Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 556
Filter
1.
Infect Immun ; 92(5): e0045323, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38602405

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a major otitis media (OM) pathogen, with colonization a prerequisite for disease development. Most acute OM is in children <5 years old, with recurrent and chronic OM impacting hearing and learning. Therapies to prevent NTHi colonization and/or disease are needed, especially for young children. Respiratory viruses are implicated in driving the development of bacterial OM in children. We have developed an infant mouse model of influenza-driven NTHi OM, as a preclinical tool for the evaluation of safety and efficacy of clinical therapies to prevent NTHi colonization and the development of OM. In this model, 100% of infant BALB/cARC mice were colonized with NTHi, and all developed NTHi OM. Influenza A virus (IAV) facilitated the establishment of dense (1 × 105 CFU/mL) and long-lasting (6 days) NTHi colonization. IAV was essential for the development of NTHi OM, with 100% of mice in the IAV/NTHi group developing NTHi OM compared with 8% of mice in the NTHi only group. Histological analysis and cytokine measurements revealed that the inflammation observed in the middle ear of the infant mice with OM reflected inflammation observed in children with OM. We have developed the first infant mouse model of NTHi colonization and OM. This ascension model uses influenza-driven establishment of OM and reflects the clinical pathology of bacterial OM developing after a respiratory virus infection. This model provides a valuable tool for testing therapies to prevent or treat NTHi colonization and disease in young children.


Subject(s)
Disease Models, Animal , Haemophilus Infections , Haemophilus influenzae , Influenza A virus , Otitis Media , Animals , Otitis Media/microbiology , Haemophilus influenzae/growth & development , Haemophilus influenzae/pathogenicity , Haemophilus influenzae/physiology , Haemophilus Infections/microbiology , Mice , Influenza A virus/pathogenicity , Influenza A virus/growth & development , Mice, Inbred BALB C , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/complications , Humans , Animals, Newborn
2.
Acta Neuropathol ; 147(1): 77, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687393

ABSTRACT

Influenza-associated encephalopathy (IAE) is extremely acute in onset, with high lethality and morbidity within a few days, while the direct pathogenesis by influenza virus in this acute phase in the brain is largely unknown. Here we show that influenza virus enters into the cerebral endothelium and thereby induces IAE. Three-weeks-old young mice were inoculated with influenza A virus (IAV). Physical and neurological scores were recorded and temporal-spatial analyses of histopathology and viral studies were performed up to 72 h post inoculation. Histopathological examinations were also performed using IAE human autopsy brains. Viral infection, proliferation and pathogenesis were analyzed in cell lines of endothelium and astrocyte. The effects of anti-influenza viral drugs were tested in the cell lines and animal models. Upon intravenous inoculation of IAV in mice, the mice developed encephalopathy with brain edema and pathological lesions represented by micro bleeding and injured astrocytic process (clasmatodendrosis) within 72 h. Histologically, massive deposits of viral nucleoprotein were observed as early as 24 h post infection in the brain endothelial cells of mouse models and the IAE patients. IAV inoculated endothelial cell lines showed deposition of viral proteins and provoked cell death, while IAV scarcely amplified. Inhibition of viral transcription and translation suppressed the endothelial cell death and the lethality of mouse models. These data suggest that the onset of encephalopathy should be induced by cerebral endothelial infection with IAV. Thus, IAV entry into the endothelium, and transcription and/or translation of viral RNA, but not viral proliferation, should be the key pathogenesis of IAE.


Subject(s)
Brain , Orthomyxoviridae Infections , Animals , Humans , Mice , Brain/pathology , Brain/virology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/complications , Virus Internalization , Influenza A virus/pathogenicity , Endothelial Cells/virology , Endothelial Cells/pathology , Influenza, Human/pathology , Influenza, Human/complications , Brain Diseases/virology , Brain Diseases/pathology , Male , Disease Models, Animal , Female , Endothelium/pathology , Endothelium/virology , Mice, Inbred C57BL
3.
Nature ; 628(8009): 835-843, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600381

ABSTRACT

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Subject(s)
Lung Injury , Necroptosis , Orthomyxoviridae Infections , Protein Kinase Inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Female , Humans , Male , Mice , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/metabolism , Influenza A virus/classification , Influenza A virus/drug effects , Influenza A virus/immunology , Influenza A virus/pathogenicity , Lung Injury/complications , Lung Injury/pathology , Lung Injury/prevention & control , Lung Injury/virology , Mice, Inbred C57BL , Necroptosis/drug effects , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/prevention & control , Respiratory Distress Syndrome/virology
4.
Am J Pathol ; 194(3): 384-401, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159723

ABSTRACT

Respiratory tract virus infections cause millions of hospitalizations worldwide each year. Severe infections lead to lung damage that coincides with persistent inflammation and a lengthy repair period. Vaccination and antiviral therapy help to mitigate severe infections before or during the acute stage of disease, but there are currently limited specific treatment options available to individuals experiencing the long-term sequelae of respiratory viral infection. Herein, C57BL/6 mice were infected with influenza A/PR/8/34 as a model for severe viral lung infection and allowed to recover for 21 days. Mice were treated with rapamycin, a well-characterized mammalian target of rapamycin complex 1 (mTORC1) inhibitor, on days 12 to 20 after infection, a time period after viral clearance. Persistent inflammation following severe influenza infection in mice was primarily driven by macrophages and T cells. Uniform manifold approximation and projection analysis of flow cytometry data revealed that lung macrophages had high activation of mTORC1, an energy-sensing kinase involved in inflammatory immune cell effector functions. Rapamycin treatment reduced lung inflammation and the frequency of exudate macrophages, T cells, and B cells in the lung, while not impacting epithelial progenitor cells or adaptive immune memory. These data highlight mTORC1's role in sustaining persistent inflammation following clearance of a viral respiratory pathogen and suggest a possible intervention for post-viral chronic lung inflammation.


Subject(s)
Influenza, Human , Orthomyxoviridae Infections , Pneumonia , Mice , Animals , Humans , Orthomyxoviridae Infections/complications , Mice, Inbred C57BL , Lung , Macrophages , Inflammation/complications , Sirolimus/pharmacology , Mechanistic Target of Rapamycin Complex 1 , TOR Serine-Threonine Kinases , Mammals
5.
mBio ; 14(4): e0051923, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37222516

ABSTRACT

Streptococcus pneumoniae (Sp) frequently causes secondary pneumonia after influenza A virus (IAV) infection, leading to high morbidity and mortality worldwide. Concomitant pneumococcal and influenza vaccination improves protection against coinfection but does not always yield complete protection. Impaired innate and adaptive immune responses have been associated with attenuated bacterial clearance in influenza virus-infected hosts. In this study, we showed that preceding low-dose IAV infection caused persistent Sp infection and suppression of bacteria-specific T-helper type 17 (Th17) responses in mice. Prior Sp infection protected against subsequent IAV/Sp coinfection by improving bacterial clearance and rescuing bacteria-specific Th17 responses in the lungs. Furthermore, blockade of IL-17A by anti-IL-17A antibodies abrogated the protective effect of Sp preinfection. Importantly, memory Th17 responses induced by Sp preinfection overcame viral-driven Th17 inhibition and provided cross-protection against different Sp serotypes following coinfection with IAV. These results indicate that bacteria-specific Th17 memory cells play a key role in providing protection against IAV/Sp coinfection in a serotype-independent manner and suggest that a Th17-based vaccine would have excellent potential to mitigate disease caused by coinfection. IMPORTANCE Streptococcus pneumoniae (Sp) frequently causes secondary bacterial pneumonia after influenza A virus (IAV) infection, leading to increased morbidity and mortality worldwide. Current pneumococcal vaccines induce highly strain-specific antibody responses and provide limited protection against IAV/Sp coinfection. Th17 responses are broadly protective against Sp single infection, but whether the Th17 response, which is dramatically impaired by IAV infection in naïve mice, might be effective in immunization-induced protection against pneumonia caused by coinfection is not known. In this study, we have revealed that Sp-specific memory Th17 cells rescue IAV-driven inhibition and provide cross-protection against subsequent lethal coinfection with IAV and different Sp serotypes. These results indicate that a Th17-based vaccine would have excellent potential to mitigate disease caused by IAV/Sp coinfection.


Subject(s)
Coinfection , Influenza A virus , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Pneumococcal Infections , Pneumonia, Pneumococcal , Animals , Mice , Humans , Pneumonia, Pneumococcal/complications , Pneumonia, Pneumococcal/prevention & control , Influenza, Human/complications , Influenza, Human/prevention & control , Th17 Cells , Coinfection/microbiology , Orthomyxoviridae Infections/complications , Streptococcus pneumoniae , Pneumococcal Infections/microbiology
6.
Front Biosci (Landmark Ed) ; 28(3): 43, 2023 03 02.
Article in English | MEDLINE | ID: mdl-37005752

ABSTRACT

BACKGROUND: Stability of intestinal flora is not only important for maintaining stable immune functions; it is also a key immune channel communicating the interaction between lung and intestine. In this study, probiotics and fecal microbiota transplantation (FMT) were used to regulate influenza-infected mice with antibiotic-induced intestinal dysbiosis and the effects of intestinal microorganisms on these mice were subsequently observed and evaluated. METHODS: Mice are housed in a normal environment with intranasal infection with influenza virus (FM1). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine messenger RNA expression and lung viral replication of toll-like receptor 7 (TLR7), myeloid differentiation primary reaction 88 (MyD88) and nuclear factor κB (ss) p65 in the TLR7 signaling pathway. Western blotting is used to measure the expression levels of TLR7, MyD88, and NF-κB p65 proteins. Flow cytometry was used to detect the proportion of Th17/T regulated cells. RESULTS: Results showed that compared with the simple virus group, both diversity and species of intestinal flora in influenza-infected mice with antibiotic-induced intestinal dysbiosis were lower, in vivo viral replication was significantly increased, lung and intestinal tissues were seriously damaged, degree of inflammation increased, expression of the TLR7 signaling pathway increased, and the Th1/Th2:Th17/Treg ratio decreased. Probiotics and FMT effectively regulated intestinal flora, improved pathological lung changes and inflammation caused by influenza infection, and adjusted the TLR7 signaling pathway and the Th1/Th2:Th17/Treg ratio. This effect was not obvious in TLR7-⁣/- mice.In summary, by affecting the TLR7 signaling pathway, intestinal microorganisms reduced the inflammatory response in the lungs of influenza-infected mice with imbalances in antibiotic flora. CONCLUSIONS: By affecting the TLR7 signaling pathway, intestinal microorganisms reduced the inflammatory response in the lungs of influenza-infected mice with imbalances in antibiotic flora. In summary, damage to lung tissue and intestinal mucosa in influenza-infected mice with antibiotic-induced intestinal dysbiosis is more serious compared to simple virus-infected mice. Improving intestinal flora using probiotics or FMT can alleviate intestinal inflammation and improve pulmonary inflammation through the TLR7 signaling pathway.


Subject(s)
Influenza, Human , Orthomyxoviridae Infections , Mice , Animals , Humans , Influenza, Human/complications , Orthomyxoviridae Infections/complications , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Dysbiosis , Signal Transduction , NF-kappa B/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Inflammation , Intestines
7.
Nature ; 615(7953): 660-667, 2023 03.
Article in English | MEDLINE | ID: mdl-36890237

ABSTRACT

Pathogen infection causes a stereotyped state of sickness that involves neuronally orchestrated behavioural and physiological changes1,2. On infection, immune cells release a 'storm' of cytokines and other mediators, many of which are detected by neurons3,4; yet, the responding neural circuits and neuro-immune interaction mechanisms that evoke sickness behaviour during naturalistic infections remain unclear. Over-the-counter medications such as aspirin and ibuprofen are widely used to alleviate sickness and act by blocking prostaglandin E2 (PGE2) synthesis5. A leading model is that PGE2 crosses the blood-brain barrier and directly engages hypothalamic neurons2. Here, using genetic tools that broadly cover a peripheral sensory neuron atlas, we instead identified a small population of PGE2-detecting glossopharyngeal sensory neurons (petrosal GABRA1 neurons) that are essential for influenza-induced sickness behaviour in mice. Ablating petrosal GABRA1 neurons or targeted knockout of PGE2 receptor 3 (EP3) in these neurons eliminates influenza-induced decreases in food intake, water intake and mobility during early-stage infection and improves survival. Genetically guided anatomical mapping revealed that petrosal GABRA1 neurons project to mucosal regions of the nasopharynx with increased expression of cyclooxygenase-2 after infection, and also display a specific axonal targeting pattern in the brainstem. Together, these findings reveal a primary airway-to-brain sensory pathway that detects locally produced prostaglandins and mediates systemic sickness responses to respiratory virus infection.


Subject(s)
Blood-Brain Barrier , Brain , Dinoprostone , Nasopharynx , Orthomyxoviridae Infections , Sensory Receptor Cells , Animals , Humans , Mice , Behavior, Animal , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain Stem/physiopathology , Dinoprostone/metabolism , Drinking , Eating , Influenza, Human/complications , Influenza, Human/metabolism , Movement , Nasopharynx/innervation , Orthomyxoviridae/pathogenicity , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Sensory Receptor Cells/metabolism , Survival Rate
8.
Antiviral Res ; 209: 105502, 2023 01.
Article in English | MEDLINE | ID: mdl-36549394

ABSTRACT

Influenza A virus infection causes considerable morbidity and mortality each year globally, and secondary bacterial infection further exacerbates the severity and fatality of the initial viral infection. Mast cells have substantial roles in protecting the respiratory tract mucosa, while their role in viral and bacterial co-infection remains unclear. The present study revealed that secondary Staphylococcus aureus infection significantly aggravated the activation of mast cells during the initial H1N1 infection both in vivo and in vitro, which was closely related to the increased inflammatory lung injury and mortality. Meanwhile, the secondary S. aureus infection suppressed autophagy and promoted inflammatory mediators released by mast cells through activating the PI3K/Akt signaling pathway. Blocking PI3K/Akt pathway by LY294002, an inhibitor of Akt phosphorylation, could rescue autophagy and inhibit the release of inflammatory mediators. Furthermore, based on the influenza A viral and secondary bacterial infected mice model, we showed that the combination of LY294002 and antiviral drug oseltamivir could effectively reduce the inflammatory damage and pro-inflammatory cytokines releasing in lungs, recovering body weight loss and improving the survival rate from the co-infections. In conclusion, secondary bacterial infection can inhibit autophagy and stimulate mast cell activation through the PI3K/Akt pathway, which might explain why secondary bacterial infection would cause severe and fatal consequences following an initial influenza A viral infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Lung Injury , Orthomyxoviridae Infections , Staphylococcal Infections , Animals , Mice , Humans , Influenza A virus/metabolism , Staphylococcus aureus , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases/metabolism , Mast Cells/metabolism , Lung , Autophagy , Staphylococcal Infections/complications , Staphylococcal Infections/drug therapy , Inflammation Mediators/pharmacology , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/drug therapy
9.
Drug Dev Res ; 83(7): 1707-1721, 2022 11.
Article in English | MEDLINE | ID: mdl-36112730

ABSTRACT

Viral pneumonia is a common complication caused by Influenza A virus infection and is characterized by severe pulmonary inflammation. A previous study showed that berberine (BBR) significantly ameliorated the pulmonary inflammation in mice with influenza viral pneumonia but its underlying mechanism is not entirely understood. In this study, we reproduced the mouse model of influenza viral pneumonia through intranasal infection of A/Puerto Rico/8/34 (H1N1), to further investigate the anti-inflammatory mechanism of BBR based on nucleotide-binding oligomerization domain-like receptor protein (NLRP) 3 inflammasome activation and Gasdermin D (GSDMD)-mediated pyroptosis. Consistent with MCC950 (10 mg/kg, a specific NLRP3 inflammasome inhibitor), BBR (10 mg/kg) obviously improved the weight loss and survival rate of infected mice, alleviated their pulmonary inflammation, and suppressed the accumulation of tumor necrosis factor and interleukin (IL)-6 in lungs without obvious inhibition on viral multiplication (hemagglutinin titer and nucleoprotein messenger RNA). Moreover, BBR (10 mg/kg) reduced the expressions of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and cysteinyl aspartate-specific proteinase (Caspase)1 (Caspase1 precursor [Pro-caspase1] + Caspase1p20 subunit) and the ratio of Caspase1p20 subunit to Caspase1, thus inhibiting the NLRP3 inflammasome activation and resulting in the decreased contents of mature IL-1ß and IL-18 in lungs. The GSDMD expression (GSDMD precursor [Pro-GSDMD] + GSDMD-N terminal [NT]) and the ratio of GSDMD-NT to GSDMD were also declined by BBR (10 mg/kg). These evidence indicate that BBR may ameliorate pulmonary inflammation in mice with influenza viral pneumonia through inhibiting NLRP3 inflammasome activation, as well as depressing GSDMD-mediated pyroptosis via declining GSDMD expression and restraining NLRP3 inflammasome-mediated GSDMD activation.


Subject(s)
Berberine , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Pneumonia, Viral , Animals , Mice , Berberine/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia, Viral/drug therapy , Pyroptosis , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/drug therapy
10.
J Comp Pathol ; 197: 23-34, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36089293

ABSTRACT

Porcine respiratory disease complex, which is caused by a combination of pathogens, including swine influenza A virus (SIV) and porcine reproductive respiratory syndrome virus (PRRSV), results in significant economic losses in pig production systems. Nasopharynx-associated lymphoid tissue (NALT) plays an important role in the uptake of pathogens and defence of the nasal mucosa in rodents and humans. We characterized NALT M cells in pigs and detected SIV antigen and PRRSV nucleic acid in NALT using histopathological, immunohistochemical and in-situ hybridization analyses. All SIV- and PRRSV-positive cases examined had suppurative nasopharyngitis and pneumonia. M cells were detected by immunohistochemistry and the distribution of M cells showed an increase in the middle section of NALT. SIV antigen was detected in M cells and PRRSV nucleic acid was demonstrated in the cytoplasm of macrophages in NALT. We believe that SIV and PRRSV infection in the upper respiratory tract induces local immunosuppression and these results confirm that swine NALT is a location for virus replication and may be strongly associated with the development of pneumonia in pigs.


Subject(s)
Influenza A virus , Nucleic Acids , Orthomyxoviridae Infections , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Antigens, Viral , Humans , Lymphoid Tissue , Nasopharynx , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/veterinary , Swine
11.
Nutrients ; 14(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35406091

ABSTRACT

The expanding knowledge on the systemic influence of the human microbiome suggests that fecal samples are underexploited sources of new beneficial strains for extra-intestinal health. We have recently shown that acetate, a main circulating microbiota-derived molecule, reduces the deleterious effects of pulmonary Streptococcus pneumoniae and enteric Salmonella enterica serovar Typhimurium bacterial post-influenza superinfections. Considering the beneficial and broad effects of acetate, we intended to isolate a commensal strain, producing acetate and potentially exploitable in the context of respiratory infections. We designed successive steps to select intestinal commensals that are extremely oxygen-sensitive, cultivable after a freezing process, without a proinflammatory effect on IL-8 induction, and producing acetate. We have identified the Blautia faecis DSM33383 strain, which decreased the TNFα-induced production of IL-8 by the intestinal epithelial cell line HT-29. The beneficial effect of this bacterial strain was further studied in two preclinical models of post-influenza Streptococcus pneumoniae (S.p) and Salmonella enterica serovar Typhimurium (S.t) superinfection. The intragastrical administration of Blautia faecis DSM33383 led to protection in influenza-infected mice suffering from an S.p. and, to a lesser extent, from an S.t secondary infection. Altogether, this study showed that Blautia faecis DSM33383 could be a promising candidate for preventive management of respiratory infectious diseases.


Subject(s)
Clostridiales , Orthomyxoviridae Infections , Pneumococcal Infections , Salmonella Infections, Animal , Animals , Clostridiales/classification , Clostridiales/isolation & purification , Disease Models, Animal , Humans , Influenza, Human/complications , Interleukin-8 , Mice , Orthomyxoviridae Infections/complications , Pneumococcal Infections/microbiology , Pneumococcal Infections/prevention & control , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella typhimurium , Streptococcus pneumoniae
12.
Cell Rep ; 38(9): 110456, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35235782

ABSTRACT

Influenza A virus (IAV) infection triggers an exuberant host response that promotes acute lung injury. However, the host response factors that promote the development of a pathologic inflammatory response to IAV remain incompletely understood. In this study, we identify an interferon-γ (IFN-γ)-regulated subset of monocytes, CCR2+ monocytes, as a driver of lung damage during IAV infection. IFN-γ regulates the recruitment and inflammatory phenotype of CCR2+ monocytes, and mice deficient in CCR2 (CCR2-/-) or IFN-γ (IFN-γ-/-) exhibit reduced lung inflammation, pathology, and disease severity. Adoptive transfer of wild-type (WT) (IFN-γR1+/+) but not IFN-γR1-/- CCR2+ monocytes restore the WT-like pathological phenotype of lung damage in IAV-infected CCR2-/- mice. CD8+ T cells are the main source of IFN-γ in IAV-infected lungs. Collectively, our data highlight the requirement of IFN-γ signaling in the regulation of CCR2+ monocyte-mediated lung pathology during IAV infection.


Subject(s)
Influenza A virus , Influenza, Human , Lung Injury , Orthomyxoviridae Infections , Animals , CD8-Positive T-Lymphocytes , Humans , Interferon-gamma , Lung , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes , Orthomyxoviridae Infections/complications
13.
Viruses ; 14(2)2022 02 15.
Article in English | MEDLINE | ID: mdl-35215989

ABSTRACT

It has been established that blood vessels are a target for influenza virus; however, the mechanism by which virus affects the cardiovascular system remains unknown. The aim of the study is the identification of histological changes and changes in the functional activity of the pulmonary and mesenteric blood vessels of Wistar rats. Wistar rats were intranasally infected with the influenza A(H1N1)pdm09 virus. At 24 and 96 h post infection (hpi), histopathological changes were observed in lung tissues with the absence of histological changes in mesenteric tissues. The functional activity of pulmonary and mesenteric arteries was determined using wire myography. In pulmonary arteries, there was a tendency towards an increase in integral response to the vasodilator and a decrease in the integral response to the vasoconstrictor at 24 hpi (compared with control). At 96 hpi, a tendency towards a decrease in the integral response to the vasoconstrictor persisted, while the response to acetylcholine was slightly increased. The functional activity of the mesenteric blood vessels was inverted: a significant decrease in the integral response to the vasodilator and an increase in the response to the vasoconstrictor at 24 hpi were observed; at 96 hpi, the integral response to the vasoconstrictor persisted, while the response to the vasodilator remained significantly reduced. Obtained data indicate the development of endothelial dysfunction in non-lethal and clinically non-severe experimental influenza virus infection.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Lung/pathology , Mesenteric Arteries/pathology , Orthomyxoviridae Infections/pathology , Alveolar Epithelial Cells/virology , Animals , Immunohistochemistry , Lung/virology , Male , Mesenteric Arteries/virology , Myography , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/virology , Rats , Rats, Wistar
14.
J Leukoc Biol ; 111(1): 147-159, 2022 01.
Article in English | MEDLINE | ID: mdl-33847405

ABSTRACT

Obesity is an independent risk factor for morbidity and mortality in response to influenza infection. However, the underlying mechanisms by which obesity impairs immunity are unclear. Herein, we investigated the effects of diet-induced obesity on pulmonary CD8+ T cell metabolism, cytokine production, and transcriptome as a potential mechanism of impairment during influenza virus infection in mice. Male C57BL/6J lean and obese mice were infected with sub-lethal mouse-adapted A/PR/8/34 influenza virus, generating a pulmonary anti-viral and inflammatory response. Extracellular metabolic flux analyses revealed pulmonary CD8+ T cells from obese mice, compared with lean controls, had suppressed oxidative and glycolytic metabolism at day 10 post-infection. Flow cytometry showed the impairment in pulmonary CD8+ T cell metabolism with obesity was independent of changes in glucose or fatty acid uptake, but concomitant with decreased CD8+ GrB+ IFNγ+ populations. Notably, the percent of pulmonary effector CD8+ GrB+ IFNγ+ T cells at day 10 post-infection correlated positively with total CD8+ basal extracellular acidification rate and basal oxygen consumption rate. Finally, next-generation RNA sequencing revealed complex and unique transcriptional regulation of sorted effector pulmonary CD8+ CD44+ T cells from obese mice compared to lean mice following influenza infection. Collectively, the data suggest diet-induced obesity increases influenza virus pathogenesis, in part, through CD8+ T cell-mediated metabolic reprogramming and impaired effector CD8+ T cell function.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Influenza A virus/immunology , Lung/immunology , Obesity/immunology , Orthomyxoviridae Infections/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Humans , Immunity , Influenza A virus/physiology , Influenza, Human/complications , Influenza, Human/immunology , Influenza, Human/metabolism , Lung/metabolism , Lung/virology , Male , Mice, Inbred C57BL , Mice, Obese , Obesity/complications , Obesity/metabolism , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/metabolism
15.
Front Immunol ; 12: 758368, 2021.
Article in English | MEDLINE | ID: mdl-34858411

ABSTRACT

The porcine respiratory disease complex (PRDC) is responsible for significant economic losses in the pig industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus are major viral contributors to PRDC. Vaccines are cost-effective measures for controlling PRRS, however, their efficacy in the context of co-infections has been poorly investigated. In this study, we aimed to determine the effect of PRRSV-2 and swine influenza H3N2 virus co-infection on the efficacy of PRRSV modified live virus (MLV) vaccination, which is widely used in the field. Following simultaneous challenge with contemporary PRRSV-2 and H3N2 field isolates, we found that the protective effect of PRRS MLV vaccination on clinical disease and pathology was abrogated, although viral load was unaffected and antibody responses were enhanced. In contrast, co-infection in non-immunized animals reduced PRRSV-2 viremia and H3N2 virus load in the upper respiratory tract and potentiated T cell responses against both PRRSV-2 and H3N2 in the lung. Further analysis suggested that an upregulation of inhibitory cytokines gene expression in the lungs of vaccinated pigs may have influenced responses to H3N2 and PRRSV-2. These findings provide important insights into the effect of viral co-infections on PRRS vaccine efficacy that may help identify more effective vaccination strategies against PRDC in the field.


Subject(s)
Coinfection/veterinary , Influenza A Virus, H3N2 Subtype/immunology , Orthomyxoviridae Infections/immunology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/biosynthesis , Coinfection/immunology , Coinfection/virology , Cytokines/biosynthesis , Cytokines/genetics , Datasets as Topic , Dogs , Female , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/virology , Porcine Reproductive and Respiratory Syndrome/virology , Swine , Vaccination/veterinary , Vaccine Efficacy , Vaccines, Attenuated/immunology , Viral Load , Viremia/prevention & control , Viremia/virology
16.
Sci Rep ; 11(1): 21259, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711897

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a serious public health concern worldwide. Notably, co-infection with other pathogens may worsen the severity of COVID-19 symptoms and increase fatality. Here, we show that co-infection with influenza A virus (IAV) causes more severe body weight loss and more severe and prolonged pneumonia in SARS-CoV-2-infected hamsters. Each virus can efficiently spread in the lungs without interference by the other. However, in immunohistochemical analyses, SARS-CoV-2 and IAV were not detected at the same sites in the respiratory organs of co-infected hamsters, suggesting that either the two viruses may have different cell tropisms in vivo or each virus may inhibit the infection and/or growth of the other within a cell or adjacent areas in the organs. Furthermore, a significant increase in IL-6 was detected in the sera of hamsters co-infected with SARS-CoV-2 and IAV at 7 and 10 days post-infection, suggesting that IL-6 may be involved in the increased severity of pneumonia. Our results strongly suggest that IAV co-infection with SARS-CoV-2 can have serious health risks and increased caution should be applied in such cases.


Subject(s)
COVID-19/complications , Orthomyxoviridae Infections/complications , Pneumonia, Viral/complications , SARS-CoV-2 , Animals , COVID-19/pathology , COVID-19/virology , Coinfection/pathology , Disease Models, Animal , Female , Humans , Interleukin-6/blood , Lung/diagnostic imaging , Lung/pathology , Mesocricetus , Orthomyxoviridae/pathogenicity , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Severity of Illness Index , Virus Replication
17.
Front Cell Infect Microbiol ; 11: 714440, 2021.
Article in English | MEDLINE | ID: mdl-34595130

ABSTRACT

People with diabetes mellitus are susceptible to both cardiovascular disease and severe influenza A virus infection. We hypothesized that diabetes also increases risks of influenza-associated cardiac complications. A murine type 1 (streptozotocin-induced) diabetes model was employed to investigate influenza-induced cardiac distress. Lung histopathology and viral titres revealed no difference in respiratory severity between infected control and diabetic mice. However, compared with infected control mice, infected diabetic mice had increased serum cardiac troponin I and creatine-kinase MB, left ventricular structural changes and right ventricular functional alterations, providing the first experimental evidence of type I diabetes increasing risks of influenza-induced cardiovascular complications.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Animals , Diabetes Mellitus, Type 1/complications , Humans , Influenza, Human/complications , Mice , Orthomyxoviridae Infections/complications
18.
Sci Rep ; 11(1): 15675, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344944

ABSTRACT

Although coagulation abnormalities, including microvascular thrombosis, are thought to contribute to tissue injury and single- or multiple-organ dysfunction in severe influenza, the detailed mechanisms have yet been clarified. This study evaluated influenza-associated abnormal blood coagulation utilizing a severe influenza mouse model. After infecting C57BL/6 male mice with intranasal applications of 500 plaque-forming units of influenza virus A/Puerto Rico/8/34 (H1N1; PR8), an elevated serum level of prothrombin fragment 1 + 2, an indicator for activated thrombin generation, was observed. Also, an increased gene expression of oxidized low-density lipoprotein (LDL) receptor-1 (Olr1), a key molecule in endothelial dysfunction in the progression of atherosclerosis, was detected in the aorta of infected mice. Body weight decrease, serum levels of cytokines and chemokines, viral load, and inflammation in the lungs of infected animals were similar between wild-type and Olr1 knockout (KO) mice. In contrast, the elevation of prothrombin fragment 1 + 2 levels in the sera and intravascular thrombosis in the lungs by PR8 virus infection were not induced in KO mice. Collectively, the results indicated that OLR1 is a critical host factor in intravascular thrombosis as a pathogeny of severe influenza. Thus, OLR1 is a promising novel therapeutic target for thrombosis during severe influenza.


Subject(s)
Biomarkers , Disease Susceptibility , Orthomyxoviridae Infections/complications , Scavenger Receptors, Class E/metabolism , Thrombosis/etiology , Thrombosis/metabolism , Animals , Blood Coagulation , Cytokines/blood , Disease Models, Animal , Mice , Mice, Knockout , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/virology , Partial Thromboplastin Time , Scavenger Receptors, Class E/genetics , Severity of Illness Index , Thrombin/biosynthesis , Thrombosis/diagnosis , Viral Load
19.
J Immunol ; 207(5): 1371-1376, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34380647

ABSTRACT

Inflammatory cytokine storm is a known cause for acute respiratory distress syndrome. In this study, we have investigated the role of IFN-γ in lethal lung inflammation using a mouse model of postinfluenza methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. To mimic the clinical scenario, animals were treated with antibiotics for effective bacterial control following MRSA superinfection. However, antibiotic therapy alone is not sufficient to improve survival of wild-type animals in this lethal acute respiratory distress syndrome model. In contrast, antibiotics induce effective protection in mice deficient in IFN-γ response. Mechanistically, we show that rather than inhibiting bacterial clearance, IFN-γ promotes proinflammatory cytokine response to cause lethal lung damage. Neutralization of IFN-γ after influenza prevents hyperproduction of TNF-α, and thereby protects against inflammatory lung damage and animal mortality. Taken together, the current study demonstrates that influenza-induced IFN-γ drives a stepwise propagation of inflammatory cytokine response, which ultimately results in fatal lung damage during secondary MRSA pneumonia, despite of antibiotic therapy.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Inflammation/immunology , Influenza A virus/physiology , Influenza, Human/immunology , Interferon-gamma/metabolism , Lung/immunology , Orthomyxoviridae Infections/immunology , Pneumonia, Staphylococcal/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/physiology , Animals , Cells, Cultured , Humans , Influenza, Human/complications , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/complications , Pneumonia, Staphylococcal/complications , Staphylococcal Infections/complications , Superinfection , Tumor Necrosis Factor-alpha
20.
Int J Mol Sci ; 22(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34445491

ABSTRACT

In this study we assessed the effects of antigen exposure in mice pre-sensitized with allergen following viral infection on changes in lung function, cellular responses and tight junction expression. Female BALB/c mice were sensitized to ovalbumin and infected with influenza A before receiving a second ovalbumin sensitization and challenge with saline, ovalbumin (OVA) or house dust mite (HDM). Fifteen days post-infection, bronchoalveolar inflammation, serum antibodies, responsiveness to methacholine and barrier integrity were assessed. There was no effect of infection alone on bronchoalveolar lavage cellular inflammation 15 days post-infection; however, OVA or HDM challenge resulted in increased bronchoalveolar inflammation dominated by eosinophils/neutrophils or neutrophils, respectively. Previously infected mice had higher serum OVA-specific IgE compared with uninfected mice. Mice previously infected, sensitized and challenged with OVA were most responsive to methacholine with respect to airway resistance, while HDM challenge caused significant increases in both tissue damping and tissue elastance regardless of previous infection status. Previous influenza infection was associated with decreased claudin-1 expression in all groups and decreased occludin expression in OVA or HDM-challenged mice. This study demonstrates the importance of the respiratory epithelium in pre-sensitized individuals, where influenza-infection-induced barrier disruption resulted in increased systemic OVA sensitization and downstream effects on lung function.


Subject(s)
Bronchial Hyperreactivity/drug therapy , Methacholine Chloride/administration & dosage , Orthomyxoviridae Infections/complications , Ovalbumin/immunology , Pyroglyphidae/immunology , Airway Resistance/drug effects , Animals , Bronchial Hyperreactivity/etiology , Claudin-1/metabolism , Down-Regulation , Female , Influenza A virus/pathogenicity , Methacholine Chloride/pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Ovalbumin/administration & dosage , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...