Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.774
Filter
1.
BMC Cancer ; 24(1): 580, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735973

ABSTRACT

BACKGROUND: SRSF1, a member of Serine/Arginine-Rich Splicing Factors (SRSFs), has been observed to significantly influence cancer progression. However, the precise role of SRSF1 in osteosarcoma (OS) remains unclear. This study aims to investigate the functions of SRSF1 and its underlying mechanism in OS. METHODS: SRSF1 expression level in OS was evaluated on the TCGA dataset, TAGET-OS database. qRT-PCR and Western blotting were employed to assess SRSF1 expression in human OS cell lines as well as the interfered ectopic expression states. The effect of SRSF1 on cell migration, invasion, proliferation, and apoptosis of OS cells were measured by transwell assay and flow cytometry. RNA sequence and bioinformatic analyses were conducted to elucidate the targeted genes, relevant biological pathways, and alternative splicing (AS) events regulated by SRSF1. RESULTS: SRSF1 expression was consistently upregulated in both OS samples and OS cell lines. Diminishing SRSF1 resulted in reduced proliferation, migration, and invasion and increased apoptosis in OS cells while overexpressing SRSF1 led to enhanced growth, migration, invasion, and decreased apoptosis. Mechanistically, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) revealed that the biological functions of SRSF1 were closely associated with the dysregulation of the protein targeting processes, location of the cytosolic ribosome, extracellular matrix (ECM), and proteinaceous extracellular matrix, along with the PI3K-AKT pathway, Wnt pathway, and HIPPO pathway. Transcriptome analysis identified AS events modulated by SRSF1, especially (Skipped Exon) SE events and (Mutually exclusive Exons) MXE events, revealing potential roles of targeted molecules in mRNA surveillance, RNA degradation, and RNA transport during OS development. qRT-PCR confirmed that SRSF1 knockdown resulted in the occurrence of alternative splicing of SRRM2, DMKN, and SCAT1 in OS. CONCLUSIONS: Our results highlight the oncogenic role of high SRSF1 expression in promoting OS progression, and further explore the potential mechanisms of action. The significant involvement of SRSF1 in OS development suggests its potential utility as a therapeutic target in OS.


Subject(s)
Apoptosis , Bone Neoplasms , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Osteosarcoma , Serine-Arginine Splicing Factors , Humans , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Apoptosis/genetics , Cell Movement/genetics , Up-Regulation , Alternative Splicing
2.
Folia Neuropathol ; 62(1): 96-101, 2024.
Article in English | MEDLINE | ID: mdl-38741436

ABSTRACT

Gliosarcoma (GS) is a rare variant of IDH-wildtype glioblastoma. It is classified as grade 4 in the latest WHO CNS classification of both glial and mesenchymal components. Gliosarcoma may arise de novo or secondary from glioblastoma. It occurs in up to 2% of patients diagnosed with glioblastoma. We present a case report of a 51-year-old patient who was initially diagnosed with glioblastoma multiforme, which transformed into secondary gliosarcoma with an osteosarcoma component 16 months after the initial diagnosis. We believe that increasing reporting of secondary gliosarcoma (sGS) will be helpful in understanding, diagnosing and providing more effective treatment for this cancer.


Subject(s)
Brain Neoplasms , Glioblastoma , Gliosarcoma , Isocitrate Dehydrogenase , Osteosarcoma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Gliosarcoma/genetics , Gliosarcoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Osteosarcoma/genetics , Osteosarcoma/pathology , Middle Aged , Isocitrate Dehydrogenase/genetics , Male
3.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767376

ABSTRACT

Understanding the relationship between the cells and their location within each tissue is critical to uncover the biological processes associated with normal development and disease pathology. Spatial transcriptomics is a powerful method that enables the analysis of the whole transcriptome within tissue samples, thus providing information about the cellular gene expression and the histological context in which the cells reside. While this method has been extensively utilized for many soft tissues, its application for the analyses of hard tissues such as bone has been challenging. The major challenge resides in the inability to preserve good quality RNA and tissue morphology while processing the hard tissue samples for sectioning. Therefore, a method is described here to process freshly obtained bone tissue samples to effectively generate spatial transcriptomics data. The method allows for the decalcification of the samples, granting successful tissue sections with preserved morphological details while avoiding RNA degradation. In addition, detailed guidelines are provided for samples that were previously paraffin-embedded, without demineralization, such as samples collected from tissue banks. Using these guidelines, high-quality spatial transcriptomics data generated from tissue bank samples of primary tumor and lung metastasis of bone osteosarcoma are shown.


Subject(s)
Bone Neoplasms , Bone and Bones , Transcriptome , Humans , Transcriptome/genetics , Bone and Bones/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Gene Expression Profiling/methods , Paraffin Embedding/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism
4.
Cell Death Dis ; 15(5): 346, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769124

ABSTRACT

Exploring novel diagnostic and therapeutic biomarkers is extremely important for osteosarcoma. YME1 Like 1 ATPase (YME1L), locating in the mitochondrial inner membrane, is key in regulating mitochondrial plasticity and metabolic activity. Its expression and potential functions in osteosarcoma are studied in the present study. We show that YME1L mRNA and protein expression is significantly elevated in osteosarcoma tissues derived from different human patients. Moreover, its expression is upregulated in various primary and immortalized osteosarcoma cells. The Cancer Genome Atlas database results revealed that YME1L overexpression was correlated with poor overall survival and poor disease-specific survival in sarcoma patients. In primary and immortalized osteosarcoma cells, silencing of YME1L through lentiviral shRNA robustly inhibited cell viability, proliferation, and migration. Moreover, cell cycle arrest and apoptosis were detected in YME1L-silenced osteosarcoma cells. YME1L silencing impaired mitochondrial functions in osteosarcoma cells, causing mitochondrial depolarization, oxidative injury, lipid peroxidation and DNA damage as well as mitochondrial respiratory chain complex I activity inhibition and ATP depletion. Contrarily, forced YME1L overexpression exerted pro-cancerous activity and strengthened primary osteosarcoma cell proliferation and migration. YME1L is important for Akt-S6K activation in osteosarcoma cells. Phosphorylation of Akt and S6K was inhibited after YME1L silencing in primary osteosarcoma cells, but was strengthened with YME1L overexpression. Restoring Akt-mTOR activation by S473D constitutively active Akt1 mitigated YME1L shRNA-induced anti-osteosarcoma cell activity. Lastly, intratumoral injection of YME1L shRNA adeno-associated virus inhibited subcutaneous osteosarcoma xenograft growth in nude mice. YME1L depletion, mitochondrial dysfunction, oxidative injury, Akt-S6K inactivation, and apoptosis were detected in YME1L shRNA-treated osteosarcoma xenografts. Together, overexpressed YME1L promotes osteosarcoma cell growth, possibly by maintaining mitochondrial function and Akt-mTOR activation.


Subject(s)
Bone Neoplasms , Cell Proliferation , Mice, Nude , Osteosarcoma , Osteosarcoma/pathology , Osteosarcoma/genetics , Osteosarcoma/metabolism , Humans , Animals , Cell Line, Tumor , Mice , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Apoptosis/genetics , Cell Movement/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Mice, Inbred BALB C , Male , TOR Serine-Threonine Kinases/metabolism , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Female
5.
Cell Death Dis ; 15(5): 349, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769167

ABSTRACT

Osteosarcoma is a malignant bone tumor that primarily inflicts the youth. It often metastasizes to the lungs after chemotherapy failure, which eventually shortens patients' lives. Thus, there is a dire clinical need to develop a novel therapy to tackle osteosarcoma metastasis. Methionine dependence is a special metabolic characteristic of most malignant tumor cells that may offer a target pathway for such therapy. Herein, we demonstrated that methionine deficiency restricted the growth and metastasis of cultured human osteosarcoma cells. A genetically engineered Salmonella, SGN1, capable of overexpressing an L-methioninase and hydrolyzing methionine led to significant reduction of methionine and S-adenosyl-methionine (SAM) specifically in tumor tissues, drastically restricted the growth and metastasis in subcutaneous xenograft, orthotopic, and tail vein-injected metastatic models, and prolonged the survival of the model animals. SGN1 also sharply suppressed the growth of patient-derived organoid and xenograft. Methionine restriction in the osteosarcoma cells initiated severe mitochondrial dysfunction, as evident in the dysregulated gene expression of respiratory chains, increased mitochondrial ROS generation, reduced ATP production, decreased basal and maximum respiration, and damaged mitochondrial membrane potential. Transcriptomic and molecular analysis revealed the reduction of C1orf112 expression as a primary mechanism underlies methionine deprivation-initiated suppression on the growth and metastasis as well as mitochondrial functions. Collectively, our findings unraveled a molecular linkage between methionine restriction, mitochondrial function, and osteosarcoma growth and metastasis. A pharmacological agent, such as SGN1, that can achieve tumor specific deprivation of methionine may represent a promising modality against the metastasis of osteosarcoma and potentially other types of sarcomas as well.


Subject(s)
Bone Neoplasms , Methionine , Mitochondria , Osteosarcoma , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/genetics , Osteosarcoma/drug therapy , Methionine/deficiency , Methionine/metabolism , Humans , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Mice , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Cell Proliferation/drug effects , Neoplasm Metastasis , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/pharmacology , Mice, Nude , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Neoplastic/drug effects
6.
J Cell Mol Med ; 28(10): e18395, 2024 May.
Article in English | MEDLINE | ID: mdl-38774995

ABSTRACT

Tumour-associated macrophages (TAMs), encompassing M1 and M2 subtypes, exert significant effects on osteosarcoma (OS) progression and immunosuppression. However, the impacts of TAM-derived biomarkers on the progression of OS remains limited. The GSE162454 profile was subjected to single-cell RNA (scRNA) sequencing analysis to identify crucial mediators between TAMs and OS cells. The clinical features, effects and mechanisms of these mediators on OS cells and tumour microenvironment were evaluated via biological function experiments and molecular biology experiments. Phosphodiesterase 4C (PDE4C) was identified as a pivotal mediator in the communication between M2 macrophages and OS cells. Elevated levels of PDE4C were detected in OS tissues, concomitant with M2 macrophage level, unfavourable prognosis and metastasis. The expression of PDE4C was observed to increase during the conversion process of THP-1 cells to M2 macrophages, which transferred the PDE4C mRNA to OS cells through exosome approach. PDE4C increased OS cell proliferation and mobility via upregulating the expression of collagens. Furthermore, a positive correlation was observed between elevated levels of PDE4C and increased TIDE score, decreased response rate following immune checkpoint therapy, reduced TMB and diminished PDL1 expression. Collectively, PDE4C derived from M2 macrophages has the potential to enhance the proliferation and mobility of OS cells by augmenting collagen expression. PDE4C may serve as a valuable biomarker for prognosticating patient outcomes and response rates following immunotherapy.


Subject(s)
Bone Neoplasms , Cyclic Nucleotide Phosphodiesterases, Type 4 , Immunotherapy , Macrophages , Osteosarcoma , Tumor Microenvironment , Osteosarcoma/pathology , Osteosarcoma/immunology , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/therapy , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Prognosis , Immunotherapy/methods , Tumor Microenvironment/immunology , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Macrophages/metabolism , Macrophages/immunology , Cell Line, Tumor , Cell Proliferation , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Female , Neoplasm Metastasis , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Cell Movement
7.
Cancer Biol Ther ; 25(1): 2343450, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38742566

ABSTRACT

The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.


Subject(s)
Disease Progression , Exosomes , GTPase-Activating Proteins , MicroRNAs , Osteosarcoma , RNA, Circular , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Exosomes/metabolism , Exosomes/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Cell Proliferation , Mice , Animals , Cell Line, Tumor , Cell Movement/genetics , Apoptosis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Male , Female
8.
Sci Rep ; 14(1): 11056, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744935

ABSTRACT

Osteosarcoma is the most common malignant bone cancer in pediatric patients. Patients who respond poorly to chemotherapy experience worse clinical outcomes with a high mortality rate. The major challenge is the lack of effective drugs for these patients. To introduce new drugs for clinical approval, preclinical studies based on in vitro models must demonstrate the potency of the tested drugs, enabling the drugs to enter phase 1 clinical trials. Patient-derived cell culture is a promising testing platform for in vitro studies, as they more accurately recapitulate cancer states and genetic profiles compared to cell lines. In the present study, we established patient-derived osteosarcoma cells (PDC) from a patient who had previously been diagnosed with retinoblastoma. We identified a new variant of a germline mutation in the RB1 gene in the tissue of the patient. The biological effects of this PDC were studied to observe whether the cryopreserved PDC retained a feature of fresh PDC. The cryopreserved PDC preserved the key biological effects, including cell growth, invasive capability, migration, and mineralization, that define the conserved phenotypes compared to fresh PDC. From whole genome sequencing analysis of osteosarcoma tissue and patient-derived cells, we found that cryopreserved PDC was a minor population in the origin tissue and was selectively grown under the culture conditions. The cryopreserved PDC has a high resistance to conventional chemotherapy. This study demonstrated that the established cryopreserved PDC has the aggressive characteristics of osteosarcoma, in particular the chemoresistance phenotype that might be used for further investigation in the chemoresistant mechanism of osteosarcoma. In conclusion, the approach we applied for primary cell culture might be a promising method to generate in vitro models for functional testing of osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Retinoblastoma , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Retinoblastoma/genetics , Retinoblastoma/pathology , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Cell Line, Tumor , Retinoblastoma Binding Proteins/genetics , Cell Proliferation , Germ-Line Mutation , Cryopreservation , Male , Gene Expression Profiling , Cell Movement/genetics
9.
J Cell Mol Med ; 28(9): e18286, 2024 May.
Article in English | MEDLINE | ID: mdl-38742843

ABSTRACT

Osteosarcoma, the primary bone cancer in adolescents and young adults, is notorious for its aggressive growth and metastatic potential. Our study delved into the prognostic impact of inflammasome-related gene signatures in osteosarcoma patients, employing comprehensive genetic profiling to uncover signatures linked with patient outcomes. We identified three patient subgroups through consensus clustering, with one showing worse survival rates correlated with high FGFR3 and RARB expressions. Immune profiling revealed significant immune cell infiltration differences among these subgroups, affecting survival. Utilising advanced machine learning, including StepCox and gradient boosting machine algorithms, we developed a prognostic model with a notable c-index of 0.706, highlighting CD36 and MYD88 as key genes. Higher inflammasome risk scores from our model were associated with poorer survival, corroborated across datasets. In vitro experiments validated CD36 and MYD88's roles in promoting osteosarcoma cell proliferation, invasion and migration, emphasising their therapeutic potential. This research offers new insights into inflammasomes' role in osteosarcoma, introducing novel biomarkers for risk assessment and potential therapeutic targets. Our findings suggest a pathway towards personalised treatment strategies, potentially improving patient outcomes in osteosarcoma.


Subject(s)
Biomarkers, Tumor , Bone Neoplasms , Gene Expression Regulation, Neoplastic , Inflammasomes , Osteosarcoma , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/immunology , Osteosarcoma/mortality , Inflammasomes/metabolism , Inflammasomes/genetics , Biomarkers, Tumor/genetics , Prognosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/mortality , Bone Neoplasms/immunology , Bone Neoplasms/diagnosis , Gene Expression Profiling , Female , Male , Transcriptome/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Adolescent , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism
10.
Aging (Albany NY) ; 16(9): 8155-8170, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38747739

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is a primary malignant bone tumor arising from mesenchymal cells. The standard clinical treatment for OS involves extensive tumor resection combined with neoadjuvant chemotherapy or radiotherapy. OS's invasiveness, lung metastasis, and drug resistance contribute to a low cure rate and poor prognosis with this treatment. Metallothionein 1G (MT1G), observed in various cancers, may serve as a potential therapeutic target for OS. METHODS: OS samples in GSE33382 and TARGET datasets were selected as the test cohorts. As the external validation cohort, 13 OS tissues and 13 adjacent cancerous tissues from The Second Affiliated Hospital of Nanchang University were collected. Patients with OS were divided into high and low MT1G mRNA-expression groups; differentially expressed genes (DEGs) were identified as MT1G-related genes. The biological function of MT1G was annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and gene set enrichment analysis (GSEA). Gene expression correlation analysis and competing endogenous RNA (ceRNA) regulatory network construction were used to determine potential biological regulatory relationships of DEGs. Survival analysis assessed the prognostic value of MT1G. RESULTS: MT1G expression increased in OS samples and presented higher in metastatic OS compared with non-metastatic OS. Functional analyses indicated that MT1G was mainly associated with spliceosome. A ceRNA network with DEGs was constructed. MT1G is an effective biomarker predicting survival and correlated with increased recurrence rates and poorer survival. CONCLUSIONS: This research identified MT1G as a potential biomarker for OS prognosis, highlighting its potential as a therapy target.


Subject(s)
Bone Neoplasms , Computational Biology , Gene Expression Regulation, Neoplastic , Mesenchymal Stem Cells , Metallothionein , Osteosarcoma , Osteosarcoma/genetics , Osteosarcoma/pathology , Humans , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/mortality , Metallothionein/genetics , Metallothionein/metabolism , Mesenchymal Stem Cells/metabolism , Male , Prognosis , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Gene Regulatory Networks
11.
Clin Transl Med ; 14(5): e1670, 2024 May.
Article in English | MEDLINE | ID: mdl-38689429

ABSTRACT

BACKGROUND: Treatment for osteosarcoma, a paediatric bone cancer with no therapeutic advances in over three decades, is limited by a lack of targeted therapies. Osteosarcoma frequently metastasises to the lungs, and only 20% of patients survive 5 years after the diagnosis of metastatic disease. We found that WNT5B is the most abundant WNT expressed in osteosarcoma tumours and its expression correlates with metastasis, histologic subtype and reduced survival. METHODS: Using tumor-spheroids to model cancer stem-like cells, we performed qPCR, immunoblotting, and immunofluorescence to monitor changes in gene and protein expression. Additionally, we measured sphere size, migration and forming efficiency to monitor phenotypic changes. Therefore, we characterised WNT5B's relevance to cancer stem-like cells, metastasis, and chemoresistance and evaluated its potential as a therapeutic target. RESULTS: In osteosarcoma cell lines and patient-derived spheres, WNT5B is enriched in stem cells and induces the expression of the stemness gene SOX2. WNT5B promotes sphere size, sphere-forming efficiency, and cell proliferation, migration, and chemoresistance to methotrexate (but not cisplatin or doxorubicin) in spheres formed from conventional cell lines and patient-derived xenografts. In vivo, WNT5B increased osteosarcoma lung and liver metastasis and inhibited the glycosaminoglycan hyaluronic acid via upregulation of hyaluronidase 1 (HYAL1), leading to changes in the tumour microenvironment. Further, we identified that WNT5B mRNA and protein correlate with the receptor ROR1 in primary tumours. Targeting WNT5B through inhibition of WNT/ROR1 signalling with an antibody to ROR1 reduced stemness properties, including chemoresistance, sphere size and SOX2 expression. CONCLUSIONS: Together, these data define WNT5B's role in driving osteosarcoma cancer stem cell expansion and methotrexate resistance and provide evidence that the WNT5B pathway is a promising candidate for treating osteosarcoma patients. KEY POINTS: WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2. WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo. The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis. Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.


Subject(s)
Drug Resistance, Neoplasm , Osteosarcoma , Wnt Proteins , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Humans , Drug Resistance, Neoplasm/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , Animals , Mice , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Neoplasm Metastasis/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Cell Line, Tumor
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 311-318, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710515

ABSTRACT

Objective To investigate the effects of mitochondrial transcription factor A (TFAM) on mitochondrial function, autophagy, proliferation, invasion, and migration in cervical cancer HeLa cells and osteosarcoma U2OS cells. Methods TFAM small-interfering RNA (si-TFAM) was transfected to HeLa and U2OS cells for downregulating TFAM expression. Mito-Tracker Red CMXRos staining combined with laser confocal microscopy was used to detect mitochondrial membrane potential (MMP). MitoSOXTM Red labeling was used to test mitochondrial reactive oxygen species (mtROS) levels. The expression of mitochondrial DNA (mtDNA) was detected by real-time quantitative PCR. Changes in the number of autophagosomes were detected by immunofluorescence cytochemistry. Western blot analysis was used to detect the expressions of TFAM, autophagy microtubule associated protein 1 light chain 3A/B (LC3A/B), autophagy associated protein 2A (ATG2A), ATG2B, ATG9A, zinc finger transcription factor Snail, matrix metalloproteinase 2 (MMP2) and MMP9. CCK-8 assay and plate clony formation assay were used to detect cell proliferation, while TranswellTM assay and scratch healing assay were used to detect changes in cell invasion and migration. Results The downregulation of TFAM expression resulted in a decrease in MMP and mtDNA copy number, but an increase in mtROS production. The protein content of LC3A/B decreased significantly compared to the control group and the number of autophagosomes in the cytoplasm decreased significantly. The expressions of ATG2B and ATG9A in the early stage of autophagy were significantly reduced. The expressions of Snail, MMP2 and MMP9 proteins in HeLa and U2OS cells were also decreased. The proliferation, invasion and migration ability of HeLa and U2OS cells were inhibited after being interfered with TFAM expression. Conclusion Downregulation of TFAM expression inhibits mitochondrial function, delays autophagy process and reduces the proliferation, invasion and migration ability of cervical cancer cells and osteosarcoma cells.


Subject(s)
Autophagy , Cell Movement , Cell Proliferation , DNA-Binding Proteins , Mitochondrial Proteins , Neoplasm Invasiveness , Osteosarcoma , Transcription Factors , Uterine Cervical Neoplasms , Humans , Cell Movement/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Cell Proliferation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Autophagy/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Membrane Potential, Mitochondrial/genetics , Reactive Oxygen Species/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Mitochondria/metabolism , Mitochondria/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HeLa Cells , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics
13.
BMC Med ; 22(1): 200, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755647

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the most common primary malignant bone tumor and is highly prone to metastasis. OS can metastasize to the lymph node (LN) through the lymphatics, and the metastasis of tumor cells reestablishes the immune landscape of the LN, which is conducive to the growth of tumor cells. However, the mechanism of LN metastasis of osteosarcoma and remodeling of the metastatic lymph node (MLN) microenvironment is not clear. METHODS: Single-cell RNA sequencing of 18 samples from paracancerous, primary tumor, and lymph nodes was performed. Then, new signaling axes closely related to metastasis were identified using bioinformatics, in vitro experiments, and immunohistochemistry. The mechanism of remodeling of the LN microenvironment in tumor cells was investigated by integrating single-cell and spatial transcriptomics. RESULTS: From 18 single-cell sequencing samples, we obtained 117,964 cells. The pseudotime analysis revealed that osteoblast(OB) cells may follow a differentiation path from paracancerous tissue (PC) → primary tumor (PT) → MLN or from PC → PT, during the process of LN metastasis. Next, in combination of bioinformatics, in vitro and in vivo experiments, and immunohistochemistry, we determined that ETS2/IBSP, a new signal axis, might promote LN metastasis. Finally, single-cell and spatial dissection uncovered that OS cells could reshape the microenvironment of LN by interacting with various cell components, such as myeloid, cancer-associated fibroblasts (CAFs), and NK/T cells. CONCLUSIONS: Collectively, our research revealed a new molecular mechanism of LN metastasis and clarified how OS cells influenced the LN microenvironment, which might provide new insight for blocking LN metastasis.


Subject(s)
Bone Neoplasms , Lymph Nodes , Lymphatic Metastasis , Osteosarcoma , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Osteosarcoma/pathology , Osteosarcoma/genetics , Humans , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Animals , Mice , Cell Line, Tumor , Gene Expression Profiling
14.
Medicine (Baltimore) ; 103(20): e38261, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758844

ABSTRACT

OBJECTIVE: To explore the therapeutic mechanism of Mori Cortex against osteosarcoma (OS), we conducted bioinformatics prediction followed by in vitro experimental validation. METHODS: Gene expression data from normal and OS tissues were obtained from the GEO database and underwent differential analysis. Active Mori Cortex components and target genes were extracted from the Traditional Chinese Medicine System Pharmacology database. By intersecting these targets with differentially expressed genes in OS, we identified potential drug action targets. Using the STRING database, a protein-protein interaction network was constructed. Subsequent analyses of these intersected genes, including Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, were performed using R software to elucidate biological processes, molecular functions, and cellular components, resulting in the simulation of signaling pathways. Molecular docking assessed the binding capacity of small molecules to signaling pathway targets. In vitro validations were conducted on U-2 OS cells. The CCK8 assay was used to determine drug-induced cytotoxicity in OS cells, and Western Blotting was employed to validate the expression of AKT, extracellular signal-regulated kinases (ERK), Survivin, and Cyclin D1 proteins. RESULTS: Through differential gene expression analysis between normal and OS tissues, we identified 12,364 differentially expressed genes. From the TCSMP database, 39 active components and 185 therapeutic targets related to OS were derived. The protein-protein interaction network indicated that AKT1, IL-6, JUN, VEGFA, and CASP3 might be central targets of Mori Cortex for OS. Molecular docking revealed that the active compound Morusin in Mori Cortex exhibits strong binding affinity to AKT and ERK. The CCK8 assay showed that Morusin significantly inhibits the viability of U-2 OS cells. Western Blot demonstrated a reduction in the p-AKT/AKT ratio, the p-ERK/ERK ratio, Survivin, and Cyclin D1. CONCLUSION: Mori Cortex may exert its therapeutic effects on OS through multiple cellular signaling pathways. Morusin, the active component of Mori Cortex, can inhibit cell cycle regulation and promote cell death in OS cells by targeting AKT/ERK pathway.


Subject(s)
Bone Neoplasms , Computational Biology , Drugs, Chinese Herbal , Molecular Docking Simulation , Morus , Osteosarcoma , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Humans , Cell Line, Tumor , Drugs, Chinese Herbal/pharmacology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Protein Interaction Maps , Signal Transduction , Gene Expression Regulation, Neoplastic , Medicine, Chinese Traditional/methods , Survivin/metabolism , Survivin/genetics , Cyclin D1/metabolism , Cyclin D1/genetics
15.
J Cell Mol Med ; 28(8): e18269, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568056

ABSTRACT

Circular RNAs (circRNAs) play an important role in the progression of osteosarcoma. However, the precise function of circPVT1 in osteosarcoma remains elusive. This study aims to explore the molecular mechanism underlying the involvement of circPVT1 in osteosarcoma cells. We quantified circPVT1 expression using qRT-PCR in both control and osteosarcoma cell lines. To investigate the roles of circPVT1, miR-490-5p and HAVCR2 in vitro, we separately conducted overexpression and inhibition experiments for circPVT1, miR-490-5p and HAVCR2 in HOS and U2OS cells. Cell migration was assessed through wound healing and transwell migration assays, and invasion was measured via the Matrigel invasion assay. To elucidate the regulatory mechanism of circPVT1 in osteosarcoma, a comprehensive approach was employed, including fluorescence in situ hybridization, qRT-PCR, Western blot, bioinformatics, dual-luciferase reporter assay and rescue assay. CircPVT1 expression in osteosarcoma cell lines surpassed that in control cells. The depletion of circPVT1 resulted in a notable reduction in the in vitro migration and invasion of osteosarcoma cells. Mechanism experiments revealed that circPVT1 functioned as a miR-490-5p sequester, and directly targeted HAVCR2. Overexpression of miR-490-5p led to a significant attenuation of migration and invasion of osteosarcoma cells, whereas HAVCR2 overexpression had the opposite effect, promoting these abilities. Additionally, circPVT1 upregulated HAVCR2 expression via sequestering miR-490-5p, thereby orchestrating the migration and invasion in osteosarcoma cells. CircPVT1 orchestrates osteosarcoma migration and invasion by regulating the miR-490-5p/HAVCR2 axis, underscoring its potential as a promising therapeutic target for osteosarcoma.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , In Situ Hybridization, Fluorescence , Cell Movement/genetics , Osteosarcoma/genetics , Bone Neoplasms/genetics , MicroRNAs/genetics , Hepatitis A Virus Cellular Receptor 2
16.
J Vis Exp ; (205)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38587398

ABSTRACT

Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Despite the development of new treatment plans in recent years, the prognosis for osteosarcoma patients has not significantly improved. Therefore, it is crucial to establish a robust preclinical model with high fidelity. The patient-derived xenograft (PDX) model faithfully preserves the genetic, epigenetic, and heterogeneous characteristics of human malignancies for each patient. Consequently, PDX models are considered authentic in vivo models for studying various cancers in transformation studies. This article presents a comprehensive protocol for creating and maintaining a PDX mouse model that accurately mirrors the morphological features of human osteosarcoma. This involves the immediate transplantation of freshly resected human osteosarcoma tissue into immunocompromised mice, followed by successive passaging. The described model serves as a platform for studying the growth, drug resistance, relapse, and metastasis of osteosarcoma. Additionally, it aids in screening the target therapeutics and establishing personalized treatment schemes.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adolescent , Child , Humans , Animals , Mice , Heterografts , Xenograft Model Antitumor Assays , Neoplasm Recurrence, Local , Osteosarcoma/genetics , Osteosarcoma/pathology , Disease Models, Animal , Bone Neoplasms/genetics , Bone Neoplasms/pathology
17.
Cancer Lett ; 591: 216902, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641310

ABSTRACT

Platelets have received growing attention for their roles in hematogenous tumor metastasis. However, the tumor-platelet interaction in osteosarcoma (OS) remains poorly understood. Here, using platelet-specific focal adhesion kinase (FAK)-deficient mice, we uncover a FAK-dependent F3/TGF-ß positive feedback loop in OS. Disruption of the feedback loop by inhibition of F3, TGF-ß, or FAK significantly suppresses OS progression. We demonstrate that OS F3 initiated the feedback loop by increasing platelet TGF-ß secretion, and platelet-derived TGF-ß promoted OS F3 expression in turn and modulated OS EMT process. Immunofluorescence results indicate platelet infiltration in OS niche and we verified it was mediated by platelet FAK. In addition, platelet FAK was proved to mediate platelet adhesion to OS cells, which was vital for the initiation of F3/TGF-ß feedback loop. Collectively, these findings provide a rationale for novel therapeutic strategies targeting tumor-platelet interplay in metastatic OS.


Subject(s)
Blood Platelets , Bone Neoplasms , Epithelial-Mesenchymal Transition , Osteosarcoma , Transforming Growth Factor beta , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/genetics , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , Transforming Growth Factor beta/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Humans , Cell Line, Tumor , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Feedback, Physiological , Mice , Mice, Knockout , Disease Progression , Signal Transduction , Platelet Adhesiveness
18.
Biochem Pharmacol ; 224: 116208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621423

ABSTRACT

Homeobox B9 (HOXB9) has been shown to play a critical role in several tumors. However, the precise biological mechanisms and functions of HOXB9 in osteosarcoma remain largely unknown. In this study, we found that HOXB9 was increased upon glucose starvation. Elevated HOXB9 suppressed osteosarcoma cell death and supported cell growth and migration under glucose starvation. Further mechanistic studies demonstrated that HOXB9 directly bound to the promoter of secreted phosphoprotein 1 (SPP1) and transcriptionally upregulated SPP1 expression which then led cell death decrease and cell growth increase under glucose deprivation environment. Clinically, HOXB9 was significantly upregulated in osteosarcoma compared with normal tissues and increase of HOXB9 expression was positively associated with the elevation of SPP1 in osteosarcoma. Overall, our study illustrates that HOXB9 contributes to malignancy in osteosarcoma and inhibits cell death through transcriptional upregulating SPP1 under glucose starvation.


Subject(s)
Bone Neoplasms , Cell Survival , Glucose , Homeodomain Proteins , Osteopontin , Osteosarcoma , Up-Regulation , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/genetics , Humans , Glucose/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Line, Tumor , Osteopontin/genetics , Osteopontin/metabolism , Cell Survival/physiology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Gene Expression Regulation, Neoplastic
19.
Front Immunol ; 15: 1362970, 2024.
Article in English | MEDLINE | ID: mdl-38629071

ABSTRACT

Background: T cell exhaustion in the tumor microenvironment has been demonstrated as a substantial contributor to tumor immunosuppression and progression. However, the correlation between T cell exhaustion and osteosarcoma (OS) remains unclear. Methods: In our present study, single-cell RNA-seq data for OS from the GEO database was analysed to identify CD8+ T cells and discern CD8+ T cell subsets objectively. Subgroup differentiation trajectory was then used to pinpoint genes altered in response to T cell exhaustion. Subsequently, six machine learning algorithms were applied to develop a prognostic model linked with T cell exhaustion. This model was subsequently validated in the TARGETs and Meta cohorts. Finally, we examined disparities in immune cell infiltration, immune checkpoints, immune-related pathways, and the efficacy of immunotherapy between high and low TEX score groups. Results: The findings unveiled differential exhaustion in CD8+ T cells within the OS microenvironment. Three genes related to T cell exhaustion (RAD23A, SAC3D1, PSIP1) were identified and employed to formulate a T cell exhaustion model. This model exhibited robust predictive capabilities for OS prognosis, with patients in the low TEX score group demonstrating a more favorable prognosis, increased immune cell infiltration, and heightened responsiveness to treatment compared to those in the high TEX score group. Conclusion: In summary, our research elucidates the role of T cell exhaustion in the immunotherapy and progression of OS, the prognostic model constructed based on T cell exhaustion-related genes holds promise as a potential method for prognostication in the management and treatment of OS patients.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Single-Cell Gene Expression Analysis , T-Cell Exhaustion , Osteosarcoma/genetics , Bone Neoplasms/genetics , Immunity , Tumor Microenvironment/genetics , DNA-Binding Proteins , DNA Repair Enzymes
20.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 110-115, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650147

ABSTRACT

DNA damage response (DDR) plays a vital role in the development of cancer. Nevertheless, in osteosarcoma, the potential of DDR-related genes (DDRGs) remains unclear. Thus, the current research is intended to investigate the mechanisms of DDRGs in the development of osteosarcoma and to explore potential DDR-related biomarkers in forecasting the prognosis of osteosarcoma patients. The osteosarcoma genomic data from TCGA, GEO and cBioPortal databases were utilized for screening and identification of differentially expressed DDRGs (DEDDRGs). Consensus clustering analysis was performed to identify different subtypes of osteosarcoma based on the expressions of DDRGs. Key DEDRRGs were identified by overlapping DEDRRGs between different subtypes and DEDRRGs between tumor and control samples. Univariate, as well as LASSO regressions, were further applied to obtain robust prognostic signatures. GSVA and ssGSEA analysis were implemented to explore the underlying mechanisms of prognostic DDRG signature in regulating osteosarcoma. In addition, the drug sensitivity of patients in low- and high-risk groups was evaluated using pRRophetic algorithm. A total of 43 key DEDRRGs were identified. Followed by univariate Cox along with LASSO regression analyses, CDK6, CSF1R, EGFR, ERBB4, GATA3 and SOCS1 were identified as prognostic signatures in osteosarcoma. Cox regressions revealed that the risk score was an independent prognostic factor in osteosarcoma.  DDR may affect osteosarcoma via regulating immune microenvironment along with influencing cell proliferation, migration, adhesion and apoptosis. The chemotherapeutic response between patients in low- and high-risk groups was much different. The role of DDRGs in osteosarcoma and identified six DDR-linked biomarkers for forecasting the prognosis of osteosarcoma patients. Our outcomes enhanced the understanding of DDR-related molecular mechanisms involved in osteosarcoma and provided potential therapeutic targets for osteosarcoma patients.


Subject(s)
Bone Neoplasms , DNA Damage , Gene Expression Regulation, Neoplastic , Osteosarcoma , Osteosarcoma/genetics , Osteosarcoma/pathology , Humans , Prognosis , DNA Damage/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/mortality , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Female , DNA Repair/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...