemical activity through their capacity to synthesize triglycerides and assemble lipid droplets. These findings underscore the potential of GOVs as valuable tools for studying the biophysics and biology of organelles.


Subject(s)
Endoplasmic Reticulum , Intracellular Membranes , Animals , Chlorocebus aethiops , COS Cells , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Cell Membrane/metabolism , Mitochondria/metabolism , Organelles/metabolism , Lipid Droplets/metabolism , Triglycerides/metabolism , Humans , Lysosomes/metabolism
6.
Methods Mol Biol ; 2807: 113-125, 2024.
Article in English | MEDLINE | ID: mdl-38743224

ABSTRACT

The postnuclear entry steps of HIV-1 involve reverse transcription, uncoating, and integration into the host genome. The differential regulation of these steps has a significant impact on HIV overall replication, including integration site selection and viral gene expression. Recently, another important phenomenon has been uncovered as part of HIV interplay with the nuclear environment, specifically involving the cleavage and polyadenylation specific factor 6 (CPSF6) protein. This phenomenon is the formation of nuclear HIV-induced membraneless organelles (HIV-1 MLOs). In this article, we will describe the methods used to assess the composition and liquid-liquid phase separation (LLPS) properties of these organelles using fluorescence microscopy. The study of HIV-1 MLOs represents a new frontier that may reveal previously unknown key players in the fate of HIV-infected cells.


Subject(s)
Cell Nucleus , HIV-1 , Microscopy, Fluorescence , Humans , Microscopy, Fluorescence/methods , HIV-1/physiology , HIV-1/genetics , Cell Nucleus/metabolism , Organelles/metabolism , HIV Infections/virology , HIV Infections/metabolism
7.
Biomacromolecules ; 25(5): 3055-3062, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38693874

ABSTRACT

Polymersomes, nanosized polymeric vesicles, have attracted significant interest in the areas of artificial cells and nanomedicine. Given their size, their visualization via confocal microscopy techniques is often achieved through the physical incorporation of fluorescent dyes, which however present challenges due to potential leaching. A promising alternative is the incorporation of molecules with aggregation-induced emission (AIE) behavior that are capable of fluorescing exclusively in their assembled state. Here, we report on the use of AIE polymersomes as artificial organelles, which are capable of undertaking enzymatic reactions in vitro. The ability of our polymersome-based artificial organelles to provide additional functionality to living cells was evaluated by encapsulating catalytic enzymes such as a combination of glucose oxidase/horseradish peroxidase (GOx/HRP) or ß-galactosidase (ß-gal). Via the additional incorporation of a pyridinium functionality, not only the cellular uptake is improved at low concentrations but also our platform's potential to specifically target mitochondria expands.


Subject(s)
Glucose Oxidase , Horseradish Peroxidase , beta-Galactosidase , Glucose Oxidase/chemistry , Humans , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Organelles/metabolism , Fluorescent Dyes/chemistry , Polymers/chemistry , Fluorescence , HeLa Cells , Mitochondria/metabolism
8.
Rev Assoc Med Bras (1992) ; 70(5): e20231337, 2024.
Article in English | MEDLINE | ID: mdl-38775506

ABSTRACT

OBJECTIVE: It has been previously shown that brain-derived neurotrophic factor is linked with various types of cancer. Brain-derived neurotrophic factor is found to be highly expressed in multiple human cancers and associated with tumor growth, invasion, and metastasis. Adipokinetic hormones are functionally related to the vertebrate glucagon, as they have similar functionalities that manage the nutrient-dependent secretion of these two hormones. Migrasomes are new organelles that contain numerous small vesicles, which aid in transmitting signals between the migrating cells. Therefore, the aim of this study was to investigate the effects of Anax imperator adipokinetic hormone on brain-derived neurotrophic factor expression and ultrastructure of cells in the C6 glioma cell line. METHODS: The rat C6 glioma cells were treated with concentrations of 5 and 10 Anax imperator adipokinetic hormone for 24 h. The effects of the Anax imperator adipokinetic hormone on the migrasome formation and brain-derived neurotrophic factor expression were analyzed using immunocytochemistry and transmission electron microscope. RESULTS: The rat C6 glioma cells of the 5 and 10 µM Anax imperator adipokinetic hormone groups showed significantly high expressions of brain-derived neurotrophic factor and migrasomes numbers, compared with the control group. CONCLUSION: A positive correlation was found between the brain-derived neurotrophic factor expression level and the formation of migrasome, which indicates that the increased expression of brain-derived neurotrophic factor and the number of migrasomes may be involved to metastasis of the rat C6 glioma cell line induced by the Anax imperator adipokinetic hormone. Therefore, the expression of brain-derived neurotrophic factor and migrasome formation may be promising targets for preventing tumor proliferation, invasion, and metastasis in glioma.


Subject(s)
Brain-Derived Neurotrophic Factor , Glioma , Oligopeptides , Pyrrolidonecarboxylic Acid , Glioma/metabolism , Glioma/pathology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Rats , Cell Line, Tumor , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Oligopeptides/pharmacology , Insect Hormones/metabolism , Cell Movement/drug effects , Immunohistochemistry , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Organelles/metabolism , Organelles/drug effects , Organelles/ultrastructure
9.
Science ; 384(6692): 160-161, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38603513

ABSTRACT

A bacterial endosymbiont of marine algae evolved to an organelle.


Subject(s)
Nitrogen , Organelles , Bacteria
10.
J Physiol ; 602(8): 1637-1654, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38625711

ABSTRACT

The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.


Subject(s)
Lysosomes , Organelles , Membrane Potentials , Organelles/metabolism , Lysosomes/metabolism , Endoplasmic Reticulum/metabolism , Fluorescent Dyes/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism
11.
Nat Rev Microbiol ; 22(6): 323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658788
12.
EMBO Rep ; 25(5): 2172-2187, 2024 May.
Article in English | MEDLINE | ID: mdl-38627564

ABSTRACT

Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.


Subject(s)
Cell Movement , Cytoskeleton , Organelles , Organelles/metabolism , Humans , Cytoskeleton/metabolism , Animals
13.
Plant Sci ; 344: 112101, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640972

ABSTRACT

Over the last decade, the composition of the C-to-U RNA editing complex in embryophyte organelles has turned out to be much more complex than first expected. While PPR proteins were initially thought to act alone, significant evidences have clearly depicted a sophisticated mechanism with numerous protein-protein interaction involving PPR and non-PPR proteins. Moreover, the identification of specific functional partnership between PPRs also suggests that, in addition to the highly specific PPRs directly involved in the RNA target recognition, non-RNA-specific ones are required. Although some of them, such as DYW1 and DYW2, were shown to be the catalytic domains of the editing complex, the molecular function of others, such as NUWA, remains elusive. It was suggested that they might stabilize the complex by acting as a scaffold. We here performed functional complementation of the crr28-2 mutant with truncated CRR28 proteins mimicking PPR without the catalytic domain and show that they exhibit a specific dependency to one of the catalytic proteins DYW1 or DYW2. Moreover, we also characterized the role of the PPR NUWA in the editing reaction and show that it likely acts as a scaffolding factor. NUWA is no longer required for efficient editing of the CLB19 editing sites once this RNA specific PPR is fused to the DYW catalytic domain of its partner DYW2. Altogether, our results strongly support a flexible, evolutive and resilient editing complex in which RNA binding activity, editing activity and stabilization/scaffolding function can be provided by one or more PPRs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA Editing , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Organelles/metabolism , Organelles/genetics , RNA, Plant/genetics , RNA, Plant/metabolism
14.
Nat Commun ; 15(1): 3290, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632225

ABSTRACT

The functions of cellular organelles and sub-compartments depend on their protein content, which can be characterized by spatial proteomics approaches. However, many spatial proteomics methods are limited in their ability to resolve organellar sub-compartments, profile multiple sub-compartments in parallel, and/or characterize membrane-associated proteomes. Here, we develop a cross-link assisted spatial proteomics (CLASP) strategy that addresses these shortcomings. Using human mitochondria as a model system, we show that CLASP can elucidate spatial proteomes of all mitochondrial sub-compartments and provide topological insight into the mitochondrial membrane proteome. Biochemical and imaging-based follow-up studies confirm that CLASP allows discovering mitochondria-associated proteins and revising previous protein sub-compartment localization and membrane topology data. We also validate the CLASP concept in synaptic vesicles, demonstrating its applicability to different sub-cellular compartments. This study extends the scope of cross-linking mass spectrometry beyond protein structure and interaction analysis towards spatial proteomics, and establishes a method for concomitant profiling of sub-organelle and membrane proteomes.


Subject(s)
Membrane Proteins , Proteome , Humans , Proteome/metabolism , Membrane Proteins/metabolism , Proteomics/methods , Organelles/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism
15.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38587486

ABSTRACT

ß-Coronaviruses remodel host endomembranes to form double-membrane vesicles (DMVs) as replication organelles (ROs) that provide a shielded microenvironment for viral RNA synthesis in infected cells. DMVs are clustered, but the molecular underpinnings and pathophysiological functions remain unknown. Here, we reveal that host fragile X-related (FXR) family proteins (FXR1/FXR2/FMR1) are required for DMV clustering induced by expression of viral non-structural proteins (Nsps) Nsp3 and Nsp4. Depleting FXRs results in DMV dispersion in the cytoplasm. FXR1/2 and FMR1 are recruited to DMV sites via specific interaction with Nsp3. FXRs form condensates driven by liquid-liquid phase separation, which is required for DMV clustering. FXR1 liquid droplets concentrate Nsp3 and Nsp3-decorated liposomes in vitro. FXR droplets facilitate recruitment of translation machinery for efficient translation surrounding DMVs. In cells depleted of FXRs, SARS-CoV-2 replication is significantly attenuated. Thus, SARS-CoV-2 exploits host FXR proteins to cluster viral DMVs via phase separation for efficient viral replication.


Subject(s)
COVID-19 , Fragile X Mental Retardation Protein , Liposomes , RNA-Binding Proteins , SARS-CoV-2 , Humans , Cell Proliferation , Cluster Analysis , COVID-19/metabolism , COVID-19/virology , Cytoplasm , Fragile X Mental Retardation Protein/metabolism , HeLa Cells , Liposomes/metabolism , Organelles , RNA-Binding Proteins/metabolism , Viral Nonstructural Proteins/metabolism
16.
Int J Biol Macromol ; 267(Pt 1): 131417, 2024 May.
Article in English | MEDLINE | ID: mdl-38582457

ABSTRACT

Bone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes. Editing BMP15 impaired the IVM of porcine oocytes, as indicated by the significantly increased abnormal spindle assembly and reduced first polar body (PB1) extrusion. The editing also impaired cytoplasmic maturation of porcine oocytes, as reflected by reduced abundant of Golgi apparatus and impaired functions of mitochondria. The impaired IVM of porcine oocytes by editing BMP15 possibly was associated with the attenuated SMAD1/5 and EGFR-ERK1/2 signaling in the cumulus granulosa cells (CGCs) and the inhibited MOS/ERK1/2 signaling in oocytes. The attenuated MOS/ERK1/2 signaling may contribute to the inactivation of maturation promoting factor (MPF) and the increased abnormal spindle assembly, leading to reduced PB1 extrusion. It also may contribute to reduced Golgi apparatus formation, and impaired functions of mitochondria. These findings expand our understanding of the regulatory role of BMP15 in the IVM of porcine oocytes and provide a basis for manipulation of porcine reproductive performance.


Subject(s)
Bone Morphogenetic Protein 15 , Oocytes , Spindle Apparatus , Animals , Oocytes/metabolism , Bone Morphogenetic Protein 15/genetics , Bone Morphogenetic Protein 15/metabolism , Swine , Female , Spindle Apparatus/metabolism , MAP Kinase Signaling System , Mitochondria/metabolism , In Vitro Oocyte Maturation Techniques , Golgi Apparatus/metabolism , Organelles/metabolism , Organelles/genetics , Signal Transduction
17.
EMBO J ; 43(10): 2035-2061, 2024 May.
Article in English | MEDLINE | ID: mdl-38627600

ABSTRACT

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Subject(s)
Phosphatidylinositols , Phospholipid Transfer Proteins , Humans , Phosphatidylinositols/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Lipid Metabolism , Cell Membrane/metabolism , HeLa Cells , Organelles/metabolism , Endosomes/metabolism , Animals
18.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38647453

ABSTRACT

Migrasomes, organelles crucial for cell communication, undergo distinct stages of nucleation, maturation, and expansion. The regulatory mechanisms of migrasome formation, particularly through biological cues, remain largely unexplored. This study reveals that calcium is essential for migrasome formation. Furthermore, we identify that Synaptotagmin-1 (Syt1), a well-known calcium sensor, is not only enriched in migrasomes but also indispensable for their formation. The calcium-binding ability of Syt1 is key to initiating migrasome formation. The recruitment of Syt1 to migrasome formation sites (MFS) triggers the swelling of MFS into unstable precursors, which are subsequently stabilized through the sequential recruitment of tetraspanins. Our findings reveal how calcium regulates migrasome formation and propose a sequential interaction model involving Syt1 and Tetraspanins in the formation and stabilization of migrasomes.


Subject(s)
Calcium , Extracellular Vesicles , Synaptotagmin I , Animals , Humans , Calcium/metabolism , Calcium Signaling , Cell Communication , Organelles/metabolism , Synaptotagmin I/metabolism , Synaptotagmin I/genetics , Tetraspanins/metabolism , Tetraspanins/genetics , Extracellular Vesicles/metabolism , Mice , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism
19.
Biol Direct ; 19(1): 29, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654312

ABSTRACT

BACKGROUND: Oocyte quality is critical for the mammalian reproduction due to its necessity on fertilization and early development. During aging, the declined oocytes showing with organelle dysfunction and oxidative stress lead to infertility. AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase which is important for energy homeostasis for metabolism. Little is known about the potential relationship between AMPK with oocyte aging. RESULTS: In present study we reported that AMPK was related with low quality of oocytes under post ovulatory aging and the potential mechanism. We showed the altered AMPK level during aging and inhibition of AMPK activity induced mouse oocyte maturation defect. Further analysis indicated that similar with its upstream regulator PKD1, AMPK could reduce ROS level to avoid oxidative stress in oocytes, and this might be due to its regulation on mitochondria function, since loss of AMPK activity induced abnormal distribution, reduced ATP production and mtDNA copy number of mitochondria. Besides, we also found that the ER and Golgi apparatus distribution was aberrant after AMPK inhibition, and enhanced lysosome function was also observed. CONCLUSIONS: Taken together, these data indicated that AMPK is important for the organelle function to reduce oxidative stress during oocyte meiotic maturation.


Subject(s)
AMP-Activated Protein Kinases , Oocytes , Oxidative Stress , Animals , Female , Mice , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Cellular Senescence , Mitochondria/metabolism , Oocytes/metabolism , Organelles/metabolism , Reactive Oxygen Species/metabolism
20.
Nat Commun ; 15(1): 3620, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684657

ABSTRACT

Photobodies (PBs) are membraneless subnuclear organelles that self-assemble via concentration-dependent liquid-liquid phase separation (LLPS) of the plant photoreceptor and thermosensor phytochrome B (PHYB). The current PHYB LLPS model posits that PHYB phase separates randomly in the nucleoplasm regardless of the cellular or nuclear context. Here, we established a robust Oligopaints method in Arabidopsis to determine the positioning of individual PBs. We show surprisingly that even in PHYB overexpression lines - where PHYB condensation would be more likely to occur randomly - PBs positioned at twelve distinct subnuclear locations distinguishable by chromocenter and nucleolus landmarks, suggesting that PHYB condensation occurs nonrandomly at preferred seeding sites. Intriguingly, warm temperatures reduce PB number by inducing the disappearance of specific thermo-sensitive PBs, demonstrating that individual PBs possess different thermosensitivities. These results reveal a nonrandom PB nucleation model, which provides the framework for the biogenesis of spatially distinct individual PBs with diverse environmental sensitivities within a single plant nucleus.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Nucleus , Phytochrome B , Phytochrome B/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Temperature , Plants, Genetically Modified , Organelles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...