Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Neuroendocrinol ; 36(4): e13377, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38418229

ABSTRACT

Neurogenesis continues throughout adulthood in the subventricular zone, hippocampal subgranular zone, and the hypothalamic median eminence (ME) and the adjacent medio-basal hypothalamus. The ME is one of the circumventricular organs (CVO), which are specialized brain areas characterized by an incomplete blood-brain barrier and, thus, are involved in mediating communication between the central nervous system and the periphery. Additional CVOs include the organum vasculosum laminae terminalis (OVLT) and the subfornical organs (SFO). Previous studies have demonstrated that the ME contains neural stem cells (NSCs) capable of generating new neurons and glia in the adult brain. However, it remains unclear whether the OVLT and SFO also contain proliferating cells, the identity of these cells, and their ability to differentiate into mature neurons. Here we show that glial and mural subtypes exhibit NSC characteristics, expressing the endogenous mitotic maker Ki67, and incorporating the exogenous mitotic marker BrdU in the OVLT and SFO of adult rats. Glial cells constitutively proliferating in the SFO comprise NG2 glia, while in the OVLT, both NG2 glia and tanycytes appear to constitute the NSC pool. Furthermore, pericytes, which are mural cells associated with capillaries, also contribute to the pool of cells constitutively proliferating in the OVLT and SFO of adult rats. In addition to these glial and mural cells, a fraction of NSCs containing proliferation markers Ki67 and BrdU also expresses the early postmitotic neuronal marker doublecortin, suggesting that these CVOs comprise newborn neurons. Notably, these neurons can differentiate and express the mature neuronal marker NeuN. These findings establish the sensory CVOs OVLT and SFO as additional neurogenic niches, where the generation of new neurons and glia persists in the adult brain.


Subject(s)
Organum Vasculosum , Subfornical Organ , Rats , Animals , Bromodeoxyuridine , Ki-67 Antigen , Hypothalamus , Neurogenesis/physiology , Cell Proliferation
2.
J Neuroendocrinol ; 35(9): e13245, 2023 09.
Article in English | MEDLINE | ID: mdl-36880566

ABSTRACT

A map of central nervous system organization based on vascular networks provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. The first evidence of such a pathway in the brain came from anatomical studies identifying a portal pathway linking the hypothalamus and the pituitary gland. Almost a century later, we demonstrated a vascular portal pathway that joined the capillary beds of the suprachiasmatic nucleus and a circumventricular organ, the organum vasculosum of the lamina terminalis, in a mouse brain. For each of these portal pathways, the anatomical findings opened many new lines of inquiry, including the determination of the direction of flow of information, the identity of the signal that flowed along this pathway, and the function of the signals that linked the two regions. Here, we review landmark steps to these discoveries and highlight the experiments that reveal the significance of portal pathways and more generally, the implications of morphologically distinct nuclei sharing capillary beds.


Subject(s)
Neurons , Organum Vasculosum , Mice , Animals , Neurons/metabolism , Organum Vasculosum/physiology , Suprachiasmatic Nucleus/physiology , Hypothalamus/metabolism , Pituitary Gland
3.
Hypertension ; 80(4): 872-881, 2023 04.
Article in English | MEDLINE | ID: mdl-36752103

ABSTRACT

BACKGROUND: Salt-sensitive hypertension in humans and experimental models is associated with higher plasma and cerebrospinal fluid sodium chloride (NaCl) concentrations. Changes in extracellular NaCl concentrations are sensed by specialized neurons in the organum vasculosum of the lamina terminalis (OVLT). Stimulation of OVLT neurons increases sympathetic nerve activity (SNA) and arterial blood pressure (ABP), whereas chronic activation produces hypertension. Therefore, the present study tested whether OVLT neuronal activity was elevated and contributed to SNA and ABP in salt-sensitive hypertension. METHODS: Male Dahl salt-sensitive (Dahl S) and Dahl salt-resistant (Dahl R) rats were fed 0.1% or 4.0% NaCl diets for 3 to 4 weeks and used for single-unit recordings of OVLT neurons or simultaneous recording of multiple sympathetic nerves during pharmacological inhibition of the OVLT. RESULTS: Plasma and cerebrospinal fluid Na+ and Cl- concentrations were higher in Dahl S rats fed 4% versus 0.1% or Dahl R rats fed either diet. In vivo single-unit recordings revealed a significantly higher discharge of NaCl-responsive OVLT neurons in Dahl S rats fed 4% versus 0.1% or Dahl R rats. Interestingly, intracarotid infusion of hypertonic NaCl evoked greater increases in OVLT neuronal discharge of Dahl S versus Dahl R rats regardless of NaCl diet. The activity of non-NaCl-responsive OVLT neurons was not different across strain or diets. Finally, inhibition of OVLT neurons by local injection of the gamma-aminobutyric acid agonist muscimol produced a greater decrease in renal SNA, splanchnic SNA, and ABP of Dahl S rats fed 4% versus 0.1% or Dahl R rats. CONCLUSIONS: A high salt diet activates NaCl-responsive OVLT neurons to increase SNA and ABP in salt-sensitive hypertension.


Subject(s)
Hypertension , Organum Vasculosum , Rats , Animals , Humans , Male , Sodium Chloride/pharmacology , Rats, Sprague-Dawley , Patient Discharge , Rats, Inbred Dahl , Sodium Chloride, Dietary , Hypothalamus , Blood Pressure/physiology
4.
J Neuroendocrinol ; 34(12): e13214, 2022 12.
Article in English | MEDLINE | ID: mdl-36426844

ABSTRACT

Increases in core body temperature cause secretion of vasopressin (vasopressin, antidiuretic hormone) to promote water reabsorption and blunt water losses incurred through homeostatic evaporative cooling. Subtypes of transient receptor potential vanilloid (Trpv) channels have been shown to contribute to the intrinsic regulation of vasopressin-releasing magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN). However, MNCs in vivo can also be excited by local heating of the adjacent preoptic area, indicating they receive thermosensory information from other areas. Here, we investigated whether neurons in the organum vasculosum lamina terminalis (OVLT) contribute to this process using in vitro electrophysiological approaches in male rats. We found that the majority of OVLT neurons are thermosensitive in the physiological range (36-39°C) and that this property is retained under conditions blocking synaptic transmission. A subset of these neurons could be antidromically activated by electrical stimulation in the SON. Whole cell recordings from SON MNCs revealed that heating significantly increases the rate of spontaneous excitatory postsynaptic currents (sEPCSs), and that this response is abolished by lesions targeting the OVLT, but not by bilateral lesions placed in the adjacent preoptic area. Finally, local heating of the OVLT caused a significant excitation of MNCs in the absence of temperature changes in the SON, and this effect was blocked by inhibitors of ionotropic glutamate receptors. These findings indicate that the OVLT serves as an important thermosensory nucleus and contributes to the activation of MNCs during physiological heating.


Subject(s)
Neurosecretory Systems , Organum Vasculosum , Animals , Male , Rats , Hypothalamus , Neurons/physiology , Organum Vasculosum/physiology , Supraoptic Nucleus , Vasopressins/pharmacology , Neurosecretory Systems/physiology
5.
Hypertension ; 79(1): 139-149, 2022 01.
Article in English | MEDLINE | ID: mdl-34809435

ABSTRACT

Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense extracellular NaCl and angiotensin II concentrations to regulate body fluid homeostasis and arterial blood pressure. Lesion of the anteroventral third ventricular region or OVLT attenuates multiple forms of neurogenic hypertension. However, the extent by which OVLT neurons directly regulate sympathetic nerve activity to produce hypertension is not known. Therefore, the present study tested this hypothesis by using a multi-faceted approach including optogenetics, single-unit and multifiber nerve recordings, and chemogenetics. First, optogenetic activation of OVLT neurons in conscious Sprague-Dawley rats (250-400 g) produced frequency-dependent increases in arterial blood pressure and heart rate. These responses were not altered by the vasopressin receptor antagonist (ß-mercapto-ß,ß-cyclopentamethylenepropionyl1,O-me-Tyr2,Arg8)-vasopressin but eliminated by the ganglionic blocker chlorisondamine. Second, optogenetic activation of OVLT neurons significantly elevated renal, splanchnic, and lumbar sympathetic nerve activity. Third, single-unit recordings revealed optogenetic activation of the OVLT significantly increased the discharge of bulbospinal, sympathetic neurons in the rostral ventrolateral medulla. Lastly, chronic chemogenetic activation of OVLT neurons for 7 days significantly increased 24-hour fluid intake and mean arterial blood pressure. When the 24-hour fluid intake was clamped at baseline intakes, chemogenetic activation of OVLT neurons still produced a similar increase in arterial blood pressure. Neurogenic pressor activity assessed by the ganglionic blocker chlorisondamine was greater at 7 days of OVLT activation versus baseline. Collectively, these findings indicate that acute or chronic activation of OVLT neurons produces a sympathetically mediated hypertension.


Subject(s)
Blood Pressure/physiology , Hypertension/physiopathology , Neurons/physiology , Organum Vasculosum/physiopathology , Sympathetic Nervous System/physiopathology , Animals , Heart Rate/physiology , Hemodynamics/physiology , Male , Optogenetics , Rats , Rats, Sprague-Dawley
6.
Handb Clin Neurol ; 180: 203-215, 2021.
Article in English | MEDLINE | ID: mdl-34225930

ABSTRACT

In this chapter, we review the extensive literature describing the roles of the subfornical organ (SFO), the organum vasculosum of the terminalis (OVLT), and the median preoptic nucleus (MnPO), comprising the lamina terminalis, in cardiovascular regulation and the control of fluid balance. We present this information in the context of both historical and technological developments which can effectively be overlaid upon each other. We describe intrinsic anatomy and connectivity and then discuss early work which described how circulating angiotensin II acts at the SFO to stimulate drinking and increase blood pressure. Extensive studies using direct administration and lesion approaches to highlight the roles of all regions of the lamina terminalis are then discussed. At the cellular level we describe c-Fos and electrophysiological work, which has highlighted an extensive group of circulating hormones which appear to influence the activity of specific neurons in the SFO, OVLT, and MnPO. We highlight optogenetic studies that have begun to unravel the complexities of circuitries underlying physiological outcomes, especially those related to different components of drinking. Finally, we describe the somewhat limited human literature supporting conclusions that these structures play similar and potentially important roles in human physiology.


Subject(s)
Organum Vasculosum , Subfornical Organ , Humans , Hypothalamus , Preoptic Area , Water-Electrolyte Balance
7.
Clin Exp Pharmacol Physiol ; 48(4): 490-497, 2021 04.
Article in English | MEDLINE | ID: mdl-33462863

ABSTRACT

Hypertension is a multifaceted condition influenced by genetic and environmental factors and estimated to cause 9.4 million deaths globally every year. Recently, there has been growing interest in understanding the gut microbe-host interaction in the maintenance of health or disease states, but relatively few studies have shown an association between the gut microbiome and specific types of hypertension. The deoxycorticosterone acetate (DOCA)-salt model of hypertension in rats is known to have a neurogenic component linked to increased sympathetic nervous system activity. As such, our lab has recently shown the hypertensive response in DOCA treated rats requires an intact organum vasculosum of the lamina terminalis (OVLT), a central hypothalamic circumventricular organ. Currently, we hypothesize the OVLT mediates changes in the gut microbiome associated with concomitant hypertension. Herein, we report that the hypertensive effects of DOCA-salt treatment were significantly attenuated throughout the 24-hour day/night cycle in OLVT lesioned rats on days 1, 3, and 9-21 of DOCA treatment compared with sham rats. Increased blood pressure (BP) in DOCA-salt treated rats was accompanied by specific changes in regional gut microbial populations yet was mitigated and offset by lesion of the OVLT. Furthermore, bacterial populations in OVLT-lesioned rats with attenuated hypertension more closely resembled those in normal control rats. We conclude that DOCA-salt hypertension is associated with specific microbiome changes in the gut, and the attenuated hypertensive effects of DOCA-salt in OVLT-lesioned rats is mediated in part through counteracting changes in these bacterial populations.


Subject(s)
Desoxycorticosterone Acetate , Organum Vasculosum , Animals , Blood Pressure , Gastrointestinal Microbiome , Hypertension , Rats
8.
Nature ; 588(7836): 112-117, 2020 12.
Article in English | MEDLINE | ID: mdl-33057193

ABSTRACT

Fluid intake is an essential innate behaviour that is mainly caused by two distinct types of thirst1-3. Increased blood osmolality induces osmotic thirst that drives animals to consume pure water. Conversely, the loss of body fluid induces hypovolaemic thirst, in which animals seek both water and minerals (salts) to recover blood volume. Circumventricular organs in the lamina terminalis are critical sites for sensing both types of thirst-inducing stimulus4-6. However, how different thirst modalities are encoded in the brain remains unknown. Here we employed stimulus-to-cell-type mapping using single-cell RNA sequencing to identify the cellular substrates that underlie distinct types of thirst. These studies revealed diverse types of excitatory and inhibitory neuron in each circumventricular organ structure. We show that unique combinations of these neuron types are activated under osmotic and hypovolaemic stresses. These results elucidate the cellular logic that underlies distinct thirst modalities. Furthermore, optogenetic gain of function in thirst-modality-specific cell types recapitulated water-specific and non-specific fluid appetite caused by the two distinct dipsogenic stimuli. Together, these results show that thirst is a multimodal physiological state, and that different thirst states are mediated by specific neuron types in the mammalian brain.


Subject(s)
Neurons/classification , Neurons/physiology , Thirst/physiology , Animals , Base Sequence , Drinking/physiology , Female , Hypovolemia/prevention & control , Male , Mice , Mice, Inbred C57BL , Models, Animal , Organum Vasculosum/cytology , Organum Vasculosum/physiology , Osmotic Pressure , Single-Cell Analysis , Subfornical Organ/cytology , Subfornical Organ/physiology , Water Deprivation
9.
Nature ; 583(7816): 421-424, 2020 07.
Article in English | MEDLINE | ID: mdl-32641825

ABSTRACT

The suprachiasmatic nucleus (SCN) serves as the body's master circadian clock that adaptively coordinates changes in physiology and behaviour in anticipation of changing requirements throughout the 24-h day-night cycle1-4. For example, the SCN opposes overnight adipsia by driving water intake before sleep5,6, and by driving the secretion of anti-diuretic hormone7,8 and lowering body temperature9,10 to reduce water loss during sleep11. These responses can also be driven by central osmo-sodium sensors to oppose an unscheduled rise in osmolality during the active phase12-16. However, it is unknown whether osmo-sodium sensors require clock-output networks to drive homeostatic responses. Here we show that a systemic salt injection (hypertonic saline) given at Zeitgeber time 19-a time at which SCNVP (vasopressin) neurons are inactive-excited SCNVP neurons and decreased non-shivering thermogenesis (NST) and body temperature. The effects of hypertonic saline on NST and body temperature were prevented by chemogenetic inhibition of SCNVP neurons and mimicked by optogenetic stimulation of SCNVP neurons in vivo. Combined anatomical and electrophysiological experiments revealed that osmo-sodium-sensing organum vasculosum lamina terminalis (OVLT) neurons expressing glutamic acid decarboxylase (OVLTGAD) relay this information to SCNVP neurons via an excitatory effect of γ-aminobutyric acid (GABA). Optogenetic activation of OVLTGAD neuron axon terminals excited SCNVP neurons in vitro and mimicked the effects of hypertonic saline on NST and body temperature in vivo. Furthermore, chemogenetic inhibition of OVLTGAD neurons blunted the effects of systemic hypertonic saline on NST and body temperature. Finally, we show that hypertonic saline significantly phase-advanced the circadian locomotor activity onset of mice. This effect was mimicked by optogenetic activation of the OVLTGAD→ SCNVP pathway and was prevented by chemogenetic inhibition of OVLTGAD neurons. Collectively, our findings provide demonstration that clock time can be regulated by non-photic physiologically relevant cues, and that such cues can drive unscheduled homeostatic responses via clock-output networks.


Subject(s)
Circadian Clocks/physiology , Neural Pathways , Neurons/metabolism , Sodium/metabolism , Suprachiasmatic Nucleus/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Body Temperature/drug effects , Body Temperature/physiology , Circadian Clocks/drug effects , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Drinking/drug effects , Glutamate Decarboxylase/metabolism , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Neural Pathways/drug effects , Neurons/drug effects , Optogenetics , Organum Vasculosum/cytology , Organum Vasculosum/drug effects , Organum Vasculosum/enzymology , Organum Vasculosum/physiology , Osmolar Concentration , Saline Solution, Hypertonic/administration & dosage , Saline Solution, Hypertonic/metabolism , Saline Solution, Hypertonic/pharmacology , Sodium/administration & dosage , Sodium/pharmacology , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/drug effects , Vasopressins/metabolism
10.
Pflugers Arch ; 472(5): 609-624, 2020 05.
Article in English | MEDLINE | ID: mdl-32372285

ABSTRACT

Nax is a brain [Na+] sensor expressed in the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT) in the brain. We previously demonstrated that Nax signals are involved in the control of water intake behavior through the Nax/TRPV4 pathway. Nax gene knockout mice showed significantly attenuated water intake after an intracerebroventricular (ICV) injection of a hypertonic NaCl solution; however, the induction of a certain amount of water intake still remained, suggesting that another unknown [Na+]-dependent pathway besides the Nax/TRPV4 pathway contributes to water intake. In the present study, we screened for novel [Na+] sensors involved in water intake control and identified SLC9A4 (also called sodium (Na+)/hydrogen (H+) exchanger 4 (NHE4)). SLC9A4 is expressed in angiotensin II (Ang II) receptor type 1a (AT1a)-positive neurons in the OVLT. Sodium-imaging experiments using cultured cells transfected with slc9a4 revealed that SLC9A4 was activated by increases in extracellular [Na+] ([Na+]o), but not osmolality. Moreover, the firing activity of SLC9A4-positive neurons was enhanced by increases in [Na+]o and Ang II. slc9a4 knockdown in the OVLT reduced water intake induced by increases in [Na+], but not osmolality, in the cerebrospinal fluid. ICV injection experiments of a specific inhibitor suggested that the increase in extracellular [H+] caused by SLC9A4 activation next stimulates acid-sensing channel 1a (AS1C1a) to induce water intake. Our results thus indicate that SLC9A4 in the OVLT functions as a [Na+] sensor for the control of water intake and that the SLC9A4 signal is independent of the Nax/TRPV4 pathway.


Subject(s)
Drinking , Organum Vasculosum/metabolism , Sodium-Hydrogen Exchangers/metabolism , Sodium/metabolism , Action Potentials , Animals , Cell Line, Tumor , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Organum Vasculosum/cytology , Organum Vasculosum/physiology , Sodium-Hydrogen Exchangers/genetics
11.
Sci Rep ; 10(1): 2826, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071335

ABSTRACT

Tanycyte is a subtype of ependymal cells which extend long radial processes to brain parenchyma. The present study showed that tanycyte-like ependymal cells in the organum vasculosum of the lamina terminalis, subfornical organ and central canal (CC) expressed neural stem cell (NSC) marker nestin, glial fibrillar acidic protein and sex determining region Y. Proliferation of these tanycyte-like ependymal cells was promoted by continuous intracerebroventricular infusion of fibroblast growth factor-2 and epidermal growth factor. Tanycytes-like ependymal cells in the CC are able to form self-renewing neurospheres and give rise mostly to new astrocytes and oligodendrocytes. Collagenase-induced small medullary hemorrhage increased proliferation of tanycyte-like ependymal cells in the CC. These results demonstrate that these tanycyte-like ependymal cells of the adult mouse brain are NSCs and suggest that they serve as a source for providing new neuronal lineage cells upon brain damage in the medulla oblongata.


Subject(s)
Circumventricular Organs/metabolism , Ependymoglial Cells/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Animals , Brain/growth & development , Brain/metabolism , Cell Lineage/genetics , Cell Proliferation/genetics , Circumventricular Organs/growth & development , Ependyma/growth & development , Ependyma/metabolism , Ependymoglial Cells/cytology , Epidermal Growth Factor/genetics , Fibroblast Growth Factor 2/genetics , Gene Expression Regulation/genetics , Humans , Hypothalamus/growth & development , Hypothalamus/metabolism , Mice , Nestin/genetics , Neural Stem Cells/cytology , Organum Vasculosum/growth & development , Organum Vasculosum/metabolism , Subfornical Organ/growth & development , Subfornical Organ/metabolism
12.
J Neurosci ; 40(10): 2069-2079, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32005766

ABSTRACT

The organum vasculosum of the lamina terminalis (OVLT) contains NaCl-sensitive neurons to regulate thirst, neuroendocrine function, and autonomic outflow. The OVLT also expresses the angiotensin II (AngII) type1 receptor, and AngII increases Fos expression in OVLT neurons. The present study tested whether individual OVLT neurons sensed both NaCl and AngII to regulate thirst and body fluid homeostasis. A multifaceted approach, including in vitro whole-cell patch recordings, in vivo single-unit recordings, and optogenetic manipulation of OVLT neurons, was used in adult, male Sprague Dawley rats. First, acute intravenous infusion of hypertonic NaCl or AngII produced anatomically distinct patterns of Fos-positive nuclei in the OVLT largely restricted to the dorsal cap versus vascular core, respectively. However, in vitro patch-clamp recordings indicate 66% (23 of 35) of OVLT neurons were excited by bath application of both hypertonic NaCl and AngII. Similarly, in vivo single-unit recordings revealed that 52% (23 of 44) of OVLT neurons displayed an increased discharge to intracarotid injection of both hypertonic NaCl and AngII. In marked contrast to Fos immunoreactivity, neuroanatomical mapping of Neurobiotin-filled cells from both in vitro and in vivo recordings revealed that NaCl- and AngII-responsive neurons were distributed throughout the OVLT. Next, optogenetic excitation of OVLT neurons stimulated thirst but not salt appetite. Conversely, optogenetic inhibition of OVLT neurons attenuated thirst stimulated by hypernatremia or elevated AngII but not hypovolemia. Collectively, these findings provide the first identification of individual OVLT neurons that respond to both elevated NaCl and AngII concentrations to regulate thirst and body fluid homeostasis.SIGNIFICANCE STATEMENT Body fluid homeostasis requires the integration of neurohumoral signals to coordinate behavior, neuroendocrine function, and autonomic function. Extracellular NaCl concentrations and the peptide hormone angiotensin II (AngII) are two major neurohumoral signals that regulate body fluid homeostasis. Herein, we present the first compelling evidence that individual neurons located in the organum vasculosum of the lamina terminalis detect both NaCl and AngII. Furthermore, optogenetic interrogations demonstrate that these neurons play a pivotal role in the regulation of thirst stimulated by NaCl and AngII. These novel observations lay the foundation for future investigations for how such inputs as well as others converge onto unique organum vasculosum of the lamina terminalis neurons to coordinate body fluid homeostasis and contribute to disorders of fluid balance.


Subject(s)
Angiotensin II/metabolism , Hypernatremia/metabolism , Neurons/physiology , Organum Vasculosum/physiology , Thirst/physiology , Angiotensin II/pharmacology , Animals , Male , Rats , Rats, Sprague-Dawley , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Water-Electrolyte Balance/physiology
13.
Physiol Rep ; 8(1): e14338, 2020 01.
Article in English | MEDLINE | ID: mdl-31925945

ABSTRACT

We previously showed that 2 weeks of a severe food restricted (sFR) diet (40% of the caloric intake of the control (CT) diet) up-regulated the circulating renin angiotensin (Ang) system (RAS) in female Fischer rats, most likely as a result of the fall in plasma volume. In this study, we investigated the role of the central RAS in the mean arterial pressure (MAP) and heart rate (HR) dysregulation associated with sFR. Although sFR reduced basal mean MAP and HR, the magnitude of the pressor response to intracerebroventricular (icv) microinjection of Ang-[1-8] was not affected; however, HR was 57 ± 13 bpm lower 26 min after Ang-[1-8] microinjection in the sFR rats and a similar response was observed after losartan was microinjected. The major catabolic pathway of Ang-[1-8] in the hypothalamus was via Ang-[1-7]; however, no differences were detected in the rate of Ang-[1-8] synthesis or degradation between CT and sFR animals. While sFR had no effect on the AT1 R binding in the subfornical organ (SFO), the organum vasculosum laminae terminalis (OVLT) and median preoptic nucleus (MnPO) of the paraventricular anteroventral third ventricle, ligand binding increased 1.4-fold in the paraventricular nucleus (PVN) of the hypothalamus. These findings suggest that sFR stimulates the central RAS by increasing AT1 R expression in the PVN as a compensatory response to the reduction in basal MAP and HR. These findings have implications for people experiencing a period of sFR since an activated central RAS could increase their risk of disorders involving over activation of the RAS including renal and cardiovascular diseases.


Subject(s)
Angiotensin I/metabolism , Arterial Pressure/physiology , Caloric Restriction , Heart Rate/physiology , Hypothalamus/metabolism , Peptide Fragments/metabolism , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System/physiology , Starvation/metabolism , Angiotensin II/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Arterial Pressure/drug effects , Autoradiography , Female , Heart Rate/drug effects , Injections, Intraventricular , Losartan/pharmacology , Organum Vasculosum/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Peptide Fragments/pharmacology , Peptidyl-Dipeptidase A/metabolism , Preoptic Area/metabolism , Rats , Rats, Inbred F344 , Renin-Angiotensin System/drug effects , Subfornical Organ/metabolism
14.
Neurosci Res ; 154: 45-51, 2020 May.
Article in English | MEDLINE | ID: mdl-31150667

ABSTRACT

Nax is a [Na+] sensor expressed in specific glial cells in the sensory circumventricular organs (sCVOs) in the brain. We recently demonstrated that Nax signals are involved in the control of not only salt intake but also water intake behavior. Our pharmacological experiments suggested that Nax signals led to activation of neurons bearing TRPV4 by using epoxyeicosatrienoic acids (EETs) as gliotransmitters to stimulate water intake. In the present study, we performed selective lesions of individual sCVOs in wild-type (WT) mice and the site-directed rescue of Nax expression in Nax-gene knockout (Nax-KO) mice. These experiments revealed that the Nax channel in the organum vasculosum laminae terminalis (OVLT) functions as a [Na+] sensor for the control of water intake behavior. Direct measurements of 5,6-EET and 8,9-EET in the OVLT demonstrated that EET levels were indeed increased two-fold by water deprivation for two days in WT, but not Nax-KO mice, indicating that EETs were Nax-dependently produced in the OVLT in response to increases in [Na+] in body fluids. More importantly, intracerebroventricular injection of 5,6-EET at the same level was effective to induce water intake. Double staining revealed that Nax-positive cells also expressed Cyp2c44, a cytochrome P450 epoxygenase, to generate EETs. Collectively, these results indicate that Nax-positive glial cells produce EETs to activate TRPV4-positive neurons which may stimulate water intake, in response to increases in [Na+] of body fluids.


Subject(s)
Body Fluids/physiology , Cytochrome P-450 Enzyme System/metabolism , Drinking/physiology , Neuroglia/metabolism , Organum Vasculosum/metabolism , Sodium/metabolism , Voltage-Gated Sodium Channels/metabolism , Animals , Cytochrome P-450 CYP2J2 , Cytochrome P450 Family 2/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , TRPV Cation Channels/metabolism
15.
Int. j. odontostomatol. (Print) ; 14(3): [285-287], 2020.
Article in Spanish | LILACS | ID: biblio-1087926

ABSTRACT

Se presenta una breve revisión de órgano vascular de la lámina terminal (organum vasculosum laminae terminalis) y el nervio olfatorio, el primero un elemento neuroanatómico hipotalámico relacionado con la producción de hormona antidiurética y su asociación como una vía potencial de invasión del COVID-19 al sistema nervioso central, afectando la regulación fisiológica de liberación de hormonas relacionadas con la homeostásis del sodio. También se vincula el neurotropismo de este virus al asociarse con el nervio olfatorio, una evaginación del cerebro en la que se altera su funcionalidad por generación de disosmia entre otras características neurosemiológicas. Se plantea la necesidad de advertir a los profesionales de la salud en general y a los neurólogos en especial, sobre las potenciales alteraciones neurológicas relacionadas con esta pandemia antes y después del contagio de este virus e implementar una prueba olfatoria rápida con ácido acético, incluso antes de otras valoraciones como hipertérmia, tos y cefalalgia.


Subject(s)
Humans , Coronavirus Infections/diagnosis , Olfactory Nerve Diseases/diagnosis , Organum Vasculosum/pathology , Betacoronavirus , Olfaction Disorders/diagnosis , Pneumonia, Viral/prevention & control , Olfactory Perception , Pandemics
16.
ACS Chem Neurosci ; 10(10): 4394-4406, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31513369

ABSTRACT

Lipids, including omega-3 polyunsaturated fatty acids (n-3-PUFAs), modulate brain-intrinsic inflammation during systemic inflammation. The vascular organ of the lamina terminalis (OVLT) is a brain structure important for immune-to-brain communication. We, therefore, aimed to profile the distribution of several lipids (e.g., phosphatidyl-choline/ethanolamine, PC/PE), including n-3-PUFA-carrying lipids (esterified in phospholipids), in the OVLT during systemic lipopolysaccharide(LPS)-induced inflammation. We injected wild type and endogenously n-3-PUFA producing fat-1 transgenic mice with LPS (i.p., 2.5 mg/kg) or PBS. Brain samples were analyzed using immunohistochemistry and high-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization orbital trapping mass spectrometry imaging (AP-SMALDI-MSI) for spatial resolution of lipids. Depending on genotype and treatment, several distinct distribution patterns were observed for lipids [e.g., lyso(L)PC (16:0)/(18:0)] proposed to be involved in inflammation. The distribution patterns ranged from being homogeneously disseminated [LPC (18:1)], absent/reduced signaling within the OVLT relative to adjacent preoptic tissue [PE (38:6)], either treatment- and genotype-dependent or independent low signal intensities [LPC (18:0)], treatment- and genotype-dependent [PC 38:6)] or independent accumulation in the OVLT [PC (38:7)], and accumulation in commissures, e.g., nerve fibers like the optic nerve [LPE (18:1)]. Overall, screening of lipid distribution patterns revealed distinct inflammation-induced changes in the OVLT, highlighting the prominent role of lipid metabolism in brain inflammation. Moreover, known and novel candidates for brain inflammation and immune-to-brain communication were detected specifically within this pivotal brain structure, a window between the periphery and the brain. The biological significance of these newly identified lipids abundant in the OVLT and the adjacent preoptic area remains to be further analyzed.


Subject(s)
Cadherins/genetics , Inflammation/metabolism , Lipids/analysis , Organum Vasculosum/metabolism , Animals , Cadherins/metabolism , Inflammation/chemically induced , Lipid Metabolism , Lipopolysaccharides , Male , Mice , Mice, Transgenic , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Neuron ; 101(1): 3-5, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30605656

ABSTRACT

Hypernatremia is known to elicit a rise in sympathetic tone and blood pressure. In this issue of Neuron, Nomura et al. (2018) now show that this is mediated via the organum vasculosum laminae terminalis (OVLT). Na+ activates OVLT neurons via a paracrine mechanism involving sodium channel Nax expressed by astrocytes and the ependyma.


Subject(s)
Body Fluids , Organum Vasculosum , Astrocytes , Blood Pressure , Sodium
18.
Neuron ; 101(1): 60-75.e6, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30503172

ABSTRACT

Increases in sodium concentrations ([Na+]) in body fluids elevate blood pressure (BP) by enhancing sympathetic nerve activity (SNA). However, the mechanisms by which information on increased [Na+] is translated to SNA have not yet been elucidated. We herein reveal that sympathetic activation leading to BP increases is not induced by mandatory high salt intakes or the intraperitoneal/intracerebroventricular infusions of hypertonic NaCl solutions in Nax-knockout mice in contrast to wild-type mice. We identify Nax channels expressed in specific glial cells in the organum vasculosum lamina terminalis (OVLT) as the sensors detecting increases in [Na+] in body fluids and show that OVLT neurons projecting to the paraventricular nucleus (PVN) are activated via acid-sensing ion channel 1a (ASIC1a) by H+ ions exported from Nax-positive glial cells. The present results provide an insight into the neurogenic mechanisms responsible for salt-induced BP elevations.


Subject(s)
Acid Sensing Ion Channels/metabolism , Body Fluids/metabolism , Hypertension/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Sodium/metabolism , Voltage-Gated Sodium Channels/deficiency , Animals , Blood Pressure/physiology , Body Fluids/chemistry , Hypertension/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Optogenetics/methods , Organ Culture Techniques , Organum Vasculosum/metabolism , Organum Vasculosum/pathology , Paraventricular Hypothalamic Nucleus/pathology , Protons , Random Allocation , Sympathetic Nervous System/chemistry , Sympathetic Nervous System/metabolism
19.
Am J Physiol Regul Integr Comp Physiol ; 315(3): R568-R575, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29897819

ABSTRACT

Lesions of the anteroventral third ventricle (AV3V region) are known to prevent many forms of experimental hypertension, including mineralocorticoid [deoxycorticosterone acetate (DOCA)-salt] hypertension in the rat. However, AV3V lesions include the organum vasculosum of the lamina terminalis (OVLT), portions of the median preoptic nucleus, and efferent fibers from the subfornical organ (SFO), thereby limiting the ability to define the individual contribution of these structures to the prevention of experimental hypertension. Having previously reported that the SFO does not play a significant role in the development of DOCA-salt hypertension, the present study was designed to test the hypothesis that the OVLT is necessary for DOCA-salt hypertension in the rat. In uninephrectomized OVLT-lesioned (OVLTx; n = 6) and sham-operated ( n = 4) Sprague-Dawley rats consuming a 0.1% NaCl diet and 0.9% NaCl drinking solution, 24-h mean arterial pressure (MAP) was recorded telemetrically 5 days before and 21 days after DOCA implantation (100 mg sc per rat). No differences in control MAP were observed between groups. The chronic pressor response to DOCA was attenuated in OVLTx rats such that MAP increased to 133 ± 3 mmHg in sham-operated rats by day 21 of DOCA compared with 120 ± 4 mmHg (means ± SE) in OVLTx rats. These results support the hypothesis that the OVLT is an important brain site of action for the pathogenesis of DOCA-salt hypertension in the rat.


Subject(s)
Arterial Pressure , Desoxycorticosterone Acetate , Hypertension/prevention & control , Organum Vasculosum/surgery , Sodium Chloride, Dietary , Animals , Blood Pressure Monitoring, Ambulatory/methods , Disease Models, Animal , Hypertension/chemically induced , Hypertension/pathology , Hypertension/physiopathology , Male , Nephrectomy , Organum Vasculosum/pathology , Organum Vasculosum/physiopathology , Rats, Sprague-Dawley , Telemetry , Time Factors
20.
Magn Reson Med Sci ; 17(2): 132-137, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-28966303

ABSTRACT

PURPOSE: Circumventricular organs (CVOs) lack a blood brain barrier and are also called "brain windows". Among CVOs, the organum vasculosum of the lamina terminalis (OVLT) is an osmotic regulator involved in the release of vasopressin. In a previous study of healthy subjects, it was reported that contrast enhancement in the OVLT can be recognized in only 34% of 3 Tesla thin slice contrast-enhanced T1-weighted images. The purpose of this study was to evaluate the leakage of gadolinium contrast from the OVLT in healthy subjects using heavily T2-weighted three dimensional-fluid attenuated inversion recovery (3D-FLAIR) (HF) imaging. METHODS: Eight healthy male subjects were included in this study. A standard dose (0.1 mmol/kg) of gadoteridol was intravenously administered. Magnetic resonance cisternography (MRC) and HF were obtained before and 0.5, 1.5, 3, 4.5 and 6 h after the injection. Enhancement of the OVLT including the surrounding cerebral spinal fluid (CSF) was measured by manually drawing a rectangular ROI centered on the OVLT. The ROI was copied to the HF image and the signal intensity was measured. The signal intensity ratio (SIR) was obtained by dividing the signal intensity value of the OVLT ROI by that of the midbrain. RESULTS: The differences between the mean SIR at pre-contrast and those at 0.5, 1.5, 3, 4.5, and 6 h were significant (P < 0.05). The mean SIR at 0.5 h was higher than those at all other time points (P < 0.05). CONCLUSION: Using HF imaging, enhancement around the OVLT was observed in all subjects at 0.5 h after intravenous administration of single dose gadoteridol.


Subject(s)
Hypothalamus/diagnostic imaging , Magnetic Resonance Imaging/methods , Organum Vasculosum/diagnostic imaging , Contrast Media/administration & dosage , Contrast Media/therapeutic use , Gadolinium/administration & dosage , Gadolinium/therapeutic use , Heterocyclic Compounds/administration & dosage , Heterocyclic Compounds/therapeutic use , Humans , Male , Organometallic Compounds/administration & dosage , Organometallic Compounds/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...