Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.018
Filter
1.
J Neuroinflammation ; 21(1): 97, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627787

ABSTRACT

The unfavorable prognosis of many neurological conditions could be attributed to limited tissue regeneration in central nervous system (CNS) and overwhelming inflammation, while liver X receptor (LXR) may regulate both processes due to its pivotal role in cholesterol metabolism and inflammatory response, and thus receives increasing attentions from neuroscientists and clinicians. Here, we summarize the signal transduction of LXR pathway, discuss the therapeutic potentials of LXR agonists based on preclinical data using different disease models, and analyze the dilemma and possible resolutions for clinical translation to encourage further investigations of LXR related therapies in CNS disorders.


Subject(s)
Central Nervous System Diseases , Orphan Nuclear Receptors , Humans , Liver X Receptors , Orphan Nuclear Receptors/metabolism , Central Nervous System/metabolism , Inflammation , Central Nervous System Diseases/drug therapy
2.
Neurobiol Dis ; 194: 106463, 2024 May.
Article in English | MEDLINE | ID: mdl-38485095

ABSTRACT

Mutations in NR2E3, a gene encoding an orphan nuclear transcription factor, cause two retinal dystrophies with a distinct phenotype, but the precise role of NR2E3 in rod and cone transcriptional networks remains unclear. To dissect NR2E3 function, we performed scRNA-seq in the retinas of wildtype and two different Nr2e3 mouse models that show phenotypes similar to patients carrying NR2E3 mutations. Our results reveal that rod and cone populations are not homogeneous and can be separated into different sub-classes. We identify a previously unreported cone pathway that generates hybrid cones co-expressing both cone- and rod-related genes. In mutant retinas, this hybrid cone subpopulation is more abundant and includes a subpopulation of rods transitioning towards a cone cell fate. Hybrid photoreceptors with high misexpression of cone- and rod-related genes are prone to regulated necrosis. Overall, our results shed light on the role of NR2E3 in modulating photoreceptor differentiation towards cone and rod fates and explain how different mutations in NR2E3 lead to distinct visual disorders in humans.


Subject(s)
Orphan Nuclear Receptors , Retina , Mice , Animals , Humans , Orphan Nuclear Receptors/metabolism , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Cell Differentiation , Gene Expression Regulation
3.
J Nat Prod ; 87(2): 322-331, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38334086

ABSTRACT

A strategy integrating in silico molecular docking with LXRα and phenotypic assays was adopted to discover anti-hypercholesterolemia agents in a small library containing 205 marine microorganism-derived natural products, collected by our group in recent years. Two fumitremorgin derivatives, 12R,13S-dihydroxyfumitremorgin C (1) and tryprostatin A (3), were identified as potential LXRα agonists, by real-time qPCR and Western blot (WB) analysis, together with a surface plasmon resonance (SPR) assay. The anti-hypercholesterolemic effects of 1 and 3, together with their mechanisms, were investigated in depth using different cell and mouse models, among which the study of LXRα is of crucial importance. Compound 1 or 3 exhibited the capacity to effectively reverse excessive lipid accumulation in a hepatic steatosis cell model and significantly reduce liver damage and blood cholesterol levels in high cholesterol diet (HCD)-fed wild-type mice, whereas those beneficial effects were completely nullified in HCD-fed LXRα-knockout mice. Furthermore, 1 and 3 outperformed common LXRα agonists by suppressing the expression of sterol regulatory element-binding protein 1 (SREBP1) in HCD-fed mice, mitigating lipotoxicity. Thus, this study highlights the discovery of two marine microorganism-derived anti-hypercholesterolemia agents targeting LXRα.


Subject(s)
Hypercholesterolemia , Orphan Nuclear Receptors , Animals , Mice , Cholesterol/metabolism , Hypercholesterolemia/drug therapy , Liver , Liver X Receptors/metabolism , Mice, Knockout , Molecular Docking Simulation , Orphan Nuclear Receptors/metabolism , Orphan Nuclear Receptors/pharmacology
4.
Phytomedicine ; 123: 155192, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951148

ABSTRACT

BACKGROUND: Tetranucleotide repeat domain protein 39B (TTC39B) was found to combine with ubiquitin ligase E3, and promote the ubiquitination modification of liver X receptor (LXR), which led to the inhibition of reverse cholesterol transport and development of atherosclerosis. QiShenYiQi pill (QSYQ) is a modern Chinese patent drug for treating ischemic cardiovascular diseases, the underlying mechanism is found to promote the expression of LXR-α/ ATP-binding cassette transporter G5 (ABCG5) in the liver of atherosclerotic mice. PURPOSE: The aim of this study is to investigate the effect of QSYQ on TTC39B-LXR mediated reverse cholesterol transport in atherosclerotic mice. STUDY DESIGN AND METHODS: Male apolipoprotein E gene knockout mice (7 weeks old) were fed with high-fat diet and treated with low dose of QSYQ (QSYQ-l, 0.3 g/kg·d), high dose of QSYQ (QSYQ-H, 1.2 g/kg·d) and LXR-α agonist (LXR-A, GW3965 10 mg/kg·d) for 8 weeks. C57BL/6 J mice were fed with normal diet and used as negative control. Oil red O staining, HE staining, ELISA, RNA sequencing, western blot, immunohistochemistry, RT-PCR, cell culture and RNA interference were performed to analyze the effect of QSYQ on atherosclerosis. RESULTS: HE staining showed that QSYQ reduced the atherosclerotic lesion significantly when compared to the control group. ELISA measurement showed that QSYQ decreased serum VLDL and increased serum ApoA1. Oil Red O staining showed that QSYQ reduced the lipid content of liver and protect liver function. Comparative transcriptome RNA-sequence of liver showed that DEGs after QSYQ treatment enriched in high-density lipoprotein particle, ubiquitin ligase complex, bile secretion, etc. Immunohistochemical staining and western blot proved that QSYQ increased the protein expression of hepatic SR-B1, LXR-α, LXR-ß, CYP7A1 and ABCG5. Targeted inhibiting Ttc39b gene in vitro further established that QSYQ inhibited the gene expression of Ttc39b, increased the protein expression of SR-B1, LXR-α/ß, CYP7A1 and ABCG5 in rat hepatocyte. CONCLUSION: Our results demonstrated the new anti-atherosclerotic mechanism of QSYQ by targeting TTC39B-LXR mediated reverse cholesterol transport in liver. QSYQ not only promoted reverse cholesterol transport, but also improved fatty liver and protected liver function.


Subject(s)
Atherosclerosis , Azo Compounds , Drugs, Chinese Herbal , Lipoproteins , Male , Mice , Rats , Animals , Liver X Receptors/metabolism , Cholesterol/metabolism , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Orphan Nuclear Receptors/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism , Mice, Inbred C57BL , Liver , Mice, Knockout , Atherosclerosis/drug therapy , Atherosclerosis/metabolism
5.
Asian Pac J Cancer Prev ; 24(12): 4103-4109, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38156844

ABSTRACT

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has an unfavorable outlook due to its aggressive characteristics, delayed diagnosis, and limited effective treatment options for advanced stages of the disease. The significant mortality rate has prompted investigations into additional factors that could aid in managing this type of cancer. Liver X receptors, specifically LXRα and LXRß, are nuclear receptors that oversee the expression of genes related to cholesterol, glucose, lipid metabolism, and inflammatory responses. LXRs have also emerged as potential targets for addressing PDAC, and recent findings have demonstrated that LXR ligands can impede cell proliferation in various cancer forms, notably pancreatic cancer. This comprehensive computational research study involving oncological in silico mechanism discovery explored inhibitory ligands for Liver X receptors (LXRα and LXRß), which are believed to have prognostic significance in PDAC. METHODS: The study utilized Baicalein, Beta-Sitosterol, Polydatin ligands in molecular docking and dynamics and post-molecular Hydrogen bonding contact analyses dynamics to characterize receptor inhibition. RESULT: The outcomes suggest that Baicalein exhibits versatile inhibitory effects on both receptors, while Beta-Sitosterol emerges as a highly effective inhibitor of LXRß. CONCLUSION: Further in vitro and in vivo investigations will be beneficial and would shed light onto the mechanism to decipher the suppression of PDAC evaluating the potential of Baicalein, Beta-Sitosterol, Polydatin natural ligand compounds.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Liver X Receptors/genetics , Molecular Docking Simulation , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics
6.
Expert Opin Ther Targets ; 27(10): 989-998, 2023.
Article in English | MEDLINE | ID: mdl-37753584

ABSTRACT

INTRODUCTION: Liver X receptors (LXRs) have emerged as novel targets for tumor treatment. LXRs within the tumor microenvironment show the capacity to impact tumorigenesis and tumor development by regulating the infiltration of immune cells and release of cytokines to moderate inflammation. AREAS COVERED: In this review, we present a systematic description of recent progress in understanding the impact of LXRs on the tumor microenvironment and tumorigenesis. We also summarize the antitumor effects mediated by LXRs via their regulation of cytokine expression. Additionally, we discuss the limitations of LXR research in tumor studies to date. EXPERT OPINION: Previous studies have demonstrated abnormal LXR expression in tumor tissues, and activation of LXRs has been shown to inhibit tumorigenesis and promote apoptosis in tumor cells. However, LXRs can also affect tumorigenesis by regulating immune cell functions within the tumor immune microenvironment. By summarizing the impact of LXRs on immune cells, we provide new insights into the multifaceted nature of LXRs as antitumor targets.


Subject(s)
Neoplasms , Orphan Nuclear Receptors , Humans , Liver X Receptors , Orphan Nuclear Receptors/metabolism , Tumor Microenvironment , Inflammation , Cytokines , Carcinogenesis
7.
Eur J Pharmacol ; 956: 175953, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37541371

ABSTRACT

Liver X receptors (LXRs) are master regulators of various biological processes, including metabolism, inflammation, development, and reproduction. As well-known nuclear oxysterol receptors of the nuclear receptor (NR) family, LXRs have two homologous subtypes, LXRα (NR1H3) and LXRß (NR1H2). Since the mid-1990s, numerous LXR-targeted drugs have been designed to treat diseases such as atherosclerosis, systemic lupus erythematosus, and cancer. These modulators include agonists and antagonists, and the selectivity of them have been development from diverse aspects, including subtype-specific, cell-specific, tissue-specific types. Meanwhile, advanced delivery systems are also exploreed to facilitate the application of LXR drugs in clinical setting. One of the most promising delivery systems involves the use of nanoparticles and is expected to increase the clinical potential of LXR modulators. This review discusses our current understanding of LXR biology and pharmacology, focusing on the development of modulators for LXRα and/or LXRß, and the nanoparticle-based delivery systems for promising LXR modulators with potential for use as drugs.


Subject(s)
Atherosclerosis , Orphan Nuclear Receptors , Humans , Liver X Receptors , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/metabolism , Orphan Nuclear Receptors/therapeutic use , Atherosclerosis/drug therapy
8.
Sheng Li Xue Bao ; 75(4): 555-568, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37583043

ABSTRACT

The development of chronic liver disease can be promoted by excessive fat accumulation, dysbiosis, viral infections and persistent inflammatory responses, which can lead to liver inflammation, fibrosis and carcinogenesis. An in-depth understanding of the etiology leading to chronic liver disease and the underlying mechanisms influencing its development can help identify potential therapeutic targets for targeted treatment. Orphan nuclear receptors (ONRs) are receptors that have no corresponding endogenous ligands to bind to them. The study of these ONRs and their biological properties has facilitated the development of synthetic ligands, which are important for investigating the effective targets for the treatment of a wide range of diseases. In recent years, it has been found that ONRs are essential for maintaining normal liver function and their dysfunction can affect a variety of liver diseases. ONRs can influence pathophysiological activities such as liver lipid metabolism, inflammatory response and cancer cell proliferation by regulating hormones/transcription factors and affecting the biological clock, oxidative stress, etc. This review focuses on the regulation of ONRs, mainly including retinoid related orphan nuclear receptors (RORs), pregnane X receptor (PXR), leukocyte cell derived chemotaxin 2 (LECT2), Nur77, and hepatocyte nuclear factor 4α (HNF4α), on the development of different types of chronic liver diseases in different ways, in order to provide useful references for the therapeutic strategies of chronic liver diseases based on the regulation of ONRs.


Subject(s)
Liver Diseases , Receptors, Steroid , Humans , Orphan Nuclear Receptors/metabolism , Receptors, Steroid/physiology , Ligands , Liver , Intercellular Signaling Peptides and Proteins
9.
Adv Exp Med Biol ; 1415: 189-194, 2023.
Article in English | MEDLINE | ID: mdl-37440033

ABSTRACT

Enhanced S-cone Syndrome (ESCS) is an autosomal recessive inherited retinal disease mostly associated with disease-causing variants in the NR2E3 gene. During retinal development in ESCS, rod photoreceptor precursors are misdirected to form photoreceptors similar to short-wavelength cones, or S-cones. Compared to a normal human retina, patients with ESCS have no rods and significantly increased numbers of S-cones. Night blindness is the main visual symptom, and visual acuity and color vision can be normal at early disease stages. Histology of donor eyes and adaptive optics imaging revealed increased S-cone density outside of the fovea compared to normal. Visual function testing reveals absent rod function and abnormally enhanced sensitivity to short-wavelength light. Unlike most retinal degenerative diseases, ESCS results in a gain in S-cone photoreceptor function. Research involving ESCS could improve understanding of this rare retinal condition and also shed light on the role of NR2E3 expression in photoreceptor survival.


Subject(s)
Orphan Nuclear Receptors , Retinal Degeneration , Humans , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Retinal Degeneration/pathology , Retina/pathology , Retinal Cone Photoreceptor Cells/pathology
10.
Genes (Basel) ; 14(7)2023 06 23.
Article in English | MEDLINE | ID: mdl-37510230

ABSTRACT

NR2E3 is a nuclear hormone receptor gene required for the correct development of the retinal rod photoreceptors. Expression of NR2E3 protein in rod cell precursors suppresses cone-specific gene expression and, in concert with other transcription factors including NRL, activates the expression of rod-specific genes. Pathogenic variants involving NR2E3 cause a spectrum of retinopathies, including enhanced S-cone syndrome, Goldmann-Favre syndrome, retinitis pigmentosa, and clumped pigmentary retinal degeneration, with limited evidence of genotype-phenotype correlations. A common feature of NR2E3-related disease is an abnormally high number of cone photoreceptors that are sensitive to short wavelength light, the S-cones. This characteristic has been supported by mouse studies, which have also revealed that loss of Nr2e3 function causes photoreceptors to develop as cells that are intermediate between rods and cones. While there is currently no available cure for NR2E3-related retinopathies, there are a number of emerging therapeutic strategies under investigation, including the use of viral gene therapy and gene editing, that have shown promise for the future treatment of patients with NR2E3 variants and other inherited retinal diseases. This review provides a detailed overview of the current understanding of the role of NR2E3 in normal development and disease, and the associated clinical phenotypes, animal models, and therapeutic studies.


Subject(s)
Orphan Nuclear Receptors , Retinal Degeneration , Animals , Mice , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Retina/pathology , Retinal Cone Photoreceptor Cells/physiology , Retinal Degeneration/pathology , Humans
11.
Eur Rev Med Pharmacol Sci ; 27(13): 6319-6331, 2023 07.
Article in English | MEDLINE | ID: mdl-37458649

ABSTRACT

OBJECTIVE: Preeclampsia (PE) is a complex disease-causing multisystem damage. Many genes, environmental factors, and their interactions are involved in the development and progression of PE. The pathogenesis of PE is not fully understood, limiting the prevention and treatment of PE. The aim of this study was to investigate the effect of 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS), an ATP-binding cassette transporter A1 (ABCA1) blocker, on apoM mRNA and protein levels. PATIENTS AND METHODS: The role of liver X receptor α (LXRα) and ABCA1 in the pathogenesis of PE was investigated by optimizing the design of DIDS inhibition based on a deep learning model. RESULTS: The proportion of primipara in the research group, EOPE group, LOPE group, and controls was 59.82%, 65.85%, 56.34%, and 21.43%, respectively. The difference between the research group and the controls was statistically significant (p<0.01). In the clinical data, serum-free triiodothyronine (FT3), gestational age at delivery, high-density lipoprotein cholesterol (HDL-C), hemoglobin (HGB), albumin, and platelet (PLT) in the research group were lower than those in the controls (p<0.05). CONCLUSIONS: ABCA1 is considered to affect apoM mRNA expression, G/HDL-C may increase the risk of LOPE, and overweight or obesity, abnormal glycemic regulation, and hypothyroidism are independent risk factors closely related to the pathogenesis of PE and its subgroups.


Subject(s)
Deep Learning , Pre-Eclampsia , Female , Humans , Liver X Receptors/genetics , Liver X Receptors/metabolism , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , ATP-Binding Cassette Transporters/genetics , Cholesterol, HDL , RNA, Messenger/metabolism , ATP Binding Cassette Transporter 1/genetics
12.
Mol Oncol ; 17(10): 2041-2055, 2023 10.
Article in English | MEDLINE | ID: mdl-37341140

ABSTRACT

Liver X receptors (LXRs) are nuclear transcription factors important in the regulation of cholesterol transport, and glucose and fatty acid metabolism. The antiproliferative role of LXRs has been studied in a variety of malignancies and may represent a therapeutic opportunity in cancers lacking targeted therapies, such as triple-negative breast cancer. In this study, we investigated the impact of LXR agonists alone and in combination with carboplatin in preclinical models of breast cancer. In vitro experiments revealed a dose-dependent decrease in tumor cell proliferation in estrogen receptor-positive breast cancer cells, whereas LXR activation in vivo resulted in an increased growth inhibitory effect in a basal-like breast cancer model (in combination with carboplatin). Functional proteomic analysis identified differences in protein expression between responding and nonresponding models related to Akt activity, cell-cycle progression, and DNA repair. Furthermore, pathway analysis suggested that the LXR agonist in combination with carboplatin inhibits the activity of targets of E2F transcription factors and affects cholesterol homeostasis in basal-like breast cancer.


Subject(s)
Breast Neoplasms , Orphan Nuclear Receptors , Humans , Female , Liver X Receptors/metabolism , Orphan Nuclear Receptors/metabolism , Breast Neoplasms/pathology , Carboplatin/metabolism , Proteomics , Cholesterol/metabolism , Liver/pathology
13.
Stroke Vasc Neurol ; 8(6): 486-502, 2023 12 29.
Article in English | MEDLINE | ID: mdl-37137522

ABSTRACT

BACKGROUND: Inflammation-exacerbated secondary brain injury and limited tissue regeneration are barriers to favourable prognosis after intracerebral haemorrhage (ICH). As a regulator of inflammation and lipid metabolism, Liver X receptor (LXR) has the potential to alter microglia/macrophage (M/M) phenotype, and assist tissue repair by promoting cholesterol efflux and recycling from phagocytes. To support potential clinical translation, the benefits of enhanced LXR signalling are examined in experimental ICH. METHODS: Collagenase-induced ICH mice were treated with the LXR agonist GW3965 or vehicle. Behavioural tests were conducted at multiple time points. Lesion and haematoma volume, and other brain parameters were assessed using multimodal MRI with T2-weighted, diffusion tensor imaging and dynamic contrast-enhanced MRI sequences. The fixed brain cryosections were stained and confocal microscopy was applied to detect LXR downstream genes, M/M phenotype, lipid/cholesterol-laden phagocytes, oligodendrocyte lineage cells and neural stem cells. Western blot and real-time qPCR were also used. CX3CR1CreER: Rosa26iDTR mice were employed for M/M-depletion experiments. RESULTS: GW3965 treatment reduced lesion volume and white matter injury, and promoted haematoma clearance. Treated mice upregulated LXR downstream genes including ABCA1 and Apolipoprotein E, and had reduced density of M/M that apparently shifted from proinflammatory interleukin-1ß+ to Arginase1+CD206+ regulatory phenotype. Fewer cholesterol crystal or myelin debris-laden phagocytes were observed in GW3965 mice. LXR activation increased the number of Olig2+PDGFRα+ precursors and Olig2+CC1+ mature oligodendrocytes in perihaematomal regions, and elevated SOX2+ or nestin+ neural stem cells in lesion and subventricular zone. MRI results supported better lesion recovery by GW3965, and this was corroborated by return to pre-ICH values of functional rotarod activity. The therapeutic effects of GW3965 were abrogated by M/M depletion in CX3CR1CreER: Rosa26iDTR mice. CONCLUSIONS: LXR agonism using GW3965 reduced brain injury, promoted beneficial properties of M/M and facilitated tissue repair correspondent with enhanced cholesterol recycling.


Subject(s)
Brain Injuries , Microglia , Mice , Animals , Liver X Receptors/agonists , Liver X Receptors/metabolism , Microglia/metabolism , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/metabolism , Diffusion Tensor Imaging , Macrophages/metabolism , Cholesterol/metabolism , Cholesterol/pharmacology , Cerebral Hemorrhage/metabolism , Inflammation , Brain Injuries/metabolism , Hematoma
14.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37175855

ABSTRACT

It was recently reported that the hydroxyflavones quercetin and kaempferol bind the orphan nuclear receptor 4A1 (NR4A1, Nur77) and act as antagonists in cancer cells and tumors, and they inhibit pro-oncogenic NR4A1-regulated genes and pathways. In this study, we investigated the interactions of flavone, six hydroxyflavones, seven dihydroxyflavones, three trihydroxyflavones, two tetrahydroxyflavones, and one pentahydroxyflavone with the ligand-binding domain (LBD) of NR4A1 using direct-binding fluorescence and an isothermal titration calorimetry (ITC) assays. Flavone and the hydroxyflavones bound NR4A1, and their KD values ranged from 0.36 µM for 3,5,7-trihydroxyflavone (galangin) to 45.8 µM for 3'-hydroxyflavone. KD values determined using ITC and KD values for most (15/20) of the hydroxyflavones were decreased compared to those obtained using the fluorescence assay. The results of binding, transactivation and receptor-ligand modeling assays showed that KD values, transactivation data and docking scores for these compounds are highly variable with respect to the number and position of the hydroxyl groups on the flavone backbone structure, suggesting that hydroxyflavones are selective NR4A1 modulators. Nevertheless, the data show that hydroxyflavone-based neutraceuticals are NR4A1 ligands and that some of these compounds can now be repurposed and used to target sub-populations of patients that overexpress NR4A1.


Subject(s)
Flavones , Orphan Nuclear Receptors , Humans , Flavones/pharmacology , Ligands , Nuclear Receptor Subfamily 4, Group A, Member 1 , Orphan Nuclear Receptors/metabolism , Protein Binding
15.
Chem Commun (Camb) ; 59(31): 4551-4561, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37000699

ABSTRACT

Nuclear receptor modulation enables pharmacological control of gene expression thus rendering the 48 human nuclear receptors as attractive targets for drug discovery. Several nuclear receptor ligands like glucocorticoids are approved and highly important drugs illustrating the therapeutic potential of nuclear receptor modulation. However, a significant portion of the nuclear receptor family is still poorly explored for new therapeutic opportunities which is due to a lack of potent, selective and well-characterized ligands. Preliminary evidence supports great therapeutic potential of several orphan nuclear receptors in various pathologies underlining the need for high-quality chemical tools to enable target validation. Here, we evaluate the characteristics of available nuclear receptor modulators and the gaps in coverage of the nuclear receptor family with chemical tools. We review successful approaches to nuclear receptor modulator development and highlight the opportunities and challenges in closing the gaps of missing tools for understudied nuclear receptors to open new therapeutic avenues.


Subject(s)
Drug Discovery , Orphan Nuclear Receptors , Humans , Orphan Nuclear Receptors/metabolism , Ligands
16.
J Cancer Res Clin Oncol ; 149(10): 7155-7164, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36884115

ABSTRACT

INTRODUCTION: NR2F6 (nuclear receptor subfamily 2 group F member 6, also called Ear-2) is known to be an orphan nuclear receptor that has been characterized as an intracellular immune checkpoint in effector T cells and, therefore, may control tumor development and growth. The prognostic impact of NR2F6 in endometrial cancers is evaluated in this study. MATERIALS AND METHODS: Expression analysis of NR2F6 in 142 endometrial cancer patients was performed by immunohistochemistry of primary paraffin­embedded tumor samples. Staining intensity of positive tumor cells was automatically assessed semi-quantitatively, and results were correlated with clinicopathological characteristics and survival. RESULTS: Forty five of 116 evaluable samples (38.8%) showed an overexpression of NR2F6. This leads to an improvement of the overall survival (OS) and progression-free survival (PFS). In NR2F6-positive patients, the estimated mean OS was 156.9 months (95% confidence interval (CI) 143.1-170.7) compared to 106.2 months in NR2F6-negative patients (95% CI 86.2-126.3; p = 0.022). The estimated PFS differed by 63 months (152 months (95% CI 135.7-168.4) vs. 88.3 months (95% CI 68.5-108.0), p = 0.002). Furthermore, we found significant associations between NR2F6 positivity, MMR status, and PD1 status. A multivariate analysis suggests NR2F6 to be an independent factor influencing the OS (p = 0.03). CONCLUSION: In this study, we could demonstrate that there is a longer progression-free and overall survival for NR2F6-positive patients with endometrial cancer. We conclude that NR2F6 might play an essential role in endometrial cancers. Further studies are required to validate its prognostic impact.


Subject(s)
Endometrial Neoplasms , Orphan Nuclear Receptors , Female , Humans , Orphan Nuclear Receptors/metabolism , T-Lymphocytes/metabolism , Endometrial Neoplasms/genetics , Prognosis , Repressor Proteins
17.
Biomolecules ; 13(2)2023 02 10.
Article in English | MEDLINE | ID: mdl-36830714

ABSTRACT

Liver X receptors (LXRs) are members of the nuclear receptor family of ligand-dependent transcription factors which regulate the expression of lipid and cholesterol metabolism genes. Moreover, LXRs and their ligands have been shown to inhibit tumor growth in a variety of cancers. We have previously identified the small molecule compound GAC0001E5 (1E5) as an LXR inverse agonist and a potent inhibitor of pancreatic cancer cells. Transcriptomic and metabolomic studies showed that 1E5 disrupts glutamine metabolism, an essential metabolic pathway commonly reprogrammed during malignant transformation, including in breast cancers. To determine the role of LXRs and potential application of 1E5 in breast cancer, we examined LXR expression in publicly available clinical samples, and found that LXR expression is elevated in breast tumors as compared to normal tissues. In luminal A, endocrine therapy-resistant, and triple-negative breast cancer cells, 1E5 exhibited LXR inverse agonist and "degrader" activity and strongly inhibited cell proliferation and colony formation. Treatments with 1E5 downregulated the transcription of key glutaminolysis genes, and, correspondingly, biochemical assays indicated that 1E5 lowered intracellular glutamate and glutathione levels and increased reactive oxygen species. These results indicate that novel LXR ligand 1E5 is an inhibitor of glutamine metabolism and redox homeostasis in breast cancers and suggest that modulating LXR activity and expression in tumor cells is a promising strategy for targeting metabolic reprogramming in breast cancer therapeutics.


Subject(s)
Breast Neoplasms , Orphan Nuclear Receptors , Humans , Female , Liver X Receptors/metabolism , Orphan Nuclear Receptors/metabolism , Ligands , Drug Inverse Agonism , Glutamine/metabolism , Homeostasis , Oxidation-Reduction
18.
Prog Mol Biol Transl Sci ; 194: 347-375, 2023.
Article in English | MEDLINE | ID: mdl-36631198

ABSTRACT

Nuclear receptors are among one of the major transcriptional factors that induces gene regulation in the nucleus. Liver X receptor (LXR) is a transcription factor which regulates essential lipid homeostasis in the body including fatty acid, cholesterol and phospholipid synthesis. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer is activated by either of the ligand binding on LXR or RXR. The promoter region of the gene which is targeted by LXR is bound to the response element of LXR. The activators bind to the heterodimer once the corepressor is dissociated. The cellular process such as endocytosis aids in intracellular trafficking and endosomal formation in transportation of molecules for essential signaling within the cell. LXR isotypes play a crucial role in maintaining lipid homeostasis by regulating the level of cholesterol. In the liver, the deficiency of LXRα can alter the normal physiological conditions depicting the symptoms of various cardiovascular and liver diseases. LXR can degrade low density lipoprotein receptors (LDLR) by the signaling of LXR-IDOL through endocytic trafficking in lipoprotein uptake. Various gene expressions associated with cholesterol level and lipid synthesis are regulated by LXR transcription factor. With its known diversified ligand binding, LXR is capable of regulating expression of various specific genes responsible for the progression of autoimmune diseases. The agonists and antagonists of LXR stand to be an important factor in transcription of the ABC family, essential for high density lipoprotein (HDL) formation. Endocytosis and signaling mechanism of the LXR family is broad and complex despite their involvement in cellular growth and proliferation. Here in this chapter, we aimed to emphasize the master regulation of LXR activation, regulators, and their implications in various metabolic activities especially in lipid homeostasis. Furthermore, we also briefed the significant role of LXR endocytosis in T cell immune regulation and a variety of human diseases including cardiovascular and neuroadaptive.


Subject(s)
Liver X Receptors , Liver , Orphan Nuclear Receptors , Humans , Cholesterol/metabolism , Endocytosis , Ligands , Liver/physiology , Liver X Receptors/metabolism , Orphan Nuclear Receptors/metabolism , Retinoid X Receptors/metabolism
19.
Immunol Res ; 71(3): 314-327, 2023 06.
Article in English | MEDLINE | ID: mdl-36571657

ABSTRACT

CD8 + T cells undergo rapid expansion followed by contraction and the development of memory cells after their receptors are activated. The development of immunological memory following acute infection is a complex phenomenon that involves several molecular, transcriptional, and metabolic mechanisms. As memory cells confer long-term protection and respond to secondary stimulation with strong effector function, understanding the mechanisms that influence their development is of great importance. Orphan nuclear receptors, NR4As, are immediate early genes that function as transcription factors and bind with the NBRE region of chromatin. Interestingly, the NBRE region of activated CD8 + T cells is highly accessible at the same time the expression of NR4As is induced. This suggests a potential role of NR4As in the early events post T cell activation that determines cell fate decisions. In this review, we will discuss the influence of NR4As on the differentiation of CD8 + T cells during the immune response to acute infection and the development of immunological memory. We will also discuss the signals, transcription factors, and metabolic mechanisms that control cell fate decisions. HIGHLIGHTS: Memory CD8 + T cells are an essential subset that mediates long-term protection after pathogen encounters. Some specific environmental cues, transcriptional factors, and metabolic pathways regulate the differentiation of CD8 + T cells and the development of memory cells. Orphan nuclear receptor NR4As are early genes that act as transcription factors and are highly expressed post-T cell receptor activation. NR4As influence the effector function and differentiation of CD8 + T cells and also control the development of immunological memory following acute infection.


Subject(s)
Infections , Orphan Nuclear Receptors , Humans , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Gene Expression Regulation , Cell Differentiation , CD8-Positive T-Lymphocytes , Immunologic Memory/genetics
20.
Cell Biochem Biophys ; 81(1): 151-160, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36251137

ABSTRACT

ATP-binding cassette transporter A-I (ABCA1) is an ubiquitously expressed protein whose main function is the transmembrane transport of cholesterol and phospholipids. Synthesis of ABCA1 protein in liver is necessary for high-density lipoprotein (HDL) formation in mammals. Thus, the mechanism of ABCA1 gene expression regulation in hepatocytes are of critical importance. Recently, we have found the insulin-dependent downregulation of other key player in the HDL formation-apolipoprotein A-I gene (J. Cell. Biochem., 2017, 118:382-396). Nothing is known about the role of insulin in the regulation of ABCA1 gene. Here we show for the first time that insulin decreases the mRNA and protein levels of ABCA1 in human hepatoma cell line HepG2. PI3K, p38, MEK1/2, JNK and mTORC1 signaling pathways are involved in the insulin-mediated downregulation of human ABCA1 gene. Transcription factors LXRα, LXRß, FOXO1 and NF-κB are important contributors to this process, while FOXA2 does not regulate ABCA1 gene expression. Insulin causes the decrease in FOXO1, LXRα and LXRß binding to ABCA1 promoter, which is likely the cause of the decrease in the gene expression. Interestingly, the murine ABCA1 gene seems to be not regulated by insulin in hepatocytes (in vitro and in vivo). We suggest that the reason for this discrepancy is the difference in the 5'-regulatory regions of human and murine ABCA1 genes.


Subject(s)
ATP Binding Cassette Transporter 1 , Insulin , Liver X Receptors , Orphan Nuclear Receptors , Animals , Humans , Mice , ATP Binding Cassette Transporter 1/genetics , Carcinoma, Hepatocellular , Cell Line , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Insulin/metabolism , Liver Neoplasms , Liver X Receptors/genetics , Liver X Receptors/metabolism , Mammals/metabolism , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...