Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Anal Methods ; 16(19): 3125-3130, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38700061

ABSTRACT

A new fluorescence sensing approach has been proposed for the precise determination of the anti-cancer drug oxaliplatin (Oxal-Pt). This method entails synthesizing blue-emitting copper nanoclusters (CuNCs) functionalized with bovine serum albumin (BSA) as the stabilizing agent. Upon excitation at 360 nm, the resultant probe exhibits emission at 460 nm. Notably, the fluorescence response of BSA@CuNCs substantially increases upon incubation with Oxal-Pt due to multiple binding interactions between the drug and the fluorescent probe. These interactions involve hydrogen bonding, hydrophobic interaction, and the high affinity between the SH groups (cysteine residues of BSA) and platinum (in Oxal-Pt). Consequently, this interaction induces aggregation-induced emission enhancement (AIEE) of BSA@CuNCs. The probe demonstrates a broad response range from 0.08 to 140.0 µM, along with a low detection limit of 20.0 nM, determined based on a signal-to-noise ratio of 3. Furthermore, the probe effectively detects Oxal-Pt in injections, human serum, and urine samples, yielding acceptable results. This study represents a significant advancement in the development of a straightforward and efficient sensor for monitoring platinum-containing anti-cancer drugs during chemotherapy.


Subject(s)
Antineoplastic Agents , Copper , Drug Monitoring , Fluorescent Dyes , Oxaliplatin , Serum Albumin, Bovine , Spectrometry, Fluorescence , Oxaliplatin/chemistry , Serum Albumin, Bovine/chemistry , Copper/chemistry , Humans , Antineoplastic Agents/chemistry , Drug Monitoring/methods , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Animals , Limit of Detection , Neoplasms/drug therapy , Cattle
2.
J Med Chem ; 67(10): 8296-8308, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38739678

ABSTRACT

Platinum-drug-based chemotherapy in clinics has achieved great success in clinical malignancy therapy. However, unpredictable off-target toxicity and the resulting severe side effects in the treatment are still unsolved problems. Although metabolic glycan labeling-mediated tumor-targeted therapy has been widely reported, less selective metabolic labeling in vivo limited its wide application. Herein, a novel probe of B-Ac3ManNAz that is regulated by reactive oxygen species in tumor cells is introduced to enhance the recognition and cytotoxicity of DBCO-modified oxaliplatin(IV) via bioorthogonal chemistry. B-Ac3ManNAz was synthesized from Ac4ManNAz by incorporation with 4-(hydroxymethyl) benzeneboronic acid pinacol ester (HBAPE) at the anomeric position, which is confirmed to be regulated by ROS and could robustly label glycans on the cell surface. Moreover, N3-treated tumor cells could enhance the tumor accumulation of DBCO-modified oxaliplatin(IV) via click chemistry meanwhile reduce the off-target distribution in normal tissue. Our strategy provides an effective metabolic precursor for tumor-specific labeling and targeted cancer therapies.


Subject(s)
Antineoplastic Agents , Oxaliplatin , Polysaccharides , Prodrugs , Reactive Oxygen Species , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Oxaliplatin/pharmacology , Oxaliplatin/chemistry , Humans , Reactive Oxygen Species/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice , Cell Line, Tumor , Mice, Inbred BALB C , Mice, Nude
3.
J Mater Chem B ; 12(16): 3947-3958, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38586917

ABSTRACT

Colorectal cancer (CRC) occurs in the colorectum and ranks second in the global incidence of all cancers, accounting for one of the highest mortalities. Although the combination chemotherapy regimen of 5-fluorouracil (5-FU) and platinum(IV) oxaliplatin prodrug (OxPt) is an effective strategy for CRC treatment in clinical practice, chemotherapy resistance caused by tumor-resided Fusobacterium nucleatum (Fn) could result in treatment failure. To enhance the efficacy and improve the biocompatibility of combination chemotherapy, we developed an antibacterial-based nanodrug delivery system for Fn-associated CRC treatment. A tumor microenvironment-activated nanomedicine 5-FU-LA@PPL was constructed by the self-assembly of chemotherapeutic drug derivatives 5-FU-LA and polymeric drug carrier PPL. PPL is prepared by conjugating lauric acid (LA) and OxPt to hyperbranched polyglycidyl ether. In principle, LA is used to selectively combat Fn, inhibit autophagy in CRC cells, restore chemosensitivity of 5-FU as well as OxPt, and consequently enhance the combination chemotherapy effects for Fn-associated drug-resistant colorectal tumor. Both in vitro and in vivo studies exhibited that the tailored nanomedicine possessed efficient antibacterial and anti-tumor activities with improved biocompatibility and reduced non-specific toxicity. Hence, this novel anti-tumor strategy has great potential in the combination chemotherapy of CRC, which suggests a clinically relevant valuable option for bacteria-associated drug-resistant cancers.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Fluorouracil , Lauric Acids , Fluorouracil/pharmacology , Fluorouracil/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Humans , Lauric Acids/chemistry , Lauric Acids/pharmacology , Animals , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Fusobacterium nucleatum/drug effects , Oxaliplatin/pharmacology , Oxaliplatin/chemistry , Drug Delivery Systems , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Prodrugs/chemistry , Prodrugs/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice, Inbred BALB C , Particle Size , Drug Carriers/chemistry
4.
AAPS PharmSciTech ; 24(1): 43, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36702971

ABSTRACT

Nanogel has attracted considerable attention as one of the most versatile drug delivery systems, especially for site-specific and/or time-controlled delivery of the chemotherapeutic agent. The main objective of this study was to prepare the polymeric nanogel characterized by Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetric analysis, differential scanning, and oral acute toxicity. Free radical polymerization was done for the fabrication of polymeric nanogel. Fourier transform infrared spectroscopy was used to confirm the successful free radical polymerization. Various techniques such as x-ray diffraction, differential scanning calorimetric, and thermogravimetric analysis measurement were used to investigate the thermal behavior and crystallinity of developed nanogel. Parameters such as swelling, drug loading, and in vitro drug release is enhanced as polymers and monomers concentrations increase while these parameters decrease in case of increasing crosslinker concentration. The oral biocompatibility results of developed nanogel exhibited no toxicity in rabbits. Histopathological changes were observed between empty and loaded group. The nanosized gel offers a specific surface area which increases the stability of loaded drug (oxaliplatin) and bioavailability of the drug (oxaliplatin) as compared to the conventional drug delivery systems.


Subject(s)
Drug Delivery Systems , Hydrogels , Animals , Rabbits , Oxaliplatin/chemistry , Nanogels , Hydrogels/chemistry , Drug Delivery Systems/methods , Polymers , Drug Liberation , Spectroscopy, Fourier Transform Infrared
5.
J Biol Inorg Chem ; 27(8): 691-694, 2022 12.
Article in English | MEDLINE | ID: mdl-36315287

ABSTRACT

The reactivity of platinum-containing drugs such as cisplatin, carboplatin, and oxaliplatin is essential for its mechanism of action as an anticancer agent. This inherent reactivity means that molecules in tools used to study these metal-based drugs such as solvents (DMSO), cell culture media, and other buffer additives can ligate to and inactivate or activate them. This Commentary considers these cautionary tales in the context of a new report that cisplatin can also react with penicillin, reiterates best practice in creating Pt drug stock solutions, and highlights the significant work that remains to fully characterize the fate of cisplatin in cell culture media.


Subject(s)
Antineoplastic Agents , Cisplatin , Cisplatin/pharmacology , Cisplatin/chemistry , Ligands , Carboplatin/chemistry , Oxaliplatin/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Culture Techniques
6.
J Biol Inorg Chem ; 27(8): 695-704, 2022 12.
Article in English | MEDLINE | ID: mdl-36153767

ABSTRACT

Determination of the toxicity of compounds toward cancer cells is a frequent procedure in drug discovery. For metal complexes, which are often reactive prodrugs, care has to be taken to consider reactions with components of the cell culture medium that might change the speciation of the metal complex before it is taken up by the cells. Here, we consider possible reactions between the clinical platinum drugs cisplatin and oxaliplatin with penicillin G, an antibiotic added routinely to cell culture media to prevent bacterial contamination. Platinum has a high affinity for ligands with sulfur donors. Penicillin G is an unstable thioether that degrades in a range of pathways. Nuclear magnetic resonance (NMR) and UV-Vis absorption spectroscopic studies show that reactions with cisplatin can occur within minutes to hours at 310 K, but more slowly with oxaliplatin. The identities of the Pt- adducts were investigated by mass spectrometry. The marked effect on cytotoxicity of co-incubation of cisplatin with penicillin G was demonstrated for the HeLa human cervical cancer cell line. These studies highlight the possibility that reactions with penicillin G might influence the cytotoxic activity of metal complexes determined in culture media.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Humans , Cisplatin/pharmacology , Cisplatin/chemistry , Oxaliplatin/pharmacology , Oxaliplatin/chemistry , Platinum/chemistry , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Antineoplastic Agents/chemistry , Penicillin G/pharmacology
7.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163122

ABSTRACT

Anti-CD133 monoclonal antibody (Ab)-conjugated poly(lactide-co-glycolide) (PLGA) nanocarriers, for the targeted delivery of oxaliplatin (OXA) and superparamagnetic nanoparticles (IO-OA) to colorectal cancer cells (CaCo-2), were designed, synthesized, characterized, and evaluated in this study. The co-encapsulation of OXA and IO-OA was achieved in two types of polymeric carriers, namely, PLGA and poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) by double emulsion. PLGA_IO-OA_OXA and PEGylated PLGA_IO-OA_OXA nanoparticles displayed a comparable mean diameter of 207 ± 70 nm and 185 ± 119 nm, respectively. The concentration of the released OXA from the PEGylated PLGA_IO-OA_OXA increased very rapidly, reaching ~100% release after only 2 h, while the PLGA_IO-OA_OXA displayed a slower and sustained drug release. Therefore, for a controlled OXA release, non-PEGylated PLGA nanoparticles were more convenient. Interestingly, preservation of the superparamagnetic behavior of the IO-OA, without magnetic hysteresis all along the dissolution process, was observed. The non-PEGylated nanoparticles (PLGA_OXA, PLGA_IO-OA_OXA) were selected for the anti-CD133 Ab conjugation. The affinity of Ab-coated nanoparticles for CD133-positive cells was examined using fluorescence microscopy in CaCo-2 cells, which was followed by a viability assay.


Subject(s)
Antibodies, Monoclonal/chemistry , Colorectal Neoplasms/drug therapy , Drug Delivery Systems , Immunoconjugates/pharmacology , Nanoparticles/administration & dosage , Oxaliplatin/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , AC133 Antigen/immunology , Antineoplastic Agents/chemistry , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Drug Carriers/chemistry , Drug Liberation , Humans , Nanoparticles/chemistry
8.
Anticancer Res ; 42(2): 857-866, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35093883

ABSTRACT

BACKGROUND/AIM: Anti-cancer chemotherapy is an effective therapeutic approach. Milk extracellular vesicles (EVs) loaded with chemotherapeutics have a potential anticancer effect by acting as a drug delivery system. Thus, our study aimed to explore the effect of engineered milk extracellular vesicles. MATERIALS AND METHODS: To treat epidermal growth factor receptor (EGFR) expressing solid tumors, we established oxaliplatin-loaded milk EV conjugated with GE11 peptide (GE11Milk EVoxal), which has a high affinity to EGFR and assessed their anti-cancer effect in vitro and in vivo. RESULTS: Drug-loaded GE11Milk EVoxal showed significantly higher incorporation into EGFR expressing cancer cells compared with milk EV without GE11 conjugation (Milk EVoxal), leading to apoptosis of cancer cells. GE11Milk EVoxal also inhibited cell viability compared to milk EVoxal or oxaliplatin alone. In colorectal cancer xenograft murine model, GE11Milk EVoxal showed the maximum therapeutic effect on tumor progression. These findings indicate that GE11Milk EVoxal suppresses EGFR expressing cancer through GE11 peptide-mediated EGFR targeting and subsequently anti-cancer drug delivery. CONCLUSION: Anti-cancer drug-loaded engineered milk EVs might be a novel therapeutic approach for treating patients with EGFR expressing solid tumors.


Subject(s)
Antineoplastic Agents/chemistry , Extracellular Vesicles/chemistry , Milk/chemistry , Oxaliplatin/chemistry , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Drug Delivery Systems , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Mice , Oxaliplatin/administration & dosage , Peptides/administration & dosage , Peptides/chemistry , Treatment Outcome , Xenograft Model Antitumor Assays
9.
J Nanobiotechnology ; 19(1): 447, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34952594

ABSTRACT

BACKGROUND: Autophagy is a conserved catabolic process, which plays an important role in regulating tumor cell motility and degrading protein aggregates. Chemotherapy-induced autophagy may lead to tumor distant metastasis and even chemo-insensitivity in the therapy of hepatocellular carcinoma (HCC). Therefore, a vast majority of HCC cases do not produce a significant response to monotherapy with autophagy inhibitors. RESULTS: In this work, we developed a biomimetic nanoformulation (TH-NP) co-encapsulating Oxaliplatin (OXA)/hydroxychloroquine (HCQ, an autophagy inhibitor) to execute targeted autophagy inhibition, reduce tumor cell migration and invasion in vitro and attenuate metastasis in vivo. The tumor cell-specific ligand TRAIL was bioengineered to be stably expressed on HUVECs and the resultant membrane vesicles were wrapped on OXA/HCQ-loaded PLGA nanocores. Especially, TH-NPs could significantly improve OXA and HCQ effective concentration by approximately 21 and 13 times in tumor tissues compared to the free mixture of HCQ/OXA. Moreover, the tumor-targeting TH-NPs released HCQ alkalized the acidic lysosomes and inhibited the fusion of autophagosomes and lysosomes, leading to effective blockade of autophagic flux. In short, the system largely improved chemotherapeutic performance of OXA on subcutaneous and orthotopic HCC mice models. Importantly, TH-NPs also exhibited the most effective inhibition of tumor metastasis in orthotopic HCCLM3 models, and in the HepG2, Huh-7 or HCCLM3 metastatic mice models. Finally, we illustrated the enhanced metastasis inhibition was attributed to the blockade or reverse of the autophagy-mediated degradation of focal adhesions (FAs) including E-cadherin and paxillin. CONCLUSIONS: TH-NPs can perform an enhanced chemotherapy and antimetastatic effect, and may represent a promising strategy for HCC therapy in clinics.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Biomimetic Materials/chemistry , Nanoparticles/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Carriers/chemistry , Drug Liberation , Focal Adhesions/chemistry , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Humans , Hydroxychloroquine/chemistry , Hydroxychloroquine/metabolism , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Mice , Neoplasms/pathology , Oxaliplatin/chemistry , Oxaliplatin/metabolism , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Paxillin/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
10.
Molecules ; 26(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34641590

ABSTRACT

In the few last years, nanosystems have emerged as a potential therapeutic approach to improve the efficacy and selectivity of many drugs. Cyclodextrins (CyDs) and their nanoparticles have been widely investigated as drug delivery systems. The covalent functionalization of CyD polymer nanoparticles with targeting molecules can improve the therapeutic potential of this family of nanosystems. In this study, we investigated cross-linked γ- and ß-cyclodextrin polymers as carriers for doxorubicin (ox) and oxaliplatin (Oxa). We also functionalized γ-CyD polymer bearing COOH functionalities with arginine-glycine-aspartic or arginine moieties for targeting the integrin receptors of cancer cells. We tested the Dox and Oxa anti-proliferative activity in the presence of the precursor polymer with COOH functionalities and its derivatives in A549 (lung, carcinoma) and HepG2 (liver, carcinoma) cell lines. We found that CyD polymers can significantly improve the antiproliferative activity of Dox in HepG2 cell lines only, whereas the cytotoxic activity of Oxa resulted as enhanced in both cell lines. The peptide or amino acid functionalized CyD polymers, loaded with Dox, did not show any additional effect compared to the precursor polymer. Finally, studies of Dox uptake showed that the higher antiproliferative activity of complexes correlates with the higher accumulation of Dox inside the cells. The results show that CyD polymers could be used as carriers for repositioning classical anticancer drugs such as Dox or Oxa to increase their antitumor activity.


Subject(s)
Antineoplastic Agents/therapeutic use , Cellulose/therapeutic use , Cyclodextrins/therapeutic use , Doxorubicin/therapeutic use , Drug Delivery Systems/methods , Nanoparticles/therapeutic use , Oxaliplatin/therapeutic use , A549 Cells , Amino Acid Motifs , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cellulose/chemistry , Cyclodextrins/chemistry , Doxorubicin/chemistry , Drug Carriers/chemistry , Hep G2 Cells , Humans , Nanoparticles/chemistry , Oxaliplatin/chemistry , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/therapeutic use , gamma-Cyclodextrins/chemistry , gamma-Cyclodextrins/therapeutic use
11.
J Inorg Biochem ; 223: 111553, 2021 10.
Article in English | MEDLINE | ID: mdl-34340059

ABSTRACT

Oxaliplatin is a platinum-based drug used in clinic for cancer chemotherapy. Despite of its success, the non-selective effect on normal cells causes severe side-effects and hampers its applications. Targeted delivery of oxaliplatin to cancer cells is an effective approach to enhance drug efficacy and reduce adverse effect. In this work, the Pt(IV) prodrug of oxaliplatin has been conjugated to poly(ethylene glycol) (PEG) modified nanobody in order to achieve tumor targeting as well as improved circulation in vivo. The Pt(IV) prodrug was site-specifically linked to an anti-epidermal growth factor receptor (EGFR) nanobody, so that the drug can be accumulated more pronounced in EGFR positive tumor cells than in normal cells. The effect of different length of PEG on the drug circulation has been investigated, while the fusion of anti-albumin nanobody was used for comparison. The result demonstrates that the prolonged drug circulation significantly increases the in vivo drug efficiency of the oxaliplatin-nanobody conjugate.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Oxaliplatin/pharmacology , Polyethylene Glycols/chemistry , Prodrugs/pharmacology , Single-Domain Antibodies/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Blood Circulation Time/drug effects , Cell Line, Tumor , Drug Stability , ErbB Receptors/immunology , Humans , Mice , Oxaliplatin/chemistry , Oxaliplatin/pharmacokinetics , Polyethylene Glycols/pharmacokinetics , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Single-Domain Antibodies/immunology
12.
Adv Sci (Weinh) ; 8(20): e2102256, 2021 10.
Article in English | MEDLINE | ID: mdl-34398516

ABSTRACT

A versatile tumor-targeting stimuli-responsive theranostic platform for peritoneal metastases of colorectal cancer is proposed in this work for tumor tracking and photothermal-enhanced chemotherapy. A quenched photosensitizer ("off" state) is developed and escorted into a tumor-targeting oxaliplatin-embedded micelle. Once reaching the tumor cell, the micelle is clasped to release free oxaliplatin, as well as the "off" photosensitizer, which is further activated ("turned-on") in the tumor reducing microenvironment to provide optical imaging and photothermal effect. The combined results from hyperthermia-enhanced chemotherapy, deep penetration, perfused O2 , and the leveraged GSH-ROS imbalance in tumor cells are achieved for improved antitumor efficacy and reduced systematic toxicity.


Subject(s)
Colorectal Neoplasms/drug therapy , Drug Therapy , Oxaliplatin/pharmacology , Peritoneal Neoplasms/drug therapy , Photothermal Therapy , Animals , Cell Line, Tumor , Colorectal Neoplasms/pathology , Humans , Mice , Neoplasm Metastasis , Oxaliplatin/chemistry , Peritoneal Neoplasms/pathology , Peritoneal Neoplasms/secondary , Precision Medicine , Reactive Oxygen Species/metabolism , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
13.
ACS Appl Mater Interfaces ; 13(33): 39934-39948, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34396771

ABSTRACT

There are two severe obstacles in cancer immunotherapy. The first is that the low response rate challenges the immune response owing to the immunosuppressive tumor microenvironment (ITM) and poor immunogenicity of the tumor. The second obstacle is that the dense and intricate pathophysiology barrier seriously restricts deep drug delivery in solid tumors. A laser/glutathione (GSH)-activatable nanosystem with tumor penetration for achieving highly efficient immunotherapy is reported. The core of the nanosystem was synthesized by coordinating zinc ions with GSH-activatable oxaliplatin (OXA) prodrugs and carboxylated phthalocyanine. Such an OXA/phthalocyanine-based coordination polymer nanoparticle (OPCPN) was wrapped by a phospholipid bilayer and NTKPEG. NTKPEG is a PEGylated indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor prodrug containing a thioketal (TK) linker, which was modified on the OPCPN (OPCPN@NTKPEG). Upon the laser irradiation tumor site, ROS production of the OPCPN@NTKPEG triggers cleavage of NTKPEG by degradation of TK for promoted tumor penetration and uptake. OXA, phthalocyanine, and IDO1 inhibitor were released by the intracellular high-level GSH. OXA inhibits cell growth and is combined with photodynamic therapy (PDT) to induce immunogenic cell death (ICD). The IDO1 inhibitor reversed the ITM by suppressing IDO1-mediated Trp degradation and exhaustion of cytotoxic T cells. Laser/GSH-activatable drug delivery was more conducive to enhancing ICD and reversing ITM in deep tumors. Chemo-PDT with OPCPN@NTKPEG significantly regressed tumor growth and reduced metastasis by improved cancer immunotherapy.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Glutathione/chemistry , Indoles/chemistry , Nanoparticles/chemistry , Oxaliplatin/chemistry , Photosensitizing Agents/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Membrane Permeability , Cell Proliferation/drug effects , Combined Modality Therapy , Drug Liberation , Glutathione/metabolism , Humans , Immunogenic Cell Death/drug effects , Immunogenic Cell Death/radiation effects , Immunotherapy , Indoles/pharmacokinetics , Isoindoles , Lasers , Mice , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/radiotherapy , Oxaliplatin/pharmacokinetics , Photochemotherapy , Photosensitizing Agents/pharmacokinetics , Polyethylene Glycols/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Tissue Distribution , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects
14.
Nat Commun ; 12(1): 4310, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262026

ABSTRACT

Patients with primary and bone metastatic breast cancer have significantly reduced survival and life quality. Due to the poor drug delivery efficiency of anti-metastasis therapy and the limited response rate of immunotherapy for breast cancer, effective treatment remains a formidable challenge. In this work, engineered macrophages (Oxa(IV)@ZnPc@M) carrying nanomedicine containing oxaliplatin prodrug and photosensitizer are designed as near-infrared (NIR) light-activated drug vectors, aiming to achieve enhanced chemo/photo/immunotherapy of primary and bone metastatic tumors. Oxa(IV)@ZnPc@M exhibits an anti-tumor M1 phenotype polarization and can efficiently home to primary and bone metastatic tumors. Additionally, therapeutics inside Oxa(IV)@ZnPc@M undergo NIR triggered release, which can kill primary tumors via combined chemo-photodynamic therapy and induce immunogenic cell death simultaneously. Oxa(IV)@ZnPc@M combined with anti-PD-L1 can eliminate primary and bone metastatic tumors, activate tumor-specific antitumor immune response, and improve overall survival with limited systemic toxicity. Therefore, this all-in-one macrophage provides a treatment platform for effective therapy of primary and bone metastatic tumors.


Subject(s)
Bone Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Drug Delivery Systems , Macrophages/transplantation , Photochemotherapy/methods , Animals , Apoptosis/drug effects , B7-H1 Antigen/antagonists & inhibitors , Bone Neoplasms/immunology , Bone Neoplasms/secondary , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Drug Carriers/chemistry , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunogenic Cell Death/drug effects , Immunologic Memory/drug effects , Indoles/administration & dosage , Indoles/chemistry , Indoles/pharmacology , Infrared Rays , Macrophages/chemistry , Nanomedicine , Organometallic Compounds/administration & dosage , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Oxaliplatin/administration & dosage , Oxaliplatin/chemistry , Oxaliplatin/pharmacology , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Prodrugs/administration & dosage , Prodrugs/chemistry , Prodrugs/pharmacology
15.
ACS Appl Mater Interfaces ; 13(29): 33962-33968, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34279919

ABSTRACT

There is a challenge in supramolecular chemotherapy for constructing a system equipped with both sufficient protection and high-efficiency release of drugs. To this end, a new strategy of an activatable host-guest conjugate with self-inclusion property is proposed. Based on the binding affinity gain of intramolecular host-guest self-inclusion, an activatable host-guest conjugate was designed, bearing cucurbit[7]uril as the host, an alkyl ammonium moiety as the guest, and the redox-responsive disulfide linkage. Oxaliplatin, a clinical antitumor drug, could be firmly encapsulated by the activatable host-guest conjugate to form the supramolecular drug with high stability. Moreover, oxaliplatin loaded in the activatable host-guest conjugate could be almost completely released by self-inclusion triggered by glutathione in a tumor microenvironment, thus exhibiting comparable antitumor bioactivity with naked oxaliplatin through in vitro cell experiments. It is highly anticipated that this line of research may open new horizons for programmable and on-demand supramolecular chemotherapy with high antitumor efficiency.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged-Ring Compounds/chemistry , Drug Carriers/chemistry , Imidazoles/chemistry , Oxaliplatin/pharmacology , Antineoplastic Agents/chemistry , Bridged-Ring Compounds/metabolism , Cell Survival/drug effects , Drug Carriers/metabolism , Drug Liberation , Drug Screening Assays, Antitumor , Glutathione/metabolism , Humans , Imidazoles/metabolism , MCF-7 Cells , Oxaliplatin/chemistry , Tumor Microenvironment/physiology
16.
Pharm Dev Technol ; 26(7): 750-764, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34154500

ABSTRACT

The aim of this study is, preparing various dendrimeric formulations of oxaliplatin and investigating their properties. First of all, the solubility enhancement capabilities of polyamidoamine (PAMAM) G3.5 and PAMAM G4.5 dendrimers were investigated. The results showed that oxaliplatin solubility mostly increasing linearly with dendrimer concentration. Additionally, the increase was more notable in PAMAM G4.5 dendrimers. Then, drug-dendrimer complexes were prepared in different mediums, since the medium used can affect the amount of drug-loaded to dendrimers. Prepared complexes were examined for loading capacity and loading efficiency. It was found that PAMAM G4.5 dendrimers can complex with 2- to 5-fold more oxaliplatin than PAMAM G3.5. Finally, oxaliplatin was modified to a platinum (IV) compound to prepare chemical drug-dendrimer conjugates. Ester bonds were established by Steglich esterification through the hydroxyl group of modified oxaliplatin and the carboxyl groups of the dendrimers. The formulations were characterized by UV, IR, NMR spectroscopy, and dynamic light scattering techniques. PAMAM G3.5 conjugate was further evaluated for the cytotoxicity test. The IC50 value of PAMAM G3.5 conjugate was found as 0.72 µM. For unmodified oxaliplatin, this value was 14.03 µM. As a result, a dendrimer-based drug delivery system that has been found promising for further improvement has been developed successfully.


Subject(s)
Antineoplastic Agents/administration & dosage , Dendrimers/administration & dosage , Drug Compounding/methods , Oxaliplatin/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , HT29 Cells/drug effects , Humans , In Vitro Techniques , Oxaliplatin/chemistry , Oxaliplatin/pharmacology , Polyamines , Solubility
17.
Molecules ; 26(3)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498932

ABSTRACT

Nanoparticles based on biocompatible methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG113-b-P(D,L)LAn) copolymers as potential vehicles for the anticancer agent oxaliplatin were prepared by a nanoprecipitation technique. It was demonstrated that an increase in the hydrophobic PLA block length from 62 to 173 monomer units leads to an increase of the size of nanoparticles from 32 to 56 nm. Small-angle X-ray scattering studies confirmed the "core-corona" structure of mPEG113-b-P(D,L)LAn nanoparticles and oxaliplatin loading. It was suggested that hydrophilic oxaliplatin is adsorbed on the core-corona interface of the nanoparticles during the nanoprecipitation process. The oxaliplatin loading content decreased from 3.8 to 1.5% wt./wt. (with initial loading of 5% wt./wt.) with increasing PLA block length. Thus, the highest loading content of the anticancer drug oxaliplatin with its encapsulation efficiency of 76% in mPEG113-b-P(D,L)LAn nanoparticles can be achieved for block copolymer with short hydrophobic block.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Oxaliplatin/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Biocompatible Materials/chemistry , Drug Delivery Systems/methods , Hydrophobic and Hydrophilic Interactions , Particle Size
18.
Bioorg Chem ; 107: 104636, 2021 02.
Article in English | MEDLINE | ID: mdl-33465670

ABSTRACT

Oxaliplatin-based chemotherapy is the current standard of care in adjuvant therapy for advanced colorectal cancer (CRC). But acquired resistance to oxaliplatin eventually occurs and becoming a major cause of treatment failure. Thus, there is an unmet need for developing new chemical entities (NCE) as new therapeutic candidates to target chemotherapy-resistant CRC. Novel Pt(II) complexes were designed and synthesized as cationic monofunctional oxaliplatin derivatives for DNA platination-mediated tumor targeting. The complex Ph-glu-Oxa sharing the same chelating ligand of diaminocyclohexane (DACH) with oxaliplatin but is equally potent in inhibiting the proliferation of HT29 colon cancer cells and its oxaliplatin-resistant phenotype of HT29/Oxa. The in vivo therapeutic potential of Ph-glu-Oxa was confirmed in oxaliplatin-resistant xenograft model demonstrating the reversibility of the drug resistance by the new complex and the efficacy was associated with the unimpaired high intracellular drug accumulation in HT29/Oxa. Guanosine-5'-monophosphate (5'-GMP) reactivity, double-strand plasmid DNA cleavage, DNA-intercalated ethidium bromide (EB) fluorescence quenching and atomic force microscopy (AFM)-mediated DNA denaturing studies revealed that Ph-glu-Oxa was intrinsically active as DNA-targeting agent. The diminished susceptibility of the complex to glutathione (GSH)-mediated detoxification, which confers high intracellular accumulation of the drug molecule may play a key role in maintaining cytotoxicity and counteracting oxaliplatin drug resistance.


Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Drug Resistance, Neoplasm/drug effects , Oxaliplatin/chemistry , Platinum/chemistry , Triazoles/chemistry , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , DNA/chemistry , DNA/metabolism , Drug Design , Drug Screening Assays, Antitumor , Glutathione/chemistry , Humans , Mice , Mice, Nude , Molecular Dynamics Simulation , Nucleic Acid Conformation , Oxaliplatin/pharmacology
19.
Adv Mater ; 32(38): e2002380, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33252171

ABSTRACT

The limited lymphocytes infiltration and immunosuppression in tumor are the major challenges of cancer immunotherapy. The use of immunogenic cell death (ICD)-inducing agents has potential to potentiate antitumor immune responses, but is tremendously hampered by the poor delivery efficiency. Herein, a tumor-activated size-enlargeable bioinspired lipoprotein of oxaliplatin (TA-OBL) is designed to access cancer cells and boost the ICD-induced antitumor immunity for synergizing immune-checkpoint blockades (ICBs)-mediated immunotherapy. TA-OBL is constructed by integrating a legumain-sensitive melittin conjugate for improving intratumoral permeation and cancer cell accessibility, a pH-sensitive phospholipid for triggering size-enlargement and drug release in intracellular acidic environments, a nitroreductase-sensitive hydrophobic oxaliplatin prodrug (N-OXP) for eliciting antitumor immunity into the bioinspired nano-sized lipoprotein system. TA-OBL treatment produced robust antitumor immune responses and its combination with ICBs demonstrates strong therapeutic benefits with delayed tumor growth and extended survival rate, making it a promising delivery nanoplatform to elicit antitumor immunity for cancer immunotherapy.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Immunogenic Cell Death/drug effects , Immunotherapy/methods , Lipoproteins/chemistry , Lipoproteins/pharmacology , Animals , Biomimetic Materials/metabolism , Cell Line, Tumor , Humans , Hydrophobic and Hydrophilic Interactions , Lipoproteins/metabolism , Oxaliplatin/chemistry , Oxaliplatin/metabolism , Prodrugs/chemistry , Prodrugs/metabolism
20.
Eur J Pharm Biopharm ; 157: 233-240, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33222772

ABSTRACT

Survival rates in pancreatic cancer have remained largely unchanged over the past four decades with less than 5% of patients surviving five years following initial diagnosis. FOLFIRINOX chemotherapy, a combination of folinic acid, 5-fluoruracil, irinotecan and oxaliplatin, has shown the greatest survival benefit for patients with advanced disease but is only indicated for those with good physical performance status due to its extreme off-target toxicity. Ultrasound targeted microbubble destruction (UTMD) has emerged as an effective strategy for the targeted delivery of drug payloads to solid tumours and involves using low intensity ultrasound to disrupt (burst) MBs in the tumour vasculature, releasing encapsulated or attached drugs in a targeted manner. In this manuscript, we describe the preparation of a microbubble-liposome complex (IRMB-OxLipo) carrying two of the three cytotoxic drugs present in the FOLFIRINOX combination, namely irinotecan and oxaliplatin. Efficacy of the IRMB-OxLipo complex following UTMD was determined in Panc-01 3D spheroid and BxPC-3 human xenograft murine models of pancreatic cancer. The results revealed that tumours treated with the IRMB-OxLipo complex and ultrasound were 136% smaller than tumours treated with the same concentration of irinotecan/oxaliplatin but delivered in a conventional manner, i.e. as a non-complexed mixture. This suggests that UTMD facilitates a more effective delivery of irinotecan/oxaliplatin improving the overall effectiveness of this drug combination and to the best of our knowledge, is the first reported example of a microbubble-liposome complex used to deliver these two chemotherapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Irinotecan/pharmacology , Lipids/chemistry , Oxaliplatin/pharmacology , Pancreatic Neoplasms/drug therapy , Ultrasonics , Animals , Antineoplastic Combined Chemotherapy Protocols/chemistry , Cell Line, Tumor , Drug Compounding , Female , Irinotecan/chemistry , Liposomes , Mice, Inbred BALB C , Mice, SCID , Microbubbles , Oxaliplatin/chemistry , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...