Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Plant Cell ; 33(11): 3487-3512, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34459915

ABSTRACT

In angiosperms, the α/ß hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors. In Arabidopsis thaliana, AtKAI2 perceives karrikins and the elusive endogenous KAI2-Ligand (KL). Here, germination assays of the parasitic plant Phelipanche ramosa suggested that PpCCD8-derived compounds are likely noncanonical SLs. (+)-GR24 SL analog is a good mimic for PpCCD8-derived compounds in P. patens, while the effects of its enantiomer (-)-GR24, a KL mimic in angiosperms, are minimal. Interaction and binding assays of seven PpKAI2L proteins pointed to the stereoselectivity toward (-)-GR24 for a single clade of PpKAI2L (eu-KAI2). Enzyme assays highlighted the peculiar behavior of PpKAI2L-H. Phenotypic characterization of Ppkai2l mutants showed that eu-KAI2 genes are not involved in the perception of PpCCD8-derived compounds but act in a PpMAX2-dependent pathway. In contrast, mutations in PpKAI2L-G, and -J genes abolished the response to the (+)-GR24 enantiomer, suggesting that PpKAI2L-G, and -J proteins are receptors for moss SLs.


Subject(s)
Bryopsida/genetics , Heterocyclic Compounds, 3-Ring/metabolism , Lactones/metabolism , Orobanchaceae/physiology , Plant Proteins/genetics , Bryopsida/metabolism , Bryopsida/parasitology , Plant Proteins/metabolism
2.
Plant Physiol ; 185(4): 1292-1308, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33793901

ABSTRACT

Parasitic plants are plants that connect with a haustorium to the vasculature of another, host, plant from which they absorb water, assimilates, and nutrients. Because of this parasitic lifestyle, parasitic plants need to coordinate their lifecycle with that of their host. Parasitic plants have evolved a number of host detection/host response mechanisms of which the germination in response to chemical host signals in one of the major families of parasitic plants, the Orobanchaceae, is a striking example. In this update review, we discuss these germination stimulants. We review the different compound classes that function as germination stimulants, how they are produced, and in which host plants. We discuss why they are reliable signals, how parasitic plants have evolved mechanisms that detect and respond to them, and whether they play a role in host specificity. The advances in the knowledge underlying this signaling relationship between host and parasitic plant have greatly improved our understanding of the evolution of plant parasitism and are facilitating the development of more effective control measures in cases where these parasitic plants have developed into weeds.


Subject(s)
Germination/physiology , Host-Parasite Interactions/physiology , Life Cycle Stages/physiology , Orobanchaceae/physiology , Orobanchaceae/parasitology , Plant Growth Regulators/physiology , Signal Transduction/physiology
3.
Plant Physiol ; 185(4): 1374-1380, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33793906

ABSTRACT

The lifestyle of parasitic plants is associated with peculiar morphological, genetic, and physiological adaptations that existing online plant-specific resources fail to adequately represent. Here, we introduce the Web Application for the Research of Parasitic Plants (WARPP) as an online resource dedicated to advancing research and development of parasitic plant biology. WARPP is a framework to facilitate international efforts by providing a central hub of curated evolutionary, ecological, and genetic data. The first version of WARPP provides a community hub for researchers to test this web application, for which curated data revolving around the economically important Broomrape family (Orobanchaceae) is readily accessible. The initial set of WARPP online tools includes a genome browser that centralizes genomic information for sequenced parasitic plant genomes, an orthogroup summary detailing the presence and absence of orthologous genes in parasites compared with nonparasitic plants, and an ancestral trait explorer showing the evolution of life-history preferences along phylogenies. WARPP represents a project under active development and relies on the scientific community to populate the web app's database and further the development of new analysis tools. The first version of WARPP can be securely accessed at https://parasiticplants.app. The source code is licensed under GNU GPLv2 and is available at https://github.com/wickeLab/WARPP.


Subject(s)
Base Sequence , Genome, Plant , Orobanchaceae/genetics , Orobanchaceae/physiology , Orobanchaceae/parasitology , Phylogeny , Web Browser , Genomics , Software
4.
Plant Physiol ; 185(4): 1429-1442, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33793920

ABSTRACT

Parasitic plants infect other plants by forming haustoria, specialized multicellular organs consisting of several cell types, each of which has unique morphological features and physiological roles associated with parasitism. Understanding the spatial organization of cell types is, therefore, of great importance in elucidating the functions of haustoria. Here, we report a three-dimensional (3-D) reconstruction of haustoria from two Orobanchaceae species, the obligate parasite Striga hermonthica infecting rice (Oryza sativa) and the facultative parasite Phtheirospermum japonicum infecting Arabidopsis (Arabidopsis thaliana). In addition, field-emission scanning electron microscopy observation revealed the presence of various cell types in haustoria. Our images reveal the spatial arrangements of multiple cell types inside haustoria and their interaction with host roots. The 3-D internal structures of haustoria highlight differences between the two parasites, particularly at the xylem connection site with the host. Our study provides cellular and structural insights into haustoria of S. hermonthica and P. japonicum and lays the foundation for understanding haustorium function.


Subject(s)
Arabidopsis/parasitology , Host-Parasite Interactions/physiology , Orobanchaceae/parasitology , Orobanchaceae/ultrastructure , Oryza/parasitology , Plant Roots/ultrastructure , Striga/parasitology , Striga/ultrastructure , Arabidopsis/physiology , Imaging, Three-Dimensional , Orobanchaceae/physiology , Oryza/physiology , Plant Roots/parasitology
5.
Development ; 147(14)2020 07 17.
Article in English | MEDLINE | ID: mdl-32586973

ABSTRACT

Parasitic plants form vascular connections with host plants for efficient material transport. The haustorium is the responsible organ for host invasion and subsequent vascular connection. After invasion of host tissues, vascular meristem-like cells emerge in the central region of the haustorium, differentiate into tracheary elements and establish a connection, known as a xylem bridge, between parasite and host xylem systems. Despite the importance of this parasitic connection, the regulatory mechanisms of xylem bridge formation are unknown. Here, we show the role of auxin and auxin transporters during the process of xylem bridge formation using an Orobanchaceae hemiparasitic plant, Phtheirospermum japonicum The auxin response marker DR5 has a similar expression pattern to tracheary element differentiation genes in haustoria. Auxin transport inhibitors alter tracheary element differentiation in haustoria, but biosynthesis inhibitors do not, demonstrating the importance of auxin transport during xylem bridge formation. The expression patterns and subcellular localization of PIN family auxin efflux carriers and AUX1/LAX influx carriers correlate with DR5 expression patterns. The cooperative action of auxin transporters is therefore responsible for controlling xylem vessel connections between parasite and host.


Subject(s)
Arabidopsis/parasitology , Indoleacetic Acids/metabolism , Orobanchaceae/physiology , Xylem/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Transport , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Orobanchaceae/growth & development , Orobanchaceae/metabolism , Phenylacetates/pharmacology , Phthalimides/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , RNA Interference , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Xylem/drug effects , Xylem/metabolism
6.
Sci Rep ; 10(1): 324, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31942014

ABSTRACT

Carotenogenesis has been intensively studied in carrot roots, and transcriptional regulation is thought to be the major factor in carotenoid accumulation in these organs. However, little is known about the transcriptional regulation of carotenoid biosynthetic genes concerning carotenoid accumulation during infestation by the obligate parasite Phelipanche aegyptiaca. HPLC analysis revealed a decrease in carotenoid levels of the different carrot cultivars when parasitized by P. aegyptiaca. Besides, we isolated and analyzed P. aegyptiaca tubercles parasitizing the various carrot root cultivars and show that they accumulate different carotenoids compared to those in non-infested carrot roots. Expression analysis of PHYTOENE SYNTHASE (PSY1) and CAROTENOID ISOMERASE (CRTISO) as well as the strigolactone apocarotenoid biosynthetic genes DWARF27 (D27), CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and CCD8 revealed that their transcript levels showed significant variation in P. aegyptiaca infested carrot roots. After parasite infestation, the expression of these genes was strongly reduced, as were the carotenoid levels and this was more pronounced in the uncommon non-orange varieties. We also analyzed the parasite genes encoding D27, CCD7 and CCD8 and show that they are expressed in tubercles. This raises important questions of whether the parasite produces its carotenoids and apocarotenoids including strigolactones and whether the latter might have a role in tubercle development.


Subject(s)
Carotenoids/metabolism , Daucus carota/metabolism , Orobanchaceae/physiology , Carotenoids/analysis , Chromatography, High Pressure Liquid , Daucus carota/growth & development , Dioxygenases/genetics , Dioxygenases/metabolism , Gene Expression Regulation, Plant , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Orobanchaceae/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Weeds/growth & development , Plant Weeds/physiology , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism
7.
Plant Biol (Stuttg) ; 22 Suppl 1: 84-92, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30779291

ABSTRACT

Increasing nitrogen deposition and more frequent drought events are likely to change plant interactions in natural grasslands. Both factors may also influence the interactions between hemiparasitic plants, regarded as keystone species in many grasslands, and their host species. We grew a combination of three suitable hosts, a grass, a forb and a legume, with and without the hemiparasite Rhinanthus alectorolophus at three levels of nitrogen (N) and two levels of water availability in a factorial design. Biomass of the hemiparasite and host community increased with N level and was reduced by drought to a similar degree. Larger plants in fertilised pots started to wilt earlier, and the presence of a hemiparasite further increased drought sensitivity. The hemiparasite strongly reduced biomass of the host community and overall productivity, and affected the competitive balance among host plants because it particularly reduced biomass of the dominant grass. These effects were the opposite of those of high N. The hemiparasite increased the root mass fraction of the hosts at all levels of N and water availability, indicating that the effect of the hemiparasite on the hosts was mainly due to loss of belowground resources. Our results indicate that hemiparasites will not always respond more strongly to increased N availability and drought than autotrophic plants, and that hemiparasites can have similarly strong effects on grassland communities as soil fertility and drought. By preferentially attacking dominant species the hemiparasites might alleviate the negative effects of nutrient enrichment on grassland diversity.


Subject(s)
Droughts , Host-Parasite Interactions , Nitrogen , Orobanchaceae , Plant Roots , Biomass , Host Specificity , Host-Parasite Interactions/drug effects , Host-Parasite Interactions/physiology , Nitrogen/metabolism , Nitrogen/pharmacology , Orobanchaceae/drug effects , Orobanchaceae/physiology , Plant Roots/parasitology , Soil/chemistry
8.
PLoS One ; 14(10): e0224482, 2019.
Article in English | MEDLINE | ID: mdl-31665151

ABSTRACT

Climate change is affecting interactions among species, including host-parasite interactions. The effects of warming are of particular interest for interactions in which parasite and host physiology are intertwined, such as those between parasitic plants and their hosts. However, little is known about how warming will affect plant parasitic interactions, hindering our ability to predict how host and parasite species will respond to climate change. Here, we test how warming affects aboveground and belowground biomass of a hemiparasitic species (Castilleja sulphurea) and its host (Bouteloua gracilis), asking whether the effects of warming depend on the interaction between these species. We also measured how warming affected the number of haustorial connections between parasite and host. We grew each species alone and together under ambient and warmed conditions. Hosts produced more belowground biomass under warming. However, host biomass was reduced when plants were grown with a hemiparasite. Thus, parasitism negated the benefit of warming on belowground growth of the host. Host resource allocation to roots versus shoots also changed in response to both interaction with the parasite and warming, with hosts producing more root biomass relative to shoot biomass when grown with a parasite and when warmed. As expected, hemiparasite biomass was greater when grown with a host. Warmed parasites had lower root:shoot ratios but only when grown with a host. Under elevated temperatures, hemiparasite aboveground biomass was marginally greater, and plants produced significantly more haustoria. These findings indicate that warming can influence biomass production, both by modifying the interaction between host plants and hemiparasites and by affecting the growth of each species directly. To predict how species will be affected, it is important to understand not only the direct effects of warming but also the indirect effects that are mediated by species interactions. Ultimately, understanding how climate change will affect species interactions is key to understanding how it will affect individual species.


Subject(s)
Climate Change , Orobanchaceae/physiology , Poaceae/parasitology , Biomass , Global Warming , Host-Parasite Interactions , Plant Roots/growth & development , Poaceae/growth & development , Temperature
9.
BMC Plant Biol ; 19(1): 334, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31370799

ABSTRACT

BACKGROUND: Parasitic plants engage in a complex molecular dialog with potential host plants to identify a host and overcome host defenses to initiate development of the parasitic feeding organ, the haustorium, invade host tissues, and withdraw water and nutrients. While one of two critical signaling events in the parasitic plant life cycle (germination via stimulant chemicals) has been relatively well-studied, the signaling event that triggers haustorium formation remains elusive. Elucidation of this poorly understood molecular dialogue will shed light on plant-plant communication, parasitic plant physiology, and the evolution of parasitism in plants. RESULTS: Here we present an experimental framework that develops easily quantifiable contrasts for the facultative generalist parasitic plant, Triphysaria, as it feeds across a broad range of diverse flowering plants. The contrasts, including variable parasite growth form and mortality when grown with different hosts, suggest a dynamic and host-dependent molecular dialogue between the parasite and host. Finally, by comparing transcriptome datasets from attached versus unattached parasites we gain insight into some of the physiological processes that are altered during parasitic behavior including shifts in photosynthesis-related and stress response genes. CONCLUSIONS: This work sheds light on Triphysaria's parasitic life habit and is an important step towards understanding the mechanisms of haustorium initiation factor perception, a unique form of plant-plant communication.


Subject(s)
Host-Parasite Interactions , Magnoliopsida/parasitology , Orobanchaceae/physiology , Arabidopsis/parasitology , Magnoliopsida/physiology , Medicago/parasitology , Oryza/parasitology , Solanum/parasitology , Zea mays/parasitology
10.
Pest Manag Sci ; 75(11): 3113-3121, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31317630

ABSTRACT

BACKGROUND: Strigolactones (SLs) have a vast number of ecological implications because of the broad spectrum of their biological activities. Unfortunately, the limited availability of SLs restricts their applicability for the benefit of humanity and renders synthesis the only option for their production. However, the structural complexity of SLs impedes their economical synthesis, which is unfeasible on a large scale. Synthesis of SL analogues and mimics with a simpler structure, but with retention of bioactivity, is the solution to this problem. RESULTS: Here, we present eight new hybrid-type SL analogues derived from auxin, synthesized via coupling of auxin ester [ethyl 2-(1H-indol-3-yl)acetate] and of ethyl 2-phenylacetate with four D-rings (mono-, two di- and trimethylated). The new hybrid-type SL analogues were bioassayed to assess the germination activity of seeds of the parasitic weeds Striga hermonthica, Orobanche minor and Phelipanche ramosa using the classical method of counting germinated seeds and a colorimetric method. The bioassays revealed that analogues with a natural monomethylated D-ring had appreciable to good activity towards the three species and were the most active derivatives. By contrast, derivatives with the trimethylated D-ring showed no activity. The dimethylated derivatives (2,4-dimethyl and 3,4-dimethyl) were slightly active, especially towards P. ramosa. CONCLUSIONS: New hybrid-type analogues derived from auxins have been prepared. These analogues may be attractive as potential suicidal germination agents for parasitic weed control because of their ease of preparation and relevant bioactivity. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Germination/drug effects , Indoleacetic Acids/chemistry , Lactones/chemical synthesis , Orobanchaceae/drug effects , Plant Weeds/drug effects , Weed Control/methods , Orobanchaceae/physiology , Orobanche/drug effects , Orobanche/physiology , Plant Weeds/physiology , Seeds/drug effects , Seeds/physiology , Striga/drug effects , Striga/physiology
11.
Sci Rep ; 9(1): 6476, 2019 04 24.
Article in English | MEDLINE | ID: mdl-31019234

ABSTRACT

Obligate root holoparasite Phelipanche aegyptiaca is an agricultural pest, which infests its hosts and feeds on the sap, subsequently damaging crop yield and quality. Its notoriously viable seed bank may serve as an ideal pest control target. The phytohormone abscisic acid (ABA) was shown to regulate P. aegyptiaca seed dormancy following strigolactones germination stimulus. Transcription analysis of signaling components revealed five ABA receptors and two co-receptors (PP2C). Transcription of lower ABA-affinity subfamily III receptors was absent in all tested stages of P. aegyptiaca development and parasitism stages. P. aegyptiaca ABA receptors interacted with the PP2Cs, and inhibited their activity in an ABA-dependent manner. Moreover, sequence analysis revealed multiple alleles in two P. aegyptiaca ABA receptors, with many non-synonymous mutations. Functional analysis of selected receptor alleles identified a variant with substantially decreased inhibitory effect of PP2Cs activity in-vitro. These results provide evidence that P. aegyptiaca is capable of biochemically perceiving ABA. In light of the possible involvement of ABA in parasitic activities, the discovery of active ABA receptors and PP2Cs could provide a new biochemical target for the agricultural management of P. aegyptiaca. Furthermore, the potential genetic loss of subfamily III receptors in this species, could position P. aegyptiaca as a valuable model in the ABA perception research field.


Subject(s)
Abscisic Acid/pharmacology , Germination/drug effects , Orobanchaceae/metabolism , Plant Dormancy/drug effects , Seeds/drug effects , Gene Expression Regulation, Plant/drug effects , Germination/genetics , Orobanchaceae/genetics , Orobanchaceae/physiology , Plant Dormancy/genetics , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Seeds/genetics , Seeds/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
12.
PLoS One ; 14(1): e0209176, 2019.
Article in English | MEDLINE | ID: mdl-30601846

ABSTRACT

Populations of scarlet Indian paintbrush (Castilleja coccinea) in the Midwestern United States exhibit a bract color polymorphism, with each population having predominantly yellow or scarlet bracts. We investigated a possible mechanism for this maintenance of bract color polymorphism in C. coccinea by conducting hand-pollination experiments in two nearby populations, one predominantly yellow and one predominantly scarlet. The hand-pollination treatments were either self-pollination or cross pollination using pollen from within and between populations. Both color morphs were used as pollen donors for the within and between crosses. We found that both color morphs of C. coccinea were self-compatible. When the scarlet morph was the maternal plant it had higher seed set. When pollinators were excluded, the yellow morph outperformed the scarlet morph in fruit set and seed set. The apparent trade-offs between a higher reproductive output in the scarlet morph and a reproductive assurance advantage in the yellow morph may explain the maintenance of the polymorphism in C. coccinea. While many previous studies have provided evidence for pollinator preference playing a role in floral color polymorphism, the results of the current study indicate that reproductive assurance, which would be important for fluctuations in pollinator abundance or colonizing new areas, may act as a selective agent to maintain such polymorphisms.


Subject(s)
Flowers/physiology , Orobanchaceae/physiology , Polymorphism, Genetic/genetics , Flowers/genetics , Orobanchaceae/genetics , Pigmentation/genetics , Pigmentation/physiology , Pollen/genetics , Pollen/physiology , Pollination/genetics , Pollination/physiology , Reproduction/genetics , Reproduction/physiology
13.
Plant Biol (Stuttg) ; 21(3): 470-479, 2019 May.
Article in English | MEDLINE | ID: mdl-29427342

ABSTRACT

The facultative root hemi-parasite Rhinanthus minor is often used in grassland habitat restoration projects to regulate ecosystem structure and function. Its impact on community productivity and diversity as a function of resource supply, sward composition and management has been widely investigated. However, there is a lack of information about the possible influence of seed quality on the efficacy of the hemi-parasite. Ten seed lots from commercial sources were sown in the field and their germination characteristics investigated in the laboratory. Seeds from four lots were also germinated and sown in pots alongside plants of two host species, Lotus corniculatus and Holcus lanatus. Plant establishment, height and flowering density were evaluated for the hemi-parasite, while plant biomass was measured for both R. minor and its host. Two aspects of seed quality influenced the field emergence of seed lots of R. minor, the radicle emergence (%) and the length of the lag period from the beginning of imbibition to germination (mean germination time), which indicates seed vigour. A longer lag period (lower vigour) was associated with higher levels of seedling mortality and lower plant vigour, in terms of plant height and biomass accumulation and was also reflected in the parasitic impact of the seed lots. Seed quality, specifically germination and vigour, can influence the establishment, survival, subsequent plant productivity and parasitic impact of R. minor in vegetation restoration projects. Seed quality is discussed as a key factor to consider when predicting the impact of the hemi-parasite on community productivity and diversity.


Subject(s)
Germination/physiology , Seedlings/physiology , Seeds/physiology , Ecosystem , Magnoliopsida/physiology , Orobanchaceae/physiology
14.
J Nat Prod ; 81(11): 2321-2328, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30362743

ABSTRACT

Strigolactones are a particular class of plant metabolites with diverse biological functions starting from the stimulation of parasitic seed germination to phytohormonal activity. The expansion of parasitic weeds in the fields of developing countries is threatening the food supply and calls for simple procedures to combat these weeds. Strigolactone analogues represent a promising approach for such control through suicidal germination, i.e., parasitic seed germination without the presence of the host causing parasite death. In the present work, the synthesis of resorcinol-type strigolactone mimics related to debranones is reported. These compounds were highly stable even at alkaline pH levels and able to induce seed germination of parasitic plants Striga hermonthica and Phelipanche ramosa at low concentrations, EC50 ≈ 2 × 10-7 M ( Striga) and EC50 ≈ 2 × 10-9 M ( Phelipanche). On the other hand, the mimics had no significant effect on root architecture of Arabidopsis plants, suggesting a selective activity for parasitic seed germination, making them a primary target as suicidal germinators.


Subject(s)
Germination/drug effects , Lactones/pharmacology , Orobanchaceae/physiology , Resorcinols/chemistry , Lactones/chemistry , Orobanchaceae/embryology , Plant Growth Regulators/pharmacology , Seeds/drug effects , Seeds/physiology , Striga/embryology , Striga/physiology
15.
PLoS One ; 13(8): e0200927, 2018.
Article in English | MEDLINE | ID: mdl-30067852

ABSTRACT

Root-hemiparasitic plants of the genus Rhinanthus acquire resources through a water-wasting physiological strategy based on high transpiration rate mediated by the accumulation of osmotically active compounds and constantly open stomata. Interestingly, they were also documented to withstand moderate water stress which agrees with their common occurrence in rather dry habitats. Here, we focused on the water-stress physiology of Rhinanthus alectorolophus by examining gas exchange, water relations, stomatal density, and biomass production and its stable isotope composition in adult plants grown on wheat under contrasting (optimal and drought-inducing) water treatments. We also tested the effect of water stress on the survival of Rhinanthus seedlings, which were watered either once (after wheat sowing), twice (after wheat sowing and the hemiparasite planting) or continuously (twice and every sixth day after that). Water shortage significantly reduced seedling survival as well as the biomass production and gas exchange of adult hemiparasites. In spite of that drought-stressed and even wilted plants from both treatments still considerably photosynthesized and transpired. Strikingly, low-irrigated plants exhibited significantly elevated photosynthetic rate compared with high-irrigated plants of the same water status. This might relate to biochemical adjustments of these plants enhancing the resource uptake from the host. Moreover, low-irrigated plants did not acclimatize to water stress by lowering their osmotic potential, perhaps due to the capability to tolerate drought without such an adjustment, as their osmotic potential at full turgor was already low. Contrary to results of previous studies, hemiparasites seem to close their stomata in response to severe drought stress and this happens probably passively after turgor is lost in guard cells. The physiological traits of hemiparasites, namely the low osmotic potential associated with their parasitic lifestyle and the ability to withstand drought and recover from the wilting likely enable them to grow in dry habitats. However, the absence of osmotic adjustment of adults and sensitivity of seedlings to severe drought stress demonstrated here may result in a substantial decline of the hemiparasitic species with ongoing climate change.


Subject(s)
Orobanchaceae/physiology , Stress, Physiological/physiology , Water , Biomass , Dehydration , Orobanchaceae/anatomy & histology , Photosynthesis , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Roots , Plant Stomata/anatomy & histology , Plant Stomata/physiology , Plant Transpiration , Seedlings/anatomy & histology , Seedlings/physiology , Water/metabolism
16.
Sci Total Environ ; 639: 714-724, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29803043

ABSTRACT

Industrial waste sites, although extremely difficult to revegetate, may be suitable for rare plants such as Orobanche lutea that are condemned to extinction due to their low ability to compete in their natural habitats. The presence of potentially toxic metals seems to facilitate the expansion of O. lutea (parasitizing Medicago falcata) and was found in hundreds of exemplars per m2 in south Poland and potentially could spread to other localities, causing yield loss in agricultural plants. The main aim of this research was to characterize the interaction between the host, the parasitic plant and symbiotic microbes under different metal concentration in the substratum. The parasite was more common on more polluted soil and when the parasite was connected to the host, potentially toxic metals (Zn, Cd and Pb) were shared by both plants; thus, the content and concentration of these potentially toxic metals in the host were lower than those in plants without parasites. While the performance index (PIABS) of photosynthesis was lower in parasitized plants on control soil, on metal-rich industrial waste soil, PIABS was higher in the parasitized plants than in cases where M. falcata grew alone. This result suggests a role of this parasite in toxicity attenuation, although the biomass of parasitized plants and those growing on polluted sites was lower than that in control sites. In the described case, mycorrhizal colonization and arbuscular richness in M. falcata were even more highly developed on polluted sites than in control ones. The data presented support the hypothesis that the expansion of O. lutea is most likely supported by the increased concentrations of Zn and Cd in areas connected with industrial waste. Although, on industrial wastes the host yield was decreased in the parasite presence, its photosynthetic capacity was even increased.


Subject(s)
Biodegradation, Environmental , Orobanche/physiology , Soil Pollutants/analysis , Zinc/analysis , Industrial Waste , Metals, Heavy , Orobanchaceae/physiology , Poland , Soil
17.
Plant Biol (Stuttg) ; 20(1): 50-58, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28960778

ABSTRACT

Melampyrum pratense is an annual root-hemiparasitic plant growing mostly in forest understorey, an environment with unstable light conditions. While photosynthetic responses of autotrophic plants to variable light conditions are in general well understood, light responses of root hemiparasites have not been investigated. We carried out gas exchange measurements (light response and photosynthetic induction curves) to assess the photosynthetic performance of M. pratense in spring and summer. These data and recorded light dynamics data were subsequently used to model carbon balance of the hemiparasite throughout the entire growth season. Summer leaves had significantly lower rates of saturated photosynthesis and dark respiration than spring leaves, a pattern expected to reflect the difference between sun- and shade-adapted leaves. However, even the summer leaves of the hemiparasite exhibited a higher rate of light-saturated photosynthesis than reported in non-parasitic understorey herbs. This is likely related to its annual life history, rare among other understorey herbs. The carbon balance model considering photosynthetic induction still indicated insufficient autotrophic carbon gain for seed production in the summer months due to limited light availability and substantial carbon loss through dark respiration. The results point to potentially high importance of heterotrophic carbon acquisition in M. pratense, which could be of at least comparable importance as in other mixotrophic plants growing in forests - mistletoes and partial mycoheterotrophs. It is remarkable that despite apparent evolutionary pressure towards improved carbon acquisition from the host, M. pratense retains efficient photosynthesis and high transpiration rate, the ecophysiological traits typical of related root hemiparasites in the Orobanchaceae.


Subject(s)
Carbon/metabolism , Forests , Orobanchaceae/metabolism , Photosynthesis , Host-Parasite Interactions , Orobanchaceae/physiology , Plant Roots/parasitology , Seasons
18.
Am J Bot ; 104(11): 1745-1755, 2017 11.
Article in English | MEDLINE | ID: mdl-29170246

ABSTRACT

PREMISE OF THE STUDY: Aphyllon is a clade of holoparasites that includes closely related North American and South American species parasitic on Grindelia. Both Aphyllon (Orobanchaceae) and Grindelia (Asteraceae) have amphitropical disjunctions between North America and South America; however, the timing of these patterns and the processes to explain them are unknown. METHODS: Chronograms for the Orobanchaceae and Grindelia and their relatives were constructed using fossil and secondary calibration points, one of which was based on the inferred timing of horizontal gene transfer from a papilionoid legume into the common ancestor of Orobanche and Phelipanche. Elevated rates of molecular evolution in the Orobanchaceae have hindered efforts to determine reliable divergence time estimates in the absence of a fossil record. However, using a horizontal gene transfer event as a secondary calibration overcomes this limitation. These chronograms were used to reconstruct the biogeography of Aphyllon, Grindelia, and relatives using a DEC+J model implemented in RevBayes. KEY RESULTS: Aphyllon had two amphitropical dispersals from North America to South America, while Grindelia had a single dispersal. The dispersal of the Aphyllon lineage that is parasitic on Grindelia (0.40 Ma) took place somewhat after Grindelia began to diversify in South America (0.93 Ma). Using a secondary calibration based on horizontal gene transfer, we infer more recent divergence dates of holoparasitic Orobancheae than previous studies. CONCLUSIONS: Parallel host-parasite amphitropical disjunctions in Grindelia and Aphyllon illustrate one means by which ecological specialization may result in nonindependent patterns of diversity in distantly related lineages. Although Grindelia and Aphyllon both dispersed to South America recently, Grindelia appears to have diversified more extensively following colonization. More broadly, recent Pleistocene glaciations probably have also contributed to patterns of diversity and biogeography of temperate northern hemisphere Orobancheae. We also demonstrate the utility of using horizontal gene transfer events from well-dated clades to calibrate parasite phylogenies in the absence of a fossil record.


Subject(s)
Grindelia/parasitology , Orobanchaceae/physiology , Plant Diseases/parasitology , Plant Dispersal , Ecology , Evolution, Molecular , Fossils , North America , Orobanchaceae/genetics , Phylogeny , South America
19.
Genetica ; 145(6): 481-489, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28932936

ABSTRACT

Phelipanche ramosa is a major root-holoparasitic damaging weed characterized by a broad host range, including numerous Fabaceae species. In France, the agricultural threat posed by P. ramosa has increased over two decades due to the appearance of a genetically differentiated pathovar presenting a clear host specificity for oilseed rape. The new pathovar has led to a massive expansion of P. ramosa in oilseed rape fields. The germination rate of P. ramosa seeds is currently known to vary among P. ramosa pathovars and host species. However, only a few studies have investigated whether phylogenetic relatedness among potential host species is a predictor of the ability of these species to induce the seed germination of parasitic weeds by testing for phylogenetic signal. We focused on a set of 12 Fabaceae species and we assessed the rate of induction of seed germination by these species for two pathovars based on in vitro co-cultivation experiments. All Fabaceae species tested induced the germination of P. ramosa seeds. The germination rate of P. ramosa seeds varied between Fabaceae species and tribes studied, while pathovars appeared non-influential. Considering oilseed rape as a reference species, we also highlighted a significant phylogenetic signal. Phylogenetically related species therefore showed more similar rates of induction of seed germination than species drawn at random from a phylogenetic tree. In in vitro conditions, only Lotus corniculatus induced a significantly higher germination rate than oilseed rape, and could potentially be used as a catch crop after confirmation of these results under field conditions.


Subject(s)
Fabaceae/parasitology , Germination , Orobanchaceae/physiology , Seeds/growth & development , Fabaceae/classification , Fabaceae/physiology , Orobanchaceae/growth & development , Phylogeny , Plant Weeds , Species Specificity
20.
Proc Natl Acad Sci U S A ; 114(20): 5283-5288, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28461500

ABSTRACT

Parasitic plants share a common anatomical feature, the haustorium. Haustoria enable both infection and nutrient transfer, which often leads to growth penalties for host plants and yield reduction in crop species. Haustoria also reciprocally transfer substances, such as RNA and proteins, from parasite to host, but the biological relevance for such movement remains unknown. Here, we studied such interspecies transport by using the hemiparasitic plant Phtheirospermum japonicum during infection of Arabidopsis thaliana Tracer experiments revealed a rapid and efficient transfer of carboxyfluorescein diacetate (CFDA) from host to parasite upon formation of vascular connections. In addition, Phtheirospermum induced hypertrophy in host roots at the site of infection, a form of enhanced secondary growth that is commonly observed during various parasitic plant-host interactions. The plant hormone cytokinin is important for secondary growth, and we observed increases in cytokinin and its response during infection in both host and parasite. Phtheirospermum-induced host hypertrophy required cytokinin signaling genes (AHK3,4) but not cytokinin biosynthesis genes (IPT1,3,5,7) in the host. Furthermore, expression of a cytokinin-degrading enzyme in Phtheirospermum prevented host hypertrophy. Wild-type hosts with hypertrophy were smaller than ahk3,4 mutant hosts resistant to hypertrophy, suggesting hypertrophy improves the efficiency of parasitism. Taken together, these results demonstrate that the interspecies movement of a parasite-derived hormone modified both host root morphology and fitness. Several microbial and animal plant pathogens use cytokinins during infections, highlighting the central role of this growth hormone during the establishment of plant diseases and revealing a common strategy for parasite infections of plants.


Subject(s)
Arabidopsis/parasitology , Cytokinins/physiology , Orobanchaceae/physiology , Plant Growth Regulators/physiology , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cytokinins/metabolism , Host-Parasite Interactions , Orobanchaceae/metabolism , Parasites , Plant Diseases/parasitology , Plant Growth Regulators/metabolism , Plant Roots/cytology , Plant Roots/metabolism , Plants , Signal Transduction , Symbiosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...