Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Sci Adv ; 10(33): eado6229, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39141726

ABSTRACT

The choline-glycine betaine pathway plays an important role in bacterial survival in hyperosmotic environments. Osmotic activation of the choline transporter BetT promotes the uptake of external choline for synthesizing the osmoprotective glycine betaine. Here, we report the cryo-electron microscopy structures of Pseudomonas syringae BetT in the apo and choline-bound states. Our structure shows that BetT forms a domain-swapped trimer with the C-terminal domain (CTD) of one protomer interacting with the transmembrane domain (TMD) of a neighboring protomer. The substrate choline is bound within a tryptophan prism at the central part of TMD. Together with functional characterization, our results suggest that in Pseudomonas species, including the plant pathogen P. syringae and the human pathogen Pseudomonas aeruginosa, BetT is locked at a low-activity state through CTD-mediated autoinhibition in the absence of osmotic stress, and its hyperosmotic activation involves the release of this autoinhibition.


Subject(s)
Bacterial Proteins , Choline , Cryoelectron Microscopy , Membrane Transport Proteins , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Choline/metabolism , Choline/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Pseudomonas syringae/metabolism , Models, Molecular , Osmoregulation , Osmotic Pressure , Betaine/metabolism , Protein Conformation , Protein Binding , Structure-Activity Relationship , Protein Domains
2.
Environ Sci Pollut Res Int ; 31(32): 44717-44729, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954342

ABSTRACT

As a widely used pesticide, abamectin could be a threat to nontarget organisms. In this study, the toxic mechanism of abamectin on osmoregulation in Procambarus clarkii was explored for the first time. The results of this study showed that with increasing abamectin concentration, the membrane structures of gill filaments were damaged, with changes in ATPase activities, transporter contents, biogenic amine contents, and gene expression levels. The results of this study indicated that at 0.2 mg/L abamectin, ion diffusion could maintain osmoregulation. At 0.4 mg/L abamectin, passive transport was inhibited due to damage to the membrane structures of gill filaments, and active transport needed to be enhanced for osmoregulation. At 0.6 mg/L abamectin, the membrane structures of gill filaments were seriously damaged, and the expression level of osmoregulation-related genes decreased, but the organisms were still mobilizing various transporters, ATPases, and biogenic amines to address abamectin stress. This study provided a theoretical basis for further study of the effects of contaminations in aquatic environment on the health of crustaceans.


Subject(s)
Astacoidea , Ivermectin , Osmoregulation , Animals , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Astacoidea/drug effects , Astacoidea/physiology , Water Pollutants, Chemical/toxicity , Gills/drug effects
3.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-39030685

ABSTRACT

Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-ß-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-ß-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.


Subject(s)
Archaea , Fresh Water , Methane , Osmoregulation , Phylogeny , Salt Stress , Methane/metabolism , Fresh Water/microbiology , Anaerobiosis , Archaea/metabolism , Archaea/genetics , Archaea/classification , Oxidation-Reduction
4.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062766

ABSTRACT

Water is essential to all life on earth. It is a major component that makes up living organisms and plays a vital role in multiple biological processes. It provides a medium for chemical and enzymatic reactions in the cell and is a major player in osmoregulation and the maintenance of cell turgidity. Despite this, many organisms, called anhydrobiotes, are capable of surviving under extremely dehydrated conditions. Less is known about how anhydrobiotes adapt and survive under desiccation stress. Studies have shown that morphological and physiological changes occur in anhydrobiotes in response to desiccation stress. Certain disaccharides and proteins, including heat shock proteins, intrinsically disordered proteins, and hydrophilins, play important roles in the desiccation tolerance of anhydrobiotes. In this review, we summarize the recent findings of desiccation tolerance in the budding yeast Saccharomyces cerevisiae. We also propose that the yeast under desiccation could be used as a model to study neurodegenerative disorders.


Subject(s)
Desiccation , Saccharomyces cerevisiae , Water , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Water/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological/physiology , Adaptation, Physiological , Heat-Shock Proteins/metabolism , Saccharomycetales/metabolism , Saccharomycetales/physiology , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Osmoregulation/physiology
5.
Article in English | MEDLINE | ID: mdl-39004301

ABSTRACT

Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the ß-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-ß interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.


Subject(s)
Amino Acid Sequence , Decapoda , Osmoregulation , Phylogeny , Sodium-Potassium-Exchanging ATPase , Animals , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/chemistry , Osmoregulation/genetics , Decapoda/genetics , Decapoda/enzymology , Decapoda/physiology , Evolution, Molecular , Gills/metabolism , Gills/enzymology
6.
Article in English | MEDLINE | ID: mdl-39019252

ABSTRACT

Exposure to environmental changes often results in the production of reactive oxygen species (ROS), which, if uncontrolled, leads to loss of cellular homeostasis and oxidative distress. However, at physiological levels these same ROS are known to be key players in cellular signaling and the regulation of key biological activities (oxidative eustress). While ROS are known to mediate salinity tolerance in plants, little is known for the animal kingdom. In this study, we use the Mediterranean crab Carcinus aestuarii, highly tolerant to salinity changes in its environment, as a model to test the healthy or pathological role of ROS due to exposure to diluted seawater (dSW). Crabs were injected either with an antioxidant [N-acetylcysteine (NAC), 150 mg·kg-1] or phosphate buffered saline (PBS). One hour after the first injection, animals were either maintained in seawater (SW) or transferred to dSW and injections were carried out at 12-h intervals. After ≈48 h of salinity change, all animals were sacrificed and gills dissected for analysis. NAC injections successfully inhibited ROS formation occurring due to dSW transfer. However, this induced 55% crab mortality, as well as an inhibition of the enhanced catalase defenses and mitochondrial biogenesis that occur with decreased salinity. Crab osmoregulatory capacity under dSW condition was not affected by NAC, although it induced in anterior (non-osmoregulatory) gills a 146-fold increase in Na+/K+/2Cl- expression levels, reaching values typically observed in osmoregulatory tissues. We discuss how ROS influences the physiology of anterior and posterior gills, which have two different physiological functions and strategies during hyper-osmoregulation in dSW.


Subject(s)
Acclimatization , Brachyura , Reactive Oxygen Species , Salinity , Animals , Reactive Oxygen Species/metabolism , Brachyura/physiology , Brachyura/metabolism , Brachyura/drug effects , Osmotic Pressure , Acetylcysteine/pharmacology , Seawater , Antioxidants/metabolism , Oxidative Stress/drug effects , Gills/metabolism , Gills/drug effects , Osmoregulation
7.
Am J Physiol Cell Physiol ; 327(3): C545-C556, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38946247

ABSTRACT

Euryhaline fish experience variable osmotic environments requiring physiological adjustments to tolerate elevated salinity. Mozambique tilapia (Oreochromis mossambicus) possess one of the highest salinity tolerance limits of any fish. In tilapia and other euryhaline fish species, the myo-inositol biosynthesis (MIB) pathway enzymes, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1.1), are among the most upregulated mRNAs and proteins indicating the high importance of this pathway for hyperosmotic (HO) stress tolerance. These abundance changes must be precluded by HO perception and signaling mechanism activation to regulate the expression of MIPS and IMPA1.1 genes. In previous work using a O. mossambicus cell line (OmB), a reoccurring osmosensitive enhancer element (OSRE1) in both MIPS and IMPA1.1 was shown to transcriptionally upregulate these enzymes in response to HO stress. The OSRE1 core consensus (5'-GGAAA-3') matches the core binding sequence of the predominant mammalian HO response transcription factor, nuclear factor of activated T-cells (NFAT5). HO-challenged OmB cells showed an increase in NFAT5 mRNA suggesting NFAT5 may contribute to MIB pathway regulation in euryhaline fish. Ectopic expression of wild-type NFAT5 induced an IMPA1.1 promoter-driven reporter by 5.1-fold (P < 0.01). Moreover, expression of dominant negative NFAT5 in HO media resulted in a 47% suppression of the reporter signal (P < 0.005). Furthermore, reductions of IMPA1.1 (37-49%) and MIPS (6-37%) mRNA abundance were observed in HO-challenged NFAT5 knockout cells relative to control cells. Collectively, these multiple lines of experimental evidence establish NFAT5 as a tilapia transcription factor contributing to HO-induced activation of the MIB pathway.NEW & NOTEWORTHY In our study, we use a multi-pronged synthetic biology approach to demonstrate that the fish homolog of the predominant mammalian osmotic stress transcription factor nuclear factor of activated T-cells (NFAT5) also contributes to the activation of hyperosmolality inducible genes in cells of extremely euryhaline fish. However, in addition to NFAT5 the presence of other strong osmotically inducible signaling mechanisms is required for full activation of osmoregulated tilapia genes.


Subject(s)
Inositol , Myo-Inositol-1-Phosphate Synthase , Osmotic Pressure , Tilapia , Up-Regulation , Animals , Tilapia/genetics , Tilapia/metabolism , Inositol/metabolism , Myo-Inositol-1-Phosphate Synthase/genetics , Myo-Inositol-1-Phosphate Synthase/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Cell Line , Signal Transduction , Transcription, Genetic , Osmoregulation/genetics , Transcriptional Activation
8.
Sci Rep ; 14(1): 16061, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38992190

ABSTRACT

Rhizome rot is a destructive soil-borne disease of Polygonatum kingianum and adversely affects the yield and sustenance of the plant. Understanding how the causal fungus Fusarium oxysporum infects P. kingianum may suggest effective control measures against rhizome rot. In germinating conidia of infectious F. oxysporum, expression of the zinc finger transcription factor gene Zfp1, consisting of two C2H2 motifs, was up-regulated. To characterize the critical role of ZFP1, we generated independent deletion mutants (zfp1) and complemented one mutant with a transgenic copy of ZFP1 (zfp1 tZFP1). Mycelial growth and conidial production of zfp1 were slower than those of wild type (ZFP1) and zfp1 tZFP1. Additionally, a reduced inhibition of growth suggested zfp1 was less sensitive to conditions promoting cell wall and osmotic stresses than ZFP1 and zfp1 tZFP1. Furthermore pathogenicity tests suggested a critical role for growth of zfp1 in infected leaves and rhizomes of P. kingianum. Thus ZFP1 is important for mycelial growth, conidiation, osmoregulation, and pathogenicity in P. kingianum.


Subject(s)
Fungal Proteins , Fusarium , Osmoregulation , Plant Diseases , Polygonatum , Spores, Fungal , Transcription Factors , Zinc Fingers , Fusarium/pathogenicity , Fusarium/genetics , Fusarium/growth & development , Fusarium/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Spores, Fungal/growth & development , Spores, Fungal/genetics , Virulence/genetics , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Polygonatum/microbiology , Gene Expression Regulation, Fungal
9.
Front Cell Infect Microbiol ; 14: 1414188, 2024.
Article in English | MEDLINE | ID: mdl-38979511

ABSTRACT

In Escherichia coli, the disaccharide trehalose can be metabolized as a carbon source or be accumulated as an osmoprotectant under osmotic stress. In hypertonic environments, E. coli accumulates trehalose in the cell by synthesis from glucose mediated by the cytosolic enzymes OtsA and OtsB. Trehalose in the periplasm can be hydrolyzed into glucose by the periplasmic trehalase TreA. We have previously shown that a treA mutant of extraintestinal E. coli strain BEN2908 displayed increased resistance to osmotic stress by 0.6 M urea, and reduced production of type 1 fimbriae, reduced invasion of avian fibroblasts, and decreased bladder colonization in a murine model of urinary tract infection. Since loss of TreA likely results in higher periplasmic trehalose concentrations, we wondered if deletion of otsA and otsB genes, which would lead to decreased internal trehalose concentrations, would reduce resistance to stress by 0.6 M urea and promote type 1 fimbriae production. The BEN2908ΔotsBA mutant was sensitive to osmotic stress by urea, but displayed an even more pronounced reduction in production of type 1 fimbriae, with the consequent reduction in adhesion/invasion of avian fibroblasts and reduced bladder colonization in the murine urinary tract. The BEN2908ΔtreAotsBA mutant also showed a reduction in production of type 1 fimbriae, but in contrast to the ΔotsBA mutant, resisted better than the wild type in the presence of urea. We hypothesize that, in BEN2908, resistance to stress by urea would depend on the levels of periplasmic trehalose, but type 1 fimbriae production would be influenced by the levels of cytosolic trehalose.


Subject(s)
Fimbriae, Bacterial , Osmoregulation , Trehalose , Urinary Bladder , Urinary Tract Infections , Animals , Trehalose/metabolism , Mice , Urinary Bladder/microbiology , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Disease Models, Animal , Female , Osmotic Pressure , Extraintestinal Pathogenic Escherichia coli/metabolism , Extraintestinal Pathogenic Escherichia coli/genetics , Urea/metabolism , Trehalase/metabolism , Trehalase/genetics , Gene Deletion , Glucose/metabolism
10.
Life Sci Alliance ; 7(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39074903

ABSTRACT

Trypanosoma cruzi uses various mechanisms to cope with osmotic fluctuations during infection, including the remodeling of organelles such as the contractile vacuole complex (CVC). Little is known about the morphological changes of the CVC during pulsation cycles occurring upon osmotic stress. Here, we investigated the structure-function relationship between the CVC and the flagellar pocket domain where fluid discharge takes place-the adhesion plaque-during the CVC pulsation cycle. Using TcrPDEC2 and TcVps34 overexpressing mutants, known to have low and high efficiency for osmotic responses, we described a structural phenotype for the CVC that matches their corresponding physiological responses. Quantitative tomography provided data on the volume of the CVC and spongiome connections. Changes in the adhesion plaque during the pulsation cycle were also quantified and a dense filamentous network was observed. Together, the results suggest that the adhesion plaque mediates fluid discharge from the central vacuole, revealing new aspects of the osmoregulatory system in T. cruzi.


Subject(s)
Osmotic Pressure , Trypanosoma cruzi , Vacuoles , Trypanosoma cruzi/physiology , Vacuoles/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Osmoregulation , Flagella/metabolism , Flagella/physiology , Chagas Disease/metabolism , Mutation
11.
Ecol Evol Physiol ; 97(3): 164-179, 2024.
Article in English | MEDLINE | ID: mdl-38875141

ABSTRACT

AbstractFreshwater salinity regimes vary naturally and are changing in response to anthropogenic activities. Few insect species tolerate saline waters, and biodiversity losses are associated with increasing salinity in freshwater. We used radiotracers (22Na, 35SO4, and 45Ca) to examine ion uptake rates across concentration gradients in mayflies (Ephemeroptera), caddis flies (Trichoptera), and mosquitoes (Diptera) and made observations for some traits in seven other taxa representing mayflies, stone flies (Plecoptera), true flies (Diptera), and true bugs (Hemiptera). We further assessed the permeability of the cuticle to 3H2O influx and 22Na efflux when faced with deionized water in these same taxa. We hypothesized a relationship between uptake rates and reported saline tolerances, but our data did not support this hypothesis, likely because acclimatory responses were not part of this experimental approach. However, we found several common physiological traits across the taxa studied, including (i) ionic uptake rates that were always positively correlated with dissolved concentrations, (ii) generally low Ca uptake rates relative to other freshwater taxa, (iii) greater Na loss than Na uptake in dilute conditions, (iv) ion uptake that was more variable in ion-rich conditions than in dilute conditions, and (v) 3H2O influx that occurs quickly (but this rapidly exchangeable pool of body water accounts for a surprisingly small percentage of the water content of species tested). There remains much to learn about the physiology of these important organisms in the face of changing salinity regimes worldwide.


Subject(s)
Fresh Water , Insecta , Osmoregulation , Animals , Osmoregulation/physiology , Insecta/physiology , Salinity
12.
Braz J Biol ; 84: e281457, 2024.
Article in English | MEDLINE | ID: mdl-38896729

ABSTRACT

Cowpea is a leguminous plant belonging to the fabaceae family cultivated in the North and Northeast regions of Brazil, with productive potential. Among the abiotic factors, water deficiency is one of the main environmental limitations that influence agricultural production in the world. The objective of this work was to study the relative water content and osmoregulators of cowpea plants subjected to water stress. The experiment was carried out in a greenhouse at the Universidade Federal Rural da Amazônia (UFRA, Belém, PA), cowpea plants BR-17 Gurguéia Vigna unguiculata (L.) Walp were used. The experimental design was completely randomized (DIC) in a 2 × 2 factorial scheme, two water conditions (control and water deficit) and two times of stress (four and six days of water suspension), with 7 replications, totaling 28 experimental units. The water deficit affected plants, causing a reduction in relative water content (69.98%), starch (12.84% in leaves and 23.48% in roots) and carbohydrates (84.34%), and an increase in glycine-betaine, sucrose (114.11% in leaves and 18.71% in roots) and proline (358.86%) at time 2. The relative water content was negatively affected by water conditions, with a decrease in relation to the interaction of the aerial part and the root system. Therefore, greater metabolic responses were noted in plants that were subjected to stress treatment at time 2 (6 days).


Subject(s)
Vigna , Water , Dehydration , Osmoregulation/physiology , Betaine/analysis
13.
Arch Environ Contam Toxicol ; 87(1): 58-68, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38922419

ABSTRACT

Environmental stressors in aquatic organisms can be assessed using a bioenergetic approach based on the evaluation of changes in their physiological parameters. We evaluated the chronic effects of cadmium (Cd2+) on the energy balance as well as the survival, growth, metabolism, nitrogen excretion, hepatosomatic index, oxidized energy substrate, and osmoregulation of the shrimp Penaeus vannamei with the hypothesis that the high energy demand related to the homeostatic regulation of Cd2+could disrupt the energy balance and as a consequence, their physiological functions. The shrimp exposed to Cd2+ had higher mortality (30%), directed more energy into growth (33% of energy intake), ingested 10% more energy, and defecated less than control animals. Cd2+ exposure caused a tendency to decrease metabolism and ammonia excretion but did not alter the hepatosomatic index, type of energy substrate oxidized, and the hyperosmorregulatory pattern of the species. The Cd+2 exposure may have induced a trade-off response because there was a growth rate increase accompanied by increased mortality.


Subject(s)
Cadmium , Energy Metabolism , Penaeidae , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Penaeidae/drug effects , Penaeidae/physiology , Penaeidae/growth & development , Water Pollutants, Chemical/toxicity , Energy Metabolism/drug effects , Osmoregulation/drug effects
14.
BMC Plant Biol ; 24(1): 422, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760671

ABSTRACT

BACKGROUND: Salinity is one major abiotic stress affecting photosynthesis, plant growth, and development, resulting in low-input crops. Although photosynthesis underlies the substantial productivity and biomass storage of crop yield, the response of the sunflower photosynthetic machinery to salinity imposition and how H2S mitigates the salinity-induced photosynthetic injury remains largely unclear. Seed priming with 0.5 mM NaHS, as a donor of H2S, was adopted to analyze this issue under NaCl stress. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then the seedlings were exposed to 150 mM NaCl for 7 d under controlled growth conditions. RESULTS: Salinity stress significantly harmed plant growth, photosynthetic parameters, the structural integrity of chloroplasts, and mesophyll cells. H2S priming improved the growth parameters, relative water content, stomatal density and aperture, photosynthetic pigments, photochemical efficiency of PSII, photosynthetic performance, soluble sugar as well as soluble protein contents while reducing proline and ABA under salinity. H2S also boosted the transcriptional level of ribulose 1,5-bisphosphate carboxylase small subunit gene (HaRBCS). Further, the transmission electron microscope showed that under H2S priming and salinity stress, mesophyll cells maintained their cell membrane integrity and integrated chloroplasts with well-developed thylakoid membranes. CONCLUSION: The results underscore the importance of H2S priming in maintaining photochemical efficiency, Rubisco activity, and preserving the chloroplast structure which participates in salinity stress adaptation, and possibly sunflower productivity under salinity imposition. This underpins retaining and minimizing the injury to the photosynthetic machinery to be a crucial trait in response of sunflower to salinity stress.


Subject(s)
Helianthus , Hydrogen Sulfide , Osmoregulation , Photosynthesis , Salt Stress , Seedlings , Helianthus/physiology , Helianthus/drug effects , Helianthus/growth & development , Helianthus/metabolism , Photosynthesis/drug effects , Seedlings/physiology , Seedlings/drug effects , Seedlings/growth & development , Hydrogen Sulfide/metabolism , Chloroplasts/metabolism , Salinity
15.
Elife ; 122024 May 02.
Article in English | MEDLINE | ID: mdl-38695350

ABSTRACT

Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.


Subject(s)
ATP-Binding Cassette Transporters , Bacterial Proteins , Lactococcus lactis , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Betaine/metabolism , Cryoelectron Microscopy , Fluorescence Resonance Energy Transfer , Lactococcus lactis/metabolism , Osmolar Concentration , Osmoregulation , Protein Binding , Protein Domains , Single Molecule Imaging
16.
Sci Total Environ ; 935: 173215, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38750748

ABSTRACT

The Manila clam (Ruditapes philippinarum) is a commercially important marine bivalve, which inhabits the estuarine and mudflat areas. The osmoregulation is of great significance for molluscs adaptation to salinity fluctuations. In this study, we investigated the effects of low salinity (10 psu) and high salinity (40 psu) stress on survival and osmoregulation of the R. philippinarum. The results of physiological parameters showed that the ion (Na+, K+, Cl-) concentrations and Na+/K+-ATPase (NKA) activity of R. philippinarum decreased significantly under low salinity stress, but increased significantly under high salinity stress, indicating that there are differences in physiological adaptation of osmoregulation of R. philippinarum. In addition, we conducted the transcriptome analysis in the gills of R. philippinarum exposed to low (10 psu) and high (40 psu) salinity challenge for 48 h using RNA-seq technology. A total of 153 and 640 differentially expressed genes (DEGs) were identified in the low salinity (LS) group and high salinity (HS) group, respectively. The immune (IAP, TLR6, C1QL4, Ank3), ion transport (Slc34a2, SLC39A14), energy metabolism (PCK1, LDLRA, ACOX1) and DNA damage repair-related genes (Gadd45g, HSP70B2, GATA4) as well as FoxO, protein processing in endoplasmic reticulum and endocytosis pathways were involved in osmoregulation under low salinity stress of R. philippinarum. Conversely, the ion transport (SLC6A7, SLC6A9, SLC6A14, TRPM2), amino acid metabolism (GS, TauD, ABAT, ALDH4A1) and immune-related genes (MAP2K6, BIRC7A, CTSK, GVIN1), and amino acid metabolism pathways (beta-Alanine, Alanine, aspartate and glutamate, Glutathione) were involved in the process of osmoregulation under high salinity stress. The results obtained here revealed the difference of osmoregulation mechanism of R. philippinarum under low and high salinity stress through physiological and molecular levels. This study contributes to the assessment of salinity adaptation of bivalves in the context of climate change and provides useful information for marine resource conservation and aquaculture.


Subject(s)
Bivalvia , Osmoregulation , Salt Stress , Transcriptome , Animals , Bivalvia/physiology , Bivalvia/genetics , Gene Expression Profiling , Salinity
17.
Mar Pollut Bull ; 203: 116432, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728954

ABSTRACT

Salinity fluctuations significantly impact the reproduction, growth, development, as well as physiological and metabolic activities of fish. To explore the osmoregulation mechanism of aquatic organisms acclimating to salinity stress, the physiological and transcriptomic characteristics of spotted seabass (Lateolabrax maculatus) in response to varying salinity gradients were investigated. In this study, different salinity stress exerted inhibitory effects on lipase activity, while the impact on amylase activity was not statistically significant. Notably, a moderate increase in salinity (24 psu) demonstrated the potential to enhance the efficient utilization of proteins by spotted seabass. Both Na+/K+-ATPase and malondialdehyde showed a fluctuating trend of increasing and then decreasing, peaking at 72 h. Transcriptomic analysis revealed that most differentially expressed genes were involved in energy metabolism, signal transduction, the immune response, and osmoregulation. These results will provide insights into the molecular mechanisms of salinity adaptation and contribute to sustainable development of the global aquaculture industry.


Subject(s)
Bass , Salinity , Transcriptome , Animals , Bass/physiology , Bass/genetics , Osmoregulation , Salt Stress , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics
18.
Elife ; 122024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568203

ABSTRACT

Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses. Cells divided faster, survived longer, and showed decreased transcriptional response when fluctuations of hyperosmotic stress and glucose deprivation occurred in phase than when the two stresses occurred alternatively. Therefore, glucose availability regulates yeast responses to dynamic osmotic stress, showcasing the key role of metabolic fluctuations in cellular responses to dynamic stress. We also found that mutants with impaired osmotic stress response were better adapted to alternating stresses than wild-type cells, showing that genetic mechanisms of adaptation to a persistent stress factor can be detrimental under dynamically interacting conditions.


Subject(s)
Osmoregulation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Osmotic Pressure , Cell Proliferation , Glucose
19.
Environ Sci Pollut Res Int ; 31(21): 30806-30818, 2024 May.
Article in English | MEDLINE | ID: mdl-38613757

ABSTRACT

In this study, the effects of exogenous methyl jasmonate (MeJA) on metal uptake and its ability to attenuate metal toxicity in kenaf plants under Pb stress were investigated. The experiment was conducted with five different MeJA concentrations (0, 40, 80, 160, and 320 µM) as a foilar application to kenaf plants exposed to 200 µM Pb stress. The results revealed that pretreatmen of MeJA significantly increased plant dry weight, plant height, and root architecture at all concentrations tested, with the most significant increase at 320 µM. Foliar application of MeJA at 160 µM and 320 µM increased the Pb concentrations in leaves and stems as well as the translocation factor (TF) from root to leaf. However, the bioaccumulation factor in the shoot initially decreased and then increased with increasing MeJA concentration. By increasing enzymatic (SOD, POD, and CAT) and non-enzymatic (AsA and non-protein thiols) antioxidants, MeJA pretreatment decreased lipid peroxidation, O2- and H2O2 accumulation and recovered photosynthetic pigment content under Pb stress. Increased osmolytes (proline, sugar, and starch) and protein content after MeJA pretreatment under Pb stress restore cellular homeostasis and improved kenaf tolerance. Our results suggest that MeJA pretreatment modifies the antioxidant machinery of kenaf and inhibits stress-related processes that cause lipid peroxidation, hence enhancing plant tolerance to Pb stress.


Subject(s)
Acetates , Antioxidants , Cyclopentanes , Hibiscus , Lead , Oxylipins , Antioxidants/metabolism , Lead/toxicity , Osmoregulation/drug effects
20.
Sci Total Environ ; 930: 172695, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38663613

ABSTRACT

General control non-derepressible-2 (GCN2) is widely expressed in eukaryotes and responds to biotic and abiotic stressors. However, the precise function and mechanism of action of GCN2 in response to cadmium (Cd) stress in Nicotiana tabacum L. (tobacco) remains unclear. We investigated the role of NtGCN2 in Cd tolerance and explored the mechanism by which NtGCN2 responds to Cd stress in tobacco by exposing NtGCN2 transgenic tobacco lines to different concentrations of CdCl2. NtGCN2 was activated under 50 µmol·L-1 CdCl2 stress and enhanced the Cd tolerance and photosynthetic capacities of tobacco by increasing chlorophyll content and antioxidant capacity by upregulating NtSOD, NtPOD, and NtCAT expression and corresponding enzyme activities and decreasing malondialdehyde and O2·- contents. NtGCN2 enhanced the osmoregulatory capacity of tobacco by elevating proline (Pro) and soluble sugar contents and maintaining low levels of relative conductivity. Finally, NtGCN2 enhanced Cd tolerance in tobacco by reducing Cd uptake and translocation, promoting Cd efflux, and regulating Cd subcellular distribution. In conclusion, NtGCN2 improves the tolerance of tobacco to Cd through a series of mechanisms, namely, increasing antioxidant, photosynthetic, and osmoregulation capacities and regulating Cd uptake, translocation, efflux, and subcellular distribution. This study provides a scientific basis for further exploration of the role of NtGCN2 in plant responses to Cd stress and enhancement of the Cd stress signaling network in tobacco.


Subject(s)
Cadmium , Drug Resistance , Nicotiana , Plant Proteins , Cadmium/toxicity , Cadmium/metabolism , Nicotiana/physiology , Nicotiana/metabolism , Photosynthesis/drug effects , Photosynthesis/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Stress, Physiological/drug effects , Stress, Physiological/genetics , Chlorophyll/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Drug Resistance/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Enzyme Activation/genetics , Osmoregulation/genetics , Intracellular Space/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL