Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.528
Filter
1.
Reprod Domest Anim ; 59(5): e14577, 2024 May.
Article in English | MEDLINE | ID: mdl-38698696

ABSTRACT

Sub-estrus is a condition when buffaloes do not display behavioural estrus signs, despite being in estrus and causes a delay in conception and increases the service period. The present study describes the effect of synthetic prostaglandin (PGF2α) alone and in combination with trace minerals on the follicular and corpus luteum (CL) dynamics, serum estradiol (E2) and progesterone (P4) concentration correlating estrus response and pregnancy outcome in sub-estrus buffaloes during the breeding season. A total of 50 sub-estrus buffaloes, identified through ultrasonography (USG) examination, were randomly allocated into three groups, viz. T1 (Synthetic PGF2α, Inj. Cloprostenol 500 µg, i.m, n = 17), T2 (Synthetic PGF2α + Trace mineral supplementation, Inj. Stimvet 1 mL/100 kg body weight, i.m., n = 17) and control (untreated; n = 16). Following treatment, 100% of sub-estrus buffaloes were induced estrus in the T1 and T2 groups, while only 18.75% were induced in the control. The CL diameter and serum P4 concentration were significantly lower at post-treatment, whereas the pre-ovulatory follicle (POF) size and serum E2 concentration were significantly higher in the T1 and T2 groups as compared to the control (p < .05). The buffaloes of the T2 group had a greater proportion of moderate intensities estrus than those of T1. Moreover, the proportion of buffaloes conceived in the T1 and T2 were 41.2% and 52.95%, respectively. The larger POF diameter and higher serum E2 concentration were associated with intense intensity estrus and higher conception rate (66.7%) in sub-estrus buffaloes. Similarly, CL regression rate, POF size and serum E2 concentration were relatively higher in the buffaloes conceived as compared to those not conceived. It is concluded that synthetic PGF2α in combination with trace minerals induces moderate to intense intensities estrus in a greater proportion of sub-estrus buffaloes and increases the conception rate during the breeding season. Moreover, behavioural estrus attributes correlating follicle and luteal morphometry, serum E2 and P4 concentration could be used to optimise the breeding time for augmenting the conception rate in sub-estrus buffaloes.


Subject(s)
Buffaloes , Corpus Luteum , Dinoprost , Estradiol , Estrus Synchronization , Estrus , Ovarian Follicle , Progesterone , Animals , Buffaloes/physiology , Female , Pregnancy , Dinoprost/pharmacology , Dinoprost/administration & dosage , Progesterone/blood , Progesterone/pharmacology , Ovarian Follicle/drug effects , Ovarian Follicle/physiology , Estradiol/blood , Estradiol/pharmacology , Estradiol/administration & dosage , Estrus/drug effects , Estrus/physiology , Corpus Luteum/drug effects , Corpus Luteum/physiology , Trace Elements/pharmacology , Trace Elements/administration & dosage , Cloprostenol/pharmacology , Cloprostenol/administration & dosage
2.
Sci Rep ; 14(1): 8770, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627575

ABSTRACT

Oxygen availability can have profound effects on cell fate decisions and survival, in part by regulating expression of hypoxia-inducible factors (HIFs). In the ovary, HIF expression has been characterised in granulosa cells, however, any requirement in oocytes remains relatively undefined. Here we developed a Hif2a/Epas1 germline-specific knockout mouse line in which females were fertile, however produced 40% fewer pups than controls. No defects in follicle development were detected, and quality of MII oocytes was normal, as per assessments of viability, intracellular reactive oxygen species, and spindle parameters. However, a significant diminishment of the primordial follicle pool was evident in cKO females that was attributed to accelerated follicle loss from postnatal day 6 onwards, potentially via disruption of the autophagy pathway. These data demonstrate the importance of HIF signalling in oocytes, particularly at the primordial follicle stage, and lend to the importance of controlling oxygen tension in the development of in vitro growth and maturation approaches for assisted reproduction.


Subject(s)
Ovarian Follicle , Ovary , Animals , Female , Mice , Granulosa Cells/metabolism , Oocytes/metabolism , Ovarian Follicle/physiology , Oxygen/metabolism
3.
Open Vet J ; 14(3): 852-865, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682132

ABSTRACT

Background: Mares are the only companion animals simulating women in the large diameter of their follicles. Horses start reproduction at the age of three years, and some of them live for >30 years, so aging influences their reproductive capacity. Mares are sensitive to summer heat stress as they can sweat like humans. Aim: The current work aimed to study the effects of age (young versus senile), season (cold versus hot), and the hormonal treatments during embryo collection on the dominant and subordinate follicular dynamics and hemodynamics and circulating ovarian hormones in embryo donor mares ovulated twice spontaneously before inducing ovulation for flushing embryos. Methods: Spontaneous oestrous cycles were studied for young mares (<10 years; N = 6) or senile (>20 years; N = 5) during months of the cold season (November to April) and hot season (May to August). In young embryo donor mares, oestrous cycles after inducing ovulation and luteolysis were studied using Doppler ultrasound. Estradiol (E2), progesterone (P4), nitric oxide (NO), total cholesterol, and lactate dehydrogenase (LDH) were measured in blood serum. Results: A decrease in the dominant follicle antrum diameter (p > 0.05) and LDH (p = 0.016) was observed after inducing luteolysis in young embryo donor mares. Both human chorionic gonadotropin (hCG) and PGF2α treatments increased dominant follicle area (p = 0.0001), antrum area (p = 0.001), perimeter (p = 0.001), granulosa area (p = 0.0001), cholesterol (p = 0.0001), NO (p = 0.0001), and E2 (p = 0.0001). The dominant follicle area, antrum area, perimeter, color area, granulosa area, LDH, cholesterol, NO, and E2 increased (p = 0.0001) during the oestrous cycles of the hot season, but the circulatory % (p = 0.0001) declined. Senile mares had lower dominant follicle area (p = 0.002), antrum area (p = 0.0001), granulosa area (p > 0.05), LDH (p = 0.001), cholesterol (p = 0.0001), NO (p = 0.0001), and E2 (p = 0.0001) but higher circulatory % (p = 0.0001) and color area % (p = 0.023). The dominant follicle possesses the largest diameter, area, perimeter, granulosa area, and color area but the lowest circulatory % during spontaneous oestrous cycles, after inducing ovulation, or luteolysis with significant effects of the day of the spontaneous oestrous cycles on their dynamics and hemodynamics. Conclusion: During hot months, mares treated with hCG ovulated 24 hours later and prostaglandin-induced luteolysis was followed by new ovulation five days later. Follicles ovulated during the hot months were larger than those ovulated during the cold months and both had nearly the same color area %. Senile mares ovulated follicles with a lower area and antrum area but a higher color area %, so senile mares can be used as embryo or oocyte donors during the hot season.


Subject(s)
Hemodynamics , Luteolysis , Ovarian Follicle , Seasons , Animals , Horses/physiology , Female , Luteolysis/physiology , Luteolysis/drug effects , Ovarian Follicle/physiology , Hemodynamics/physiology , Embryo Transfer/veterinary , Aging/physiology , Age Factors , Progesterone/blood , Estradiol/blood
4.
Reproduction ; 167(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38579797

ABSTRACT

In brief: Preantral follicles constitute the largest follicle reserve in the mammalian ovary. This study assesses a mechanical isolation method to maximize the number of follicles retrieved from a defined cortex volume. Abstract: Primordial, primary, and secondary follicles (collectively defined as preantral follicles) constitute the most abundant source of gametes inside the mammalian ovarian cortex. The massive isolation of preantral follicles and the refinement of stage-specific protocols for in vitro follicle growth would provide a powerful tool to boost the rescue and restoration of fertility in assisted reproduction interventions in human medicine, animal breeding, and vulnerable species preservation. Nevertheless, together with an efficient culture system, the most significant limitation to implementing in vitro follicle growth is the lack of an efficient method to isolate viable and homogeneous subpopulations of primordial, primary, and secondary follicles suitable for in vitro culture. Our study provides a strategy for high-yielding mechanical isolation of primordial, primary, and early secondary follicles from a limited portion of the ovarian cortex in the bovine animal model. In the first part of the study, we refined a mechanical isolation protocol of preantral follicles, adopting specific methodological strategies to separate viable and distinct subpopulations of primordial (oblate and prolate forms), primary, and early secondary follicles from 0.16 cm3 of the ovarian cortex. In the second part of the study, we tested the effectiveness of the isolation protocol, considering the individual's age as a critical factor, bearing in mind the progressive decrease in the ovarian reserve that naturally accompanies the reproductive life span. Our study provides a way for designing quantitative and conservative fertility preservation approaches to preserve organ function and minimize the invasiveness of the interventions, also considering age-related differences.


Subject(s)
Ovarian Follicle , Animals , Female , Ovarian Follicle/cytology , Ovarian Follicle/physiology , Cattle , Ovary/cytology , Age Factors , Aging/physiology
5.
Anim Reprod Sci ; 264: 107459, 2024 May.
Article in English | MEDLINE | ID: mdl-38598889

ABSTRACT

This study compared the follicular growth, superovulatory response, and in vivo embryo production after administering two doses of porcine follicle-stimulating hormone (pFSH) in Santa Inês ewes. The estrous cycle of 36 multiparous ewes was synchronized with the Day 0 protocol and superovulated with 133 mg (G133, n=18) or 200 mg (G200, n=18) of pFSH. Ultrasonographic evaluations of the ovaries were performed, ewes were mated and submitted to non-surgical embryo recovery. Viable blastocysts were stained with Nile Red and Hoechst. The G200 had a greater number of medium and large follicles, as well as a larger size of the third largest follicle. A total of 97.2% (35/36) of the ewes came into estrus and it was possible to transpose cervix in 80.6% (29/36). There were no effects of treatments in the response to superovulation, the proportion of ewes in which was possible to transpose the cervix, the number of corpora lutea, the number of anovulatory follicles, the proportion of ewes flushed with at least one recovered structure, number of recovered structures, number of viable embryos, viability rate, and recovery rate. The G200 ewes were in estrus for a longer period of time than the G133 ewes (54.0 ± 4.5 h vs. 40.3 ± 3.6 h) and produced more freezable embryos (6.5 ± 1.6 vs. 2.3 ± 0.7) than G133. Both doses promoted an efficient superovulatory response and did not affect embryonic lipid accumulation. The dose of 200 mg of pFSH showed greater potential to increase the superovulatory response, as it increased follicular recruitment and the recovery of freezable embryos.


Subject(s)
Follicle Stimulating Hormone , Superovulation , Animals , Female , Sheep/physiology , Sheep/embryology , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/administration & dosage , Superovulation/drug effects , Pregnancy , Ovarian Follicle/drug effects , Ovarian Follicle/physiology , Swine/physiology , Swine/embryology , Dose-Response Relationship, Drug , Embryo Transfer/veterinary , Estrus Synchronization/methods
6.
Poult Sci ; 103(5): 103589, 2024 May.
Article in English | MEDLINE | ID: mdl-38471223

ABSTRACT

Egg production is an economically important trait in poultry breeding and production. Follicular development was regulated by several hormones released and genes expressed in the granulosa cells, impacting the egg production and fecundity of hens. However, the molecular functions of these candidate genes that modulate these processes remain largely unknown. In the present study, bioinformatics analyses were performed to identify the candidate genes related to egg production in the ovarian tissue of White Leghorns with high egg production and Beijing You chicken with low egg production during sexual maturity and peak laying periods. The ovarian granulosa cells were used to assess the function of CYP21A1 by transfecting with CYP21A1-specific small interfering RNAs (siRNAs) and overexpression plasmids. We identified 514 differentially expressed genes (|Log2(fold change) | >1, P <0.05) between the 2 chicken breeds in both laying periods. Among these genes, CYP21A1, which is involved in the steroid hormone biosynthesis pathway was consistently upregulated in White Leghorns. Weighted gene co-expression network analysis (WGCNA) further suggested that CYP21A1 was a hub gene, which could positively respond to treatment with follicle stimulation hormone (FSH), affecting egg production. The interference of CYP21A1 significantly inhibited cell proliferation and promoted cell apoptosis. Overexpression of CYP21A1 promotes cell proliferation and inhibits cell apoptosis. Furthermore, the interference with CYP21A1 significantly downregulated the expression of STAR, CYP11A1, HSD3B1, and FSHR and also decreased the synthesis of progesterone (P4) and estradiol (E2) in granulosa cells. Overexpression of CYP21A1 increased the synthesis of P4 and estradiol E2 and the expression of steroid hormone synthesis-related genes in granulosa cells. Our findings provide new evidence for the biological role of CYP21A1 on granulosa cell proliferation, apoptosis, and steroid hormone synthesis, which lays the theoretical basis for improving egg production.


Subject(s)
Chickens , Gene Expression Profiling , Granulosa Cells , Animals , Female , Chickens/genetics , Chickens/physiology , Granulosa Cells/metabolism , Granulosa Cells/physiology , Gene Expression Profiling/veterinary , Avian Proteins/genetics , Avian Proteins/metabolism , Ovary/metabolism , Gonadal Steroid Hormones/biosynthesis , Gonadal Steroid Hormones/metabolism , Transcriptome , Ovarian Follicle/metabolism , Ovarian Follicle/physiology
7.
Menopause ; 31(5): 372-380, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442312

ABSTRACT

OBJECTIVE: This study aimed to examine the association between neighborhood poverty and ovarian reserve. METHODS: Among 1,019 healthy premenopausal women in the Ovarian Aging Study, aggregate exposure to neighborhood poverty was examined in relation to biomarkers of ovarian reserve, antimüllerian hormone (AMH) and antral follicle count (AFC). Specifically, the interaction of age-x-neighborhood poverty was assessed cross-sectionally to determine whether AMH and AFC declines across women may be greater in women exposed to more neighborhood poverty. Neighborhood poverty was assessed by geocoding and linking women's residential addresses in adulthood to US Census data. RESULTS: Independent of covariates, a significant interaction term showed the association between age and AMH varied by degree of exposure to neighborhood poverty in adulthood ( b = -0.001, P < 0.05). AMH declines increased progressively across women exposed to low, medium, and high levels of neighborhood poverty. In addition, main effects showed that higher neighborhood poverty was related to higher AMH in the younger women only ( b = 0.022, P < 0.01). Results related to AFC were all nonsignificant ( P > 0.05). CONCLUSIONS: Across women, greater aggregate exposure to neighborhood poverty in adulthood was related to lower ovarian reserve, indexed by AMH. In addition, there was a positive association between neighborhood poverty and AMH in younger women that attenuated in the older women. Together, results suggest that neighborhood disadvantage may have detrimental impacts that manifest as initially higher AMH, resulting in greater ovarian follicle loss over time. However, it remains unclear whether these results examining differences across women may replicate when AMH declines by neighborhood poverty are examined longitudinally.


Subject(s)
Anti-Mullerian Hormone , Ovarian Follicle , Ovarian Reserve , Poverty , Humans , Female , Ovarian Reserve/physiology , Anti-Mullerian Hormone/blood , Adult , Poverty/statistics & numerical data , Cross-Sectional Studies , Ovarian Follicle/physiology , Residence Characteristics , Aging/physiology , Neighborhood Characteristics , Middle Aged , Premenopause/physiology , Biomarkers/blood
8.
Arch Gynecol Obstet ; 309(5): 2127-2136, 2024 May.
Article in English | MEDLINE | ID: mdl-38472502

ABSTRACT

PURPOSE: To preserve fertility before gonadotoxic therapy, ovarian tissue can be removed, cryopreserved, and transplanted back again after treatment. An alternative is the artificial ovary, in which the ovarian follicles are extracted from the tissue, which reduces the risk of reimplantation of potentially remaining malignant cells. The PTEN inhibitor bpV(HOpic) has been shown to activate human, bovine and alpacas ovarian follicles, and it is therefore considered a promising substance for developing the artificial ovary. The purpose of this study was to examine the impact of different scaffolds and the vanadate derivative bpV(HOpic) on mice follicle survival and hormone secretion over 10 days. METHODS: A comparative analysis was performed, studying the survival rates (SR) of isolated mice follicle in four different groups that differed either in the scaffold (polycaprolactone scaffold versus polyethylene terephthalate membrane) or in the medium-bpV(HOpic) versus control medium. The observation period of the follicles was 10 days. On days 2, 6, and 10, the viability and morphology of the follicles were checked using fluorescence or confocal microscopy. Furthermore, hormone levels of estrogen (pmol/L) and progesterone (nmol/L) were determined. RESULTS: When comparing the SR of follicles among the four groups, it was observed that on day 6, the study groups utilizing the polycaprolactone scaffold with bpV(HOpic) in the medium (SR: 0.48 ± 0.18; p = 0.004) or functionalized in the scaffold (SR: 0.50 ± 0.20; p = 0.003) exhibited significantly higher survival rates compared to the group using only the polyethylene terephthalate membrane (SR: 0). On day 10, a significantly higher survival rate was only noted when comparing the polycaprolactone scaffold with bpV(HOpic) in the medium to the polyethylene terephthalate membrane group (SR: 0.38 ± 0.20 versus 0; p = 0.007). Higher levels of progesterone were only significantly associated with better survival rates in the group with the polycaprolactone scaffold functionalized with bpV(HOpic) (p = 0.017). CONCLUSION: This study demonstrates that three-dimensional polycaprolactone scaffolds improve the survival rates of isolated mice follicles in comparison with a conventional polyethylene terephthalate membrane. The survival rates slightly improve with added bpV(HOpic). Furthermore, higher rates of progesterone were also partly associated with improved survival.


Subject(s)
Polyethylene Terephthalates , Progesterone , Female , Mice , Animals , Humans , Cattle , Progesterone/pharmacology , Ovarian Follicle/physiology , Ovary , Cryopreservation
9.
Poult Sci ; 103(5): 103620, 2024 May.
Article in English | MEDLINE | ID: mdl-38492249

ABSTRACT

Chicken ovarian follicle development is regulated by complex and dynamic gene expression. Nuclear receptor 5A1 and 5A2 (NR5A1 and NR5A2, respectively) are key genes that regulate steroid hormone production and gonadal development in mammals; however, studies on follicular development in the chicken ovary are scarce. In this study, we investigated the functions of NR5A1 and NR5A2 on follicle development in chickens. The results showed that the expression of NR5A1 and NR5A2 was significantly higher in small yellow follicles and F5. Furthermore, the expression of NR5A1 and NR5A2 was significantly higher in follicular tissues of peak-laying hens (30 wk) than in follicular tissues of late-laying hens (60 wk), with high expression abundance in granulosa cells (GC). The overexpression of NR5A1 and NR5A2 significantly promoted proliferation and inhibited apoptosis of cultured GC; upregulated STAR, CYP11A1, and CYP19A1 expression and estradiol (E2) and progesterone (P4) synthesis in GC from preovulatory follicles (po-GC); and increased STAR, CYP11A1, and CYP19A1 promoter activities. In addition, follicle-stimulating hormone treatment significantly upregulated NR5A1 and NR5A2 expression in po-GC and significantly promoted FSHR, CYP11A1, and HSD3B1 expression in GC from pre-hierarchical follicles and po-GC. The core promoter region of NR5A1 was identified at the -1,095- to -483-bp and -2,054- to -1,536-bp regions from the translation start site (+1), and the core promoter region of NR5A2 was at -998 to -489 bp. Two single nucleotide polymorphisms (SNP) were identified in the core promoter region of the NR5A1 gene, which differed between high- and low-yielding chicken groups. Our study suggested that NR5A1 and NR5A2 promoted chicken follicle development by promoting GC proliferation and E2 and P4 hormone synthesis and inhibiting apoptosis. Moreover, we identified the promoter core region or functional site that regulates NR5A1 and NR5A2 expression.


Subject(s)
Apoptosis , Avian Proteins , Cell Proliferation , Chickens , Granulosa Cells , Ovarian Follicle , Animals , Female , Chickens/genetics , Granulosa Cells/physiology , Granulosa Cells/metabolism , Ovarian Follicle/physiology , Ovarian Follicle/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Gonadal Steroid Hormones/metabolism , Gonadal Steroid Hormones/biosynthesis
10.
Anim Reprod Sci ; 263: 107431, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412765

ABSTRACT

For domestic cats ovaries, recommended cold-storage limit is 24 h in Phosphate Buffered Saline (PBS) or Dulbecco`s PBS (DPBS). Here, we attempted to verify wheatear cat ovaries may benefit from more complex solutions during prolonged cold-storage (>24 h). First, the preservation capabilities of extracellular (SP+), intracellular (UW) solutions and DPBS supplemented with glutathione (DPBS+GSH) were compared using ovary fragments from the same ovary (n=10). Intact ovary stored in DPBS served as a control. Ovaries were kept at 4 °C for 48 h, and 72 h. In the second experiment, first ovary was stored in DPBS, second in SP+ or UW solution for 48 h (n = 12). Ovaries pairs stored in DPBS for 24 h served as a control (n=8). Tissue samples were evaluated directly after cold-storage and after following 24 h in vitro culture. Ovarian follicle morphology, apoptosis rates (cleaved caspase-3, TUNEL), and follicular growth activation (Ki-67) were assessed. Ovary fragmentation impaired follicular morphology preservation upon cold-storage comparing to intact ovary. However, ovarian fragments stored in UW for 48 h and in SP+ for 72 h presented better morphology than DPBS+GSH group. Comparison of intact ovaries cold-storage for 48 h showed that SP+ provided superior follicular morphology over DPBS, and it was comparable to the outcome of 24-hour storage. No follicular activation after in vitro culture was observed. Nevertheless, tissue culture increased considerably caspase-3 cleavage and TUNEL detection. The ovary fragmentation prior to cold-storage is not recommended in domestic cats. Replacement of DPBS with SP+ solution for whole ovary and UW solution for ovarian tissue fragments improves follicular structure preservation during 48-hour cold-storage.


Subject(s)
Organ Preservation Solutions , Ovary , Female , Animals , Cats , Ovary/physiology , Caspase 3 , Ovarian Follicle/physiology , Glutathione , Raffinose , Allopurinol , Insulin , Adenosine
11.
Theriogenology ; 218: 79-88, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38301510

ABSTRACT

The aim of the present study was to evaluate: 1) the association between AMH, AFC, superovulatory response and embryo yield in sheep; and 2) the effect of FSH treatment length during superstimulation of the first follicular wave on ovarian response and embryo yield, particularly in ewes with low and high AMH. The experiment was performed on 63 Polled Dorset ewes that received an ovarian superstimulatory treatment during the first follicular wave (Day 0 protocol). Ewes were administered a total dose of 240 mg of FSH distributed in six (6-dose regimen, n = 30) or eight (8-dose regimen, n = 33) decreasing doses administered 12 h apart. On Day -9 (random stage of the estrous cycle) and Day 0 (day of the first FSH dose) ovarian ultrasonography was performed and blood samples were collected for AFC and AMH determinations, respectively. A weak positive correlation between AMH and small AFC (follicles <4 mm) was observed (r = 0.23; P = 0.07), and AMH concentration was positively correlated (r = 0.29; P < 0.05) with the number of corpora lutea (CL) determined at embryo collection (i.e., 6 d after insemination). The length of FSH treatment tended (P = 0.06) to affect the ovarian response, such that the number of CL was greater in 8-dose than 6-dose treated ewes, while no differences (P > 0.10) in embryo yield outcomes were observed. For further analysis, ewes were classified into low (<7 ng/mL) and high (>10 ng/mL) serum AMH. In high AMH ewes, there were no differences (P > 0.05) in the number of CL nor embryo yield between the 6-dose and 8-dose treatment (e.g., 7.8 ± 2.4 and 8.3 ± 2.5 transferable embryos, respectively; P = 0.92). Conversely, for low AMH ewes, fertilized ova and embryo yield were greater (P ≤ 0.05) for ewes receiving the 8-dose than the 6-dose superstimulatory treatment (e.g., 8.4 ± 2.8 vs. 2.7 ± 0.9 transferable embryos, respectively, P ≤ 0.05). In conclusion, embryo production in poor responding ewes with low low circulating AMH is improved by extending the superstimulatory treatment length from 6 to 8 FSH doses.


Subject(s)
Follicle Stimulating Hormone , Ovarian Follicle , Female , Animals , Sheep , Ovarian Follicle/physiology , Follicle Stimulating Hormone/pharmacology , Ovary , Corpus Luteum , Superovulation
12.
Reprod Biol ; 24(1): 100848, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199161

ABSTRACT

Growth hormone is a key endocrine factor for metabolic adaptations to lactation and optimal reproductive function of the dairy cow. This study aimed to analyze the expression of GH and its receptor (GHR) in ovarian follicles, along with metabolic biomarkers, during the resumption of the postpartum follicular development, and to analyze the immunolocalization and protein expression of GH and GHR in preovulatory follicles. Thirty-six dairy cows were grouped according to the postpartum days (PPD) until the establishment of the first dominant follicle in: cows that established their first dominant follicle at fewer postpartum days (FPPD group; n = 15) and cows that established their first dominant follicle at more postpartum days (MPPD group; n = 22). For a second analysis, the same cows were regrouped according to the calving season (S), into cows calving in autumn (n = 20) and cows calving in winter (n = 17). During the PP, blood and follicular aspirates were obtained at two timepoints (T): when the first dominant follicle was established (T1, day 9 ± 2), and when the preovulatory follicle was established (T2, day 45 ± 2). Also, six dairy cows were ovariectomized in proestrus and ovarian histological sections were obtained. Growth hormone mRNA was detected in granulose cells from ovarian follicle sampled during PP. A PPD × T interaction was observed for GHR mRNA, where it was greater in the FPPD cows than in the MPPD cows at T1. Metabolic biomarkers and reproductive hormones showed differences or interaction between PPD, T, S, depending on the case. Also, GH and GHR were immunolocalized in granulosa and theca interna cells of preovulatory follicles. These results confirm the expression of GH and GHR in the mature ovarian follicles of dairy cows and show a possible association between greater GHR expression and an earlier resumption of postpartum follicular development.


Subject(s)
Growth Hormone , Postpartum Period , Female , Humans , Cattle , Animals , Postpartum Period/physiology , Ovarian Follicle/physiology , Lactation/physiology , RNA, Messenger , Biomarkers , Ovulation/physiology
13.
Anim Reprod Sci ; 262: 107415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286040

ABSTRACT

Studies in cows have reported that ovulation, steroidogenesis and angiogenesis are affected by stress and consequently fertility decreases. The purpose of this study was to evaluate the effects of ACTH administration during the preovulatory period on the expression of growth factors (CD-31, PDGF-A, PDGF-B, VEGFA-164, VEGFA-164b, VEGF-R1 and VEGF-R2) associated with the angiogenic process by immunohistochemistry in cows (n = 14). Results evidenced the expression of these growth factors in theca and granulosa cells from antral, atretic and dominant preovulatory follicles of ACTH-treated cows, suggesting that, under stress conditions, their expression continues to be required. VEGFA-164, VEGF-R1 and VEGF-R2 expression was greater in theca cells of dominant preovulatory follicles of the ACTH-treated group than in those of the control group. CD-31 protein expression was lower in the dominant preovulatory follicles of the ACTH-treated group than in those of the control group. PDGF-A and PDGF-B expression did not differ between groups, either in granulosa or in theca cells. These results suggest that VEGFA-164, its receptors and CD-31 are actors in the normal cycle of the ovaries and could have greater pathophysiological importance in the altered angiogenic process and other events that occur during anovulation and stress conditions. This dysregulation reinforces the importance of the angiogenic process in the pathophysiology of cystic ovarian disease in cows. This is the first report on the expression and localization of components of the VEGF and PDGF systems and CD-31 in cells from dominant preovulatory follicles after ACTH administration.


Subject(s)
Ovarian Follicle , Vascular Endothelial Growth Factor A , Female , Cattle , Animals , Ovarian Follicle/physiology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Granulosa Cells , Theca Cells , Intercellular Signaling Peptides and Proteins/metabolism , Adrenocorticotropic Hormone/pharmacology , Adrenocorticotropic Hormone/metabolism
14.
J Ovarian Res ; 17(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38169411

ABSTRACT

BACKGROUND: An unexpected impaired ovarian response pertains to an insufficient reaction to controlled ovarian hyperstimulation. This deficient reaction is identified by a reduced count of mature follicles and retrieved oocytes during an IVF cycle, potentially diminishing the likelihood of a successful pregnancy. This research seeks to examine whether the characteristics of antral follicles can serve as predictive indicators for the unexpected impaired ovarian response to controlled ovarian stimulation (COS). METHODS: This retrospective cohort study was conducted at a tertiary university hospital. The electronic database of the ART (assisted reproductive technologies) center was screened between the years 2012-2022. Infertile women under 35 years, with normal ovarian reserve [anti-Müllerian hormone (AMH) > 1.2 ng/ml, antral follicle count (AFC) > 5] who underwent their first controlled ovarian stimulation (COS) cycle were selected. Women with < 9 oocytes retrieved (group 1 of the Poseidon classification) constituted the group A, whereas those with ≥ 9 oocytes severed as control (normo-responders) one (group B). Demographic, anthropometric and hormonal variables together with COS parameters of the two groups were compared. RESULTS: The number of patients with < 9 oocytes (group A) was 404, and those with ≥ 9 oocytes were 602 (group B). The mean age of the group A was significantly higher (30.1 + 2.9 vs. 29.4 + 2.9, p = 0.01). Group A displayed lower AMH and AFC [with interquartile ranges (IQR); AMH 1.6 ng/ml (1-2.6) vs. 3.5 ng/ml (2.2-5.4) p < 0.01, AFC 8 (6-12) vs. 12 (9-17), p < 0.01]. The number of small antral follicles (2-5 mm) of the group A was significantly lower [6 (4-8) vs. 8 (6-12) p < 0.01), while the larger follicles (5-10 mm) remained similar [3 (1-5) vs. 3(1-6) p = 0.3] between the groups. CONCLUSION: The propensity of low ovarian reserve and higher age are the main risk factors for the impaired ovarian response. The proportion of the small antral follicles may be a predictive factor for ovarian response to prevent unexpected poor results.


Subject(s)
Infertility, Female , Ovarian Reserve , Pregnancy , Humans , Female , Retrospective Studies , Infertility, Female/therapy , Infertility, Female/etiology , Ovarian Follicle/physiology , Oocytes , Ovary , Ovarian Reserve/physiology , Anti-Mullerian Hormone , Ovulation Induction/methods , Fertilization in Vitro/adverse effects
15.
Anat Histol Embryol ; 53(1): e12980, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37788129

ABSTRACT

Prostaglandins are synthesized from arachidonic acid through the catalytic activities of cyclooxygenase, while the production of different prostaglandin types, prostaglandin F2 alpha (PGF) and prostaglandin E2 (PGE), are regulated by specific prostaglandin synthases (PGFS and PGES). Prostaglandin ligands (PGF and PGE) bind to specific high-affinity receptors and initiate biologically distinct signalling pathways. In the ovaries, prostaglandins are known to be important endocrine regulators of female reproduction, in addition to maintaining local function through autocrine and/or paracrine effect. Many research groups in different animal species have already identified a variety of factors and molecular mechanisms that are responsible for the regulation of prostaglandin functions. In addition, prostaglandins stimulate their intrafollicular and intraluteal production via the pathway of prostaglandin self-regulation in the ovary. Therefore, the objective of the review article is to discuss recent findings about local regulation patterns of prostaglandin ligands PGF and PGE during different physiological stages of ovarian function in domestic ruminants, especially in bovine. In conclusion, the discussed local regulation mechanisms of prostaglandins in the ovary may stimulate further research activities in different methodological approaches, especially during final follicle maturation and ovulation, as well as corpus luteum formation and function.


Subject(s)
Ovary , Prostaglandins , Female , Cattle , Animals , Prostaglandins/metabolism , Ovary/physiology , Prostaglandin-Endoperoxide Synthases/metabolism , Ruminants/metabolism , Ovarian Follicle/physiology , Corpus Luteum/metabolism
16.
Zygote ; 32(1): 14-20, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38047391

ABSTRACT

The aim of this research was to investigate the effect of Coenzyme Q10 (CoQ10) on the expression of the Transcription Factor A Mitochondrial (Tfam) gene and mtDNA copy number in preantral follicles (PFs) of mice during in vitro culture. To conduct this experimental study, PFs were isolated from 14-day-old National Medical Research Institute mice and cultured in the presence of 50 µm CoQ10 for 12 days. On the 12th day, human chorionic gonadotropin was added to stimulate ovulation. The fundamental parameters, including preantral follicle developmental rate and oocyte maturation, were evaluated. Additionally, the Tfam gene expression and mtDNA copy number of granulosa cells and oocytes were assessed using the real-time polymerase chain reaction. The results revealed that CoQ10 significantly increased the diameter of PFs, survival rate, antrum formation, and metaphase II (MII) oocytes (P < 0.05). Moreover, in the CoQ10-treated groups, the Tfam gene expression in granulosa cells and oocytes increased considerably compared with the control group. The mtDNA copy number of granulosa cells and oocytes cultured in the presence of CoQ10 was substantially higher compared with the control groups (P < 0.05). The addition of CoQ10 to the culture medium enhances the developmental competence of PFs during in vitro culture by upregulating Tfam gene expression and increasing mtDNA copy number in oocyte and granulosa cells.


Subject(s)
Organelle Biogenesis , Ovarian Follicle , Ubiquinone/analogs & derivatives , Female , Humans , Animals , Mice , Ovarian Follicle/physiology , Oocytes , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism
17.
Poult Sci ; 103(1): 103241, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980745

ABSTRACT

The egg-laying performance of hens holds significant economic importance within the poultry industry. Broody inheritance of the parent stock of chickens can result in poor options for the improvement of egg production, and is a phenomenon influenced by multiple genetic factors. However, few studies have been conducted to delineate the molecular mechanism of ovarian regression in brooding chickens. Here, we explored the pivotal genes responsible for the regulation of ovarian follicles in laying hens, using RNA-sequencing analysis on the small ovarian follicles from broody and laying chickens. Sequencing data analysis revealed the differential expression of 200 genes, with a predominant enrichment in biological processes related to cell activation and metabolism. Among these genes, we focused on solute carrier family 5 member 5 (SLC5A5), which exhibited markedly higher RNA expression levels in follicles from laying compared with broody chickens. Subsequent cellular function studies with knockdown of SLC5A5 in chicken ovarian follicle granulosa cells (GCs) led to the down-regulation of genes associated with cell proliferation and steroid hormone synthesis, and concurrent promotion of gene expression linked to apoptosis. These findings indicated that SLC5A5 deficiency led to the inhibition of proliferation, steroid hormone synthesis and secretion, and promotion of apoptosis in chicken GCs. Our study demonstrated a pivotal role for SLC5A5 in the development and function of chicken GCs, shedding light on its potential significance in the broader context of chicken ovarian follicle development, and providing a prospective target to improve the egg-laying performance of chickens via molecular marker-assisted breeding technology.


Subject(s)
Chickens , Ovarian Follicle , Animals , Female , Chickens/genetics , Ovarian Follicle/physiology , Granulosa Cells , Gene Expression Profiling/veterinary , Cell Proliferation , Apoptosis , Hormones/metabolism , RNA/metabolism , Steroids/metabolism
18.
Biol Reprod ; 110(1): 33-47, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37812452

ABSTRACT

Exposure to heat stress (HS) in utero was postulated to trigger an adaptive molecular response that can be transmitted to the next generation. Hence, this study assessed the impact of HS exposure at different stages of the gestational period of mice on the female F1 population and their offspring. Heat stress exposure (41°C and 65% relative humidity-RH) occurred during the first half (FP), the second half (SP), or the entire pregnancy (TP). A control group (C) was maintained in normothermic conditions (25°C, 45% RH) throughout the experiment. Heat stress had a significant negative effect on intrauterine development, mainly when HS exposure occurred in the first half of pregnancy (FP and TP groups). Postnatal growth of FP and TP mice was hindered until 4 weeks of age. The total number of follicles per ovary did not vary (P > 0.05) between the control and HS-exposed groups. Mean numbers of primordial follicles were lower (P < 0.05) in the sexually mature FP than those in SP and TP F1 females. However, the mean number of viable embryos after superovulation was lower (P < 0.05) in TP compared with C group. The expression of genes associated with physiological and cellular response to HS, autophagy, and apoptosis was significantly affected in the ovarian tissue of F1 females and F2 in vivo-derived blastocysts in all HS-exposed groups. In conclusion, exposure to HS during pregnancy compromised somatic development and reproductive parameters as well as altered gene expression profile that was then transmitted to the next generation of mice.


Subject(s)
Ovary , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Animals , Female , Mice , Prenatal Exposure Delayed Effects/genetics , Ovarian Follicle/physiology , Heat-Shock Response/genetics , Gene Expression
19.
Reprod Sci ; 31(5): 1234-1245, 2024 May.
Article in English | MEDLINE | ID: mdl-38160209

ABSTRACT

This paper will review a remarkable new approach to in vitro maturation "IVM" of oocytes from ovarian tissue, based on our results with in vitro oogenesis from somatic cells. As an aside benefit we also have derived a better understanding of ovarian longevity from ovary transplant. We have found that primordial follicle recruitment is triggered by tissue pressure gradients. Increased pressure holds the follicle in meiotic arrest and prevents recruitment. Therefore recruitment occurs first in the least dense inner tissue of the cortico-medullary junction. Many oocytes can be obtained from human ovarian tissue and mature to metaphase 2 in vitro with no need for ovarian stimulation. Ovarian stimulation may only be necessary for removing the oocyte from the ovary, but this can also be accomplished by simple dissection at the time of ovary tissue cryopreservation. By using surgical dissection of the removed ovary, rather than a needle stick, we can obtain many oocytes from very small follicles not visible with ultrasound. A clearer understanding of ovarian function has come from in vitro oogenesis experiments, and that explains why IVM has now become so simple and robust. Tissue pressure (and just a few "core genes" in the mouse) direct primordial follicle recruitment and development to mature oocyte, and therefore also control ovarian longevity. There are three distinct phases to oocyte development both in vitro and in vivo: in vitro differentiation "IVD" which is not gonadotropin sensitive (the longest phase), in vitro gonadotropin sensitivity "IVG" which is the phase of gonadotropin stimulation to prepare for meiotic competence, and IVM to metaphase II. On any given day 35% of GVs in ovarian tissue have already undergone "IVD" and "IVG" in vivo, and therefore are ready for IVM.


Subject(s)
In Vitro Oocyte Maturation Techniques , Oogenesis , Ovary , Female , Animals , Oogenesis/physiology , Humans , Ovary/physiology , Oocytes/physiology , Ovarian Follicle/physiology , Mice
20.
Zygote ; 32(1): 66-70, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38099429

ABSTRACT

At this time, with advances in medical science, many cancers and chronic diseases are treatable, but one of their side effects is infertility. Some women also want to delay pregnancy for personal reasons. There has been some evidence that kisspeptin activates broad signals by binding to its receptor, suggesting that the role of kisspeptin in direct control of ovarian function includes follicle growth and steroid production. In this study, the effect of kisspeptin on improving the quality and results for human ovarian follicles was investigated. A section of ovary was removed laparoscopically from women between 20 and 35 years of age (n = 12). Pieces were divided randomly into two groups, control and treatment (with 1 µM kisspeptin). Real-time PCR was performed for GDF9, BMP15 and mTOR gene expression assessments. Western blotting was carried out to measure AKT and FOXO3a protein expression. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test; means were considered significantly different at a P-value < 0.05. During treatment with the kisspeptin group, maturity genes are expressed. Therefore, kisspeptin is an effective substance to improve the quality of the human ovarian medium as it increases the maturity of follicles.


Subject(s)
Kisspeptins , Ovary , Pregnancy , Humans , Female , Kisspeptins/genetics , Kisspeptins/pharmacology , Kisspeptins/metabolism , Ovarian Follicle/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...