Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.858
Filter
1.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791339

ABSTRACT

Previous studies have documented that FOLFOX and XELOX therapies negatively impact the metabolism of skeletal muscle and extra-muscle districts. This pilot study tested whether three-month FOLFOX or XELOX therapy produced changes in plasma amino acid levels (PAAL) (an estimation of whole-body amino acid metabolism) and in plasma levels of malondialdehyde (MDA), a marker of lipid hyper oxidation. Fourteen ambulatory, resected patients with colorectal cancer scheduled to receive FOLFOX (n = 9) or XELOX (n = 5) therapy, after overnight fasting, underwent peripheral venous blood sampling, to determine PAAL and MDA before, during, and at the end of three-month therapy. Fifteen healthy matched subjects (controls) only underwent measures of PAAL at baseline. The results showed changes in 87.5% of plasma essential amino acids (EAAs) and 38.4% of non-EAAs in patients treated with FOLFOX or XELOX. These changes in EAAs occurred in two opposite directions: EAAs decreased with FOLFOX and increased or did not decrease with XELOX (interactions: from p = 0.034 to p = 0.003). Baseline plasma MDA levels in both FOLFOX and XELOX patients were above the normal range of values, and increased, albeit not significantly, during therapy. In conclusion, three-month FOLFOX or XELOX therapy affected plasma EAAs differently but not the baseline MDA levels, which were already high.


Subject(s)
Amino Acids , Antineoplastic Combined Chemotherapy Protocols , Colorectal Neoplasms , Fluorouracil , Oxaloacetates , Humans , Colorectal Neoplasms/blood , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/surgery , Male , Female , Middle Aged , Amino Acids/blood , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Aged , Fluorouracil/therapeutic use , Leucovorin/therapeutic use , Capecitabine/therapeutic use , Malondialdehyde/blood , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Organoplatinum Compounds/therapeutic use , Pilot Projects , Oxidation-Reduction , Adult , Lipid Peroxidation/drug effects , Lipid Metabolism/drug effects
2.
ESMO Open ; 9(5): 103374, 2024 May.
Article in English | MEDLINE | ID: mdl-38744100

ABSTRACT

BACKGROUND: The inflammation-based modified Glasgow Prognostic Score (mGPS) combines serum levels of C-reactive protein and albumin and was shown to predict survival in advanced cancer. We aimed to elucidate the prognostic impact of mGPS on survival as well as its predictive value when combined with gender in unselected metastatic colorectal cancer (mCRC) patients receiving first-line chemotherapy in the randomized phase III XELAVIRI trial. PATIENTS AND METHODS: In XELAVIRI, mCRC patients were treated with either fluoropyrimidine/bevacizumab followed by additional irinotecan at first progression (sequential treatment arm; Arm A) or upfront combination of fluoropyrimidine/bevacizumab/irinotecan (intensive treatment arm; Arm B). In the present post hoc analysis, survival was evaluated with respect to the assorted mGPS categories 0, 1 or 2. Interaction between mGPS and gender was analyzed. RESULTS: Out of 421 mCRC patients treated in XELAVIRI, 362 [119 women (32.9%) and 243 men (67.1%)] were assessable. For the entire study population a significant association between mGPS and overall survival (OS) was observed [mGPS = 0: median 28.9 months, 95% confidence interval (CI) 25.9-33.6 months; mGPS = 1: median 21.4 months, 95% CI 17.6-26.1 months; mGPS = 2: median 16.8 months, 95% CI 14.3-21.2 months; P < 0.00001]. Similar results were found when comparing progression-free survival between groups. The effect of mGPS on survival did not depend on the applied treatment regimen (P = 0.21). In female patients, a trend towards longer OS was observed in Arm A versus Arm B, with this effect being clearly more pronounced in the mGPS cohort 0 (41.6 versus 25.5 months; P = 0.056). By contrast, median OS was longer in male patients with an mGPS of 1-2 treated in Arm B versus Arm A (20.8 versus 17.4 months; P = 0.022). CONCLUSION: We demonstrate the role of mGPS as an independent predictor of OS regardless of the treatment regimen in mCRC patients receiving first-line treatment. mGPS may help identify gender-specific subgroups that benefit more or less from upfront intensive therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Male , Female , Middle Aged , Aged , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Inflammation/drug therapy , Inflammation/blood , Irinotecan/therapeutic use , Irinotecan/pharmacology , Adult , Capecitabine/therapeutic use , Capecitabine/pharmacology , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Oxaloacetates , Bevacizumab/therapeutic use , Bevacizumab/pharmacology , Fluorouracil/therapeutic use , Fluorouracil/pharmacology , Biomarkers, Tumor/blood , Neoplasm Metastasis
3.
Signal Transduct Target Ther ; 9(1): 79, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38565886

ABSTRACT

Fluoropyrimidine-based combination chemotherapy plus targeted therapy is the standard initial treatment for unresectable metastatic colorectal cancer (mCRC), but the prognosis remains poor. This phase 3 trial (ClinicalTrials.gov: NCT03950154) assessed the efficacy and adverse events (AEs) of the combination of PD-1 blockade-activated DC-CIK (PD1-T) cells with XELOX plus bevacizumab as a first-line therapy in patients with mCRC. A total of 202 participants were enrolled and randomly assigned in a 1:1 ratio to receive either first-line XELOX plus bevacizumab (the control group, n = 102) or the same regimen plus autologous PD1-T cell immunotherapy (the immunotherapy group, n = 100) every 21 days for up to 6 cycles, followed by maintenance treatment with capecitabine and bevacizumab. The main endpoint of the trial was progression-free survival (PFS). The median follow-up was 19.5 months. Median PFS was 14.8 months (95% CI, 11.6-18.0) for the immunotherapy group compared with 9.9 months (8.0-11.8) for the control group (hazard ratio [HR], 0.60 [95% CI, 0.40-0.88]; p = 0.009). Median overall survival (OS) was not reached for the immunotherapy group and 25.6 months (95% CI, 18.3-32.8) for the control group (HR, 0.57 [95% CI, 0.33-0.98]; p = 0.043). Grade 3 or higher AEs occurred in 20.0% of patients in the immunotherapy group and 23.5% in the control groups, with no toxicity-associated deaths reported. The addition of PD1-T cells to first-line XELOX plus bevacizumab demonstrates significant clinical improvement of PFS and OS with well tolerability in patients with previously untreated mCRC.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Oxaloacetates , Humans , Bevacizumab/therapeutic use , Capecitabine/therapeutic use , Oxaliplatin , Colorectal Neoplasms/drug therapy , Fluorouracil/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/drug therapy , Immunotherapy
4.
BMJ Open ; 14(3): e080377, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38531576

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related death in China. However, resistance to multiple chemotherapeutics after surgery leads to failure of the main therapy to CRC. Natural killer (NK) cells are innate cytotoxic lymphocytes that exhibit strong cytotoxic activity against tumour cells. NK cell-based therapy, either alone or in combination with chemotherapy, has achieved favourable results and holds promise for addressing recurrence and metastasis in CRC patients after surgery. METHODS AND ANALYSIS: This is a prospective, randomised controlled clinical trial to evaluate efficacy and safety of interleukin 2 activated NK cells injection combined with XELOX (capecitabine plus oxaliplatin)-based chemotherapy for postoperative CRC patients. Participants will be randomly divided into treatment group and control group, and every group includes 40 patients. The treatment group will also receive NK cells (5×109) with+XELOX-based chemotherapy, while the control group will receive only XELOX-based chemotherapy. This treatment will be repeated for eight cycles (6 months). The follow-up period lasts about 3 years, during which CEA, CA19-9, CA125, enhancement CT and colonoscopy will be conducted. The primary endpoints of this study are progression-free survival and overall survival, while the secondary endpoint is safety (number and severity of adverse events). Additionally, we aim to identify cancer stem cells in peripheral blood and predictive biomarkers (cytokines secreted by NK cells and activated markers of NK cells) that indicate patients who achieve an effective response. ETHICS AND DISSEMINATION: The study has been approved by the Clinical Research Ethics Committee of our hospital (approval number 2023LLSC006) and the Chinese Clinical Trials. It will be conducted in accordance with the Declaration of Helsinki. Written informed consent will be obtained from all participants. The study findings will be submitted to peer-reviewed journals for publication. TRIAL REGISTRATION NUMBER: Chinese Clinical Trials Registry (ChiCTR2300075861).


Subject(s)
Colorectal Neoplasms , Oxaloacetates , Humans , Capecitabine/therapeutic use , Prospective Studies , Colorectal Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Oxaliplatin/therapeutic use , Killer Cells, Natural , Randomized Controlled Trials as Topic
5.
Free Radic Biol Med ; 214: 2-18, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307156

ABSTRACT

Due to insufficient and defective vascularization, the tumor microenvironment is often nutrient-depleted. LDHA has been demonstrated to play a tumor-promoting role by facilitating the glycolytic process. However, whether and how LDHA regulates cell survival in the nutrient-deficient tumor microenvironment is still unclear. Here, we sought to investigate the role and mechanism of LDHA in regulating cell survival and proliferation under energy stress conditions. Our results showed that the aerobic glycolysis levels, cell survival and proliferation of cervical cancer cells decreased significantly after inhibition of LDHA under normal culture condition while LDHA deficiency greatly inhibited glucose starvation-induced ferroptosis and promoted cell proliferation and tumor formation under energy stress conditions. Mechanistic studies suggested that glucose metabolism shifted from aerobic glycolysis to mitochondrial OXPHOS under energy stress conditions and LDHA knockdown increased accumulation of pyruvate in the cytosol, which entered the mitochondria and upregulated the level of oxaloacetate by phosphoenolpyruvate carboxylase (PC). Importantly, the increase in oxaloacetate production after absence of LDHA remarkably activated AMP-activated protein kinase (AMPK), which increased mitochondrial biogenesis and mitophagy, promoted mitochondrial homeostasis, thereby decreasing ROS level. Moreover, repression of lipogenesis by activation of AMPK led to elevated levels of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which effectively resisted ROS-induced cell ferroptosis and enhanced cell survival under energy stress conditions. These results suggested that LDHA played an opposing role in survival and proliferation of cervical cancer cells under energy stress conditions, and inhibition of LDHA may not be a suitable treatment strategy for cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , AMP-Activated Protein Kinases , Lactate Dehydrogenase 5 , Oxaloacetates , Reactive Oxygen Species , Tumor Microenvironment , Uterine Cervical Neoplasms/genetics
6.
Nat Commun ; 15(1): 846, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287013

ABSTRACT

A prevalent side-reaction of succinate dehydrogenase oxidizes malate to enol-oxaloacetate (OAA), a metabolically inactive form of OAA that is a strong inhibitor of succinate dehydrogenase. We purified from cow heart mitochondria an enzyme (OAT1) with OAA tautomerase (OAT) activity that converts enol-OAA to the physiological keto-OAA form, and determined that it belongs to the highly conserved and previously uncharacterized Fumarylacetoacetate_hydrolase_domain-containing protein family. From all three domains of life, heterologously expressed proteins were shown to have strong OAT activity, and ablating the OAT1 homolog caused significant growth defects. In Escherichia coli, expression of succinate dehydrogenase was necessary for OAT1-associated growth defects to occur, and ablating OAT1 caused a significant increase in acetate and other metabolites associated with anaerobic respiration. OAT1 increased the succinate dehydrogenase reaction rate by 35% in in vitro assays with physiological concentrations of both succinate and malate. Our results suggest that OAT1 is a universal metabolite repair enzyme that is required to maximize aerobic respiration efficiency by preventing succinate dehydrogenase inhibition.


Subject(s)
Malates , Succinate Dehydrogenase , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Malates/metabolism , Citric Acid Cycle , Mitochondria, Heart/metabolism , Oxaloacetates/metabolism , Oxaloacetic Acid/metabolism , Malate Dehydrogenase/metabolism
7.
Curr Gene Ther ; 24(2): 147-158, 2024.
Article in English | MEDLINE | ID: mdl-37767800

ABSTRACT

BACKGROUND: We aim to retrospectively explore the guiding value of the Lauren classification for patients who have undergone D2 gastrectomy to choose oxaliplatin plus capecitabine (XELOX) or oxaliplatin plus S-1 (SOX) as a further systemic treatment after the operation. METHODS: We collected data of 406 patients with stage III gastric cancer(GC)after radical D2 resection and regularly received XELOX or SOX adjuvant treatment after surgery and followed them for at least five years. According to the Lauren classification, we separated patients out into intestinal type (IT) GC together with non-intestinal type(NIT) GC. According to the chemotherapy regimen, we separated patients into the SOX group together with the XELOX group. RESULTS: Among non-intestinal type patients, the 3-year DFS rates in the SOX group and the XELOX group were 72.5%, respectively; 54.5% (P=0.037); The 5-year OS rates were 66.8% and 51.8% respectively (P=0.038), both of which were statistically significant. CONCLUSION: The patients of non-intestinal type GC may benefit from the SOX regimen. Differences were counted without being statistically significant with intestinal-type GC in the SOX or XELOX groups.


Subject(s)
Oxaloacetates , Stomach Neoplasms , Humans , Capecitabine/therapeutic use , Stomach Neoplasms/drug therapy , Stomach Neoplasms/surgery , Retrospective Studies , Oxaliplatin/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant
8.
J Bacteriol ; 206(1): e0020223, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38047707

ABSTRACT

YisK is an uncharacterized protein in Bacillus subtilis previously shown to interact genetically with the elongasome protein Mbl. YisK overexpression leads to cell widening and lysis, phenotypes that are dependent on mbl and suppressed by mbl mutations. In the present work, we characterize YisK's localization, structure, and enzymatic activity. We show that YisK localizes as puncta that depend on Mbl. YisK belongs to the fumarylacetoacetate hydrolase (FAH) superfamily, and crystal structures revealed close structural similarity to two oxaloacetate (OAA) decarboxylases: human mitochondrial FAHD1 and Corynebacterium glutamicum Cg1458. We demonstrate that YisK can also catalyze the decarboxylation of OAA (K m = 134 µM, K cat = 31 min-1). A catalytic dead variant (YisK E148A, E150A) retains wild-type localization and still widens cells following overexpression, indicating these activities are not dependent on YisK catalysis. Conversely, a non-localizing variant (YisK E30A) retains wild-type enzymatic activity in vitro but localizes diffusely and no longer widens cells following overexpression. Together, these results suggest that YisK may be subject to spatial regulation that depends on the cell envelope synthesis machinery. IMPORTANCE The elongasome is a multiprotein complex that guides lengthwise growth in some bacteria. We previously showed that, in B. subtilis, overexpression of an uncharacterized putative enzyme (YisK) perturbed function of the actin-like elongasome protein Mbl. Here, we show that YisK exhibits Mbl-dependent localization. Through biochemical and structural characterization, we demonstrate that, like its mitochondrial homolog FAHD1, YisK can catalyze the decarboxylation of the oxaloacetate to pyruvate and CO2. YisK is the first example of an enzyme implicated in central carbon metabolism with subcellular localization that depends on Mbl.


Subject(s)
Bacillus subtilis , Carboxy-Lyases , Humans , Bacillus subtilis/metabolism , Carboxy-Lyases/genetics , Pyruvic Acid , Oxaloacetates , Hydrolases/genetics
9.
JAMA ; 330(21): 2064-2074, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38051328

ABSTRACT

Importance: Gastric and gastroesophageal junction cancers are diagnosed in more than 1 million people worldwide annually, and few effective treatments are available. Sintilimab, a recombinant human IgG4 monoclonal antibody that binds to programmed cell death 1 (PD-1), in combination with chemotherapy, has demonstrated promising efficacy. Objective: To compare overall survival of patients with unresectable locally advanced or metastatic gastric or gastroesophageal junction cancers who were treated with sintilimab with chemotherapy vs placebo with chemotherapy. Also compared were a subset of patients with a PD ligand 1 (PD-L1) combined positive score (CPS) of 5 or more (range, 1-100). Design, Setting, and Participants: Randomized, double-blind, placebo-controlled, phase 3 clinical trial conducted at 62 hospitals in China that enrolled 650 patients with unresectable locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma between January 3, 2019, and August 5, 2020. Final follow-up occurred on June 20, 2021. Interventions: Patients were randomized 1:1 to either sintilimab (n = 327) or placebo (n = 323) combined with capecitabine and oxaliplatin (the XELOX regimen) every 3 weeks for a maximum of 6 cycles. Maintenance therapy with sintilimab or placebo plus capecitabine continued for up to 2 years. Main Outcomes and Measures: The primary end point was overall survival time from randomization. Results: Of the 650 patients (mean age, 59 years; 483 [74.3%] men), 327 were randomized to sintilimab plus chemotherapy and 323 to placebo plus chemotherapy. Among the randomized patients, 397 (61.1%) had tumors with a PD-L1 CPS of 5 or more; 563 (86.6%) discontinued study treatment and 388 (59.7%) died; 1 patient (<0.1%) was lost to follow-up. Among all randomized patients, sintilimab improved overall survival compared with placebo (median, 15.2 vs 12.3 months; stratified hazard ratio [HR], 0.77 [95% CI, 0.63-0.94]; P = .009). Among patients with a CPS of 5 or more, sintilimab improved overall survival compared with placebo (median, 18.4 vs 12.9 months; HR, 0.66 [95% CI, 0.50-0.86]; P = .002). The most common grade 3 or higher treatment-related adverse events were decreased platelet count (sintilimab, 24.7% vs placebo, 21.3%), decreased neutrophil count (sintilimab, 20.1% vs placebo, 18.8%), and anemia (sintilimab, 12.5% vs placebo, 8.8%). Conclusions and Relevance: Among patients with unresectable locally advanced or metastatic gastric and gastroesophageal junction adenocarcinoma treated with first-line chemotherapy, sintilimab significantly improved overall survival for all patients and for patients with a CPS of 5 or more compared with placebo. Trial Registration: ClinicalTrials.gov Identifier: NCT03745170.


Subject(s)
Adenocarcinoma , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Esophagogastric Junction , Stomach Neoplasms , Female , Humans , Male , Middle Aged , Adenocarcinoma/drug therapy , Adenocarcinoma/immunology , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Capecitabine/administration & dosage , Capecitabine/adverse effects , Esophagogastric Junction/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/immunology , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Immunoglobulin G/immunology , Double-Blind Method , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Oxaloacetates/administration & dosage , Oxaloacetates/adverse effects
10.
Nat Commun ; 14(1): 3716, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349299

ABSTRACT

Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.


Subject(s)
Aconitate Hydratase , Caenorhabditis elegans , Humans , Animals , Aconitate Hydratase/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Oxaloacetic Acid , Oxaloacetates , Unfolded Protein Response , Mammals/metabolism
11.
Plant Mol Biol ; 111(4-5): 429-438, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36884198

ABSTRACT

Citrate synthase (CS) catalyzes the reaction that produces citrate and CoA from oxaloacetate and acetyl-CoA in the tricarboxylic acid (TCA) cycle. All TCA cycle enzymes are localized to the mitochondria in the model organism, the red alga Cyanidioschyzon merolae. The biochemical properties of CS have been studied in some eukaryotes, but the biochemical properties of CS in algae, including C. merolae, have not been studied. We then performed the biochemical analysis of CS from C. merolae mitochondria (CmCS4). The results showed that the kcat/Km of CmCS4 for oxaloacetate and acetyl-CoA were higher than those of the cyanobacteria, such as Synechocystis sp. PCC 6803, Microcystis aeruginosa PCC 7806 and Anabaena sp. PCC 7120. Monovalent and divalent cations inhibited CmCS4, and in the presence of KCl, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher in the presence of MgCl2, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher and kcat lower. However, in the presence of KCl and MgCl2, the kcat/Km of CmCS4 was higher than those of the three cyanobacteria species. The high catalytic efficiency of CmCS4 for oxaloacetate and acetyl-CoA may be a factor in the increased carbon flow into the TCA cycle in C. merolae.


Subject(s)
Oxaloacetic Acid , Rhodophyta , Citrate (si)-Synthase/chemistry , Acetyl Coenzyme A , Oxaloacetates
12.
Appl Microbiol Biotechnol ; 107(5-6): 1845-1861, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36754884

ABSTRACT

Nitrogen metabolism can regulate mycelial growth and secondary metabolism in Ganoderma lucidum. As an important enzyme in intracellular amino acid metabolism, glutamate oxaloacetate transaminase (GOT) has many physiological functions in animals and plants, but its function in fungi has been less studied. In the present study, two GOT isoenzymes were found in G. lucidum; one is located in the mitochondria (GOT1), and the other is located in the cytoplasm (GOT2). The reactive oxygen species (ROS) level was increased in got1 silenced strains and was approximately 1.5-fold higher than that in the wild-type (WT) strain, while silencing got2 did not affect the ROS level. To explore how GOT affects ROS in G. lucidum, experiments related to the generation and elimination of intracellular ROS were conducted. First, compared with that in the WT strain, the glutamate content, one of the substrates of GOT, decreased when got1 or got2 was knocked down, and the glutathione (l-γ-glutamyl-l-cysteinylglycine) (GSH) content decreased by approximately 38.6%, 19.3%, and 40.1% in got1 silenced strains, got2 silenced strains, and got1/2 co-silenced strains respectively. Second, GOT also affects glucose metabolism. The pyruvate (PA), acetyl-CoA and α-ketoglutarate (α-KG) contents decreased in got1 and got2 silenced strains, and the transcription levels of most genes involved in the glycolytic pathway and the tricarboxylic acid cycle increased. The NADH content was increased in got1 silenced strains and got2 silenced strains, and the NAD+/NADH ratio was decreased, which might result in mitochondrial ROS production. Compared with the WT strain, the mitochondrial ROS level was approximately 1.5-fold higher in the got1 silenced strains. In addition, silencing of got1 or got2 resulted in a decrease in antioxidant enzymes, including superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase. Finally, ganoderic acid (GA) was increased by approximately 40% in got1 silenced strains compared with the WT strain, while silencing of got2 resulted in a 10% increase in GA biosynthesis. These findings provide new insights into the effect of GOT on ROS and secondary metabolism in fungi. KEY POINTS: • GOT plays important roles in ROS level in Ganoderma lucidum. • Silencing of got1 resulted in decrease in GSH content and antioxidant enzymes activities, but an increase in mitochondrial ROS level in G. lucidum. • Silencing of got1 and got2 resulted in an increase in ganoderic acid biosynthesis in G. lucidum.


Subject(s)
Reishi , Triterpenes , Reactive Oxygen Species/metabolism , Reishi/genetics , Antioxidants/metabolism , NAD/metabolism , Triterpenes/metabolism , Oxaloacetates/metabolism
13.
Neurochem Res ; 48(6): 1728-1736, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36662405

ABSTRACT

Pyruvate carboxylase (PC) is an enzyme catalyzing the carboxylation of pyruvate to oxaloacetate. The enzymatic generation of oxaloacetate, an intermediate of the Krebs cycle, could provide the cancer cells with the additional anaplerotic capacity and promote their anabolic metabolism. Recent studies revealed that several types of cancer cells express PC. The gained anaplerotic capability of cells mediated by PC correlates with their expedited growth, higher aggressiveness, and increased metastatic potential. By immunohistochemical staining and immunoblotting analysis, we investigated PC expression among samples of different types of human brain tumors. Our results show that PC is expressed by the cells in glioblastoma, astrocytoma, oligodendroglioma, and meningioma tumors. The presence of PC in these tumors suppose that PC could support the anabolic metabolism of their cellular constituents by its anaplerotic capability.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Meningeal Neoplasms , Meningioma , Oligodendroglioma , Humans , Pyruvate Carboxylase/metabolism , Pyruvic Acid/metabolism , Oxaloacetic Acid , Oxaloacetates
14.
World J Microbiol Biotechnol ; 38(12): 255, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36319705

ABSTRACT

Phosphate (Pi) is essential for life as it is an integral part of the universal chemical energy adenosine triphosphate (ATP), and macromolecules such as, DNA, RNA proteins and lipids. Despite the core roles and the need of this nutrient in living cells, some bacteria can grow in environments that are poor in Pi. The metabolic mechanisms that enable bacteria to proliferate in a low phosphate environment are not fully understood. In this study, the soil microbe Pseudomonas (P.) fluorescens was cultured in a control and a low Pi (stress) medium in order to delineate how energy homeostasis is maintained. Although there was no significant variation in biomass yield in these cultures, metabolites like isocitrate, oxaloacetate, pyruvate and phosphoenolpyruvate (PEP) were markedly increased in the phosphate-starved condition. Components of the glycolytic, glyoxylate and tricarboxylic acid cycles operated in tandem to generate ATP by substrate level phosphorylation (SLP) as NADH-producing enzymes were impeded. The α-ketoglutarate (KG) produced when glutamine, the sole carbon nutrient was transformed into phosphoenol pyruvate (PEP) and succinyl-CoA (SC), two high energy moieties. The metabolic reprogramming orchestrated by isocitrate lyase (ICL), phosphoenolpyruvate synthase (PEPS), pyruvate phosphate dikinase (PPDK), and succinyl-CoA synthetase fulfilled the ATP budget. Cell free extract experiments confirmed ATP synthesis in the presence of such substrates as PEP, oxaloacetate and isocitrate respectively. Gene expression profiling revealed elevated transcripts associated with numerous enzymes including ICL, PEPS, and succinyl-CoA synthetase (SCS). This microbial adaptation will be critical in promoting biological activity in Pi-poor ecosystems.


Subject(s)
Pseudomonas fluorescens , Pseudomonas fluorescens/metabolism , Adenosine Triphosphate/metabolism , Isocitrates/metabolism , Phosphates/metabolism , Ecosystem , Phosphoenolpyruvate/metabolism , Homeostasis , Pyruvic Acid/metabolism , Oxaloacetates/metabolism , Ligases/metabolism
15.
J Pharm Biomed Anal ; 221: 114990, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36208488

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common type of malignant tumor of the lung with poor prognosis. Currently, there is still no effective strategy for diagnosing lung cancer from the perspective of multiple biomarkers containing both polar and nonpolar molecules. In order to explore the pathological changes of NSCLC at the endogenous molecule levels, and further establish the strategy for identifying and monitoring drug efficacy of NSCLC, targeted metabolomics and lipidomics studies were established with NSCLC patients. Polar metabolites including 21 amino acids, 7 purines, 6 tricarboxylic acid (TCA) cycle metabolites, and nonpolar lipids like phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), sphingomyelin (SM), and ceramide (Cer), diacylglycerol (DG), triacylglycerol (TG), were quantitatively determined based on LC-MS/MS, taking into account their metabolism were significantly concerned with the occurrence of lung cancer in previous study. As a result, 14 polar metabolites and 16 lipids were prominently altered in the plasma of NSCLC patients, among which, after multivariate statistical analysis, LPC 18:0 (sn-2), L-Phenylalanine (Phe), oxaloacetic acid (OAA) and xanthine (XA) were screened out as potential small molecules and lipid biomarkers for NSCLC. Furthermore, a new strategy for formulating equation of NSCLC identification was proposed and clinical utility was successfully evaluated through Kangai injection treatment to NSCLC patients. Taking together, this study investigated the pathological changes of NSCLC from the perspective of endogenous polar and nonpolar molecules, and shed a light on identification of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Amino Acids , Biomarkers , Ceramides , Chromatography, Liquid , Citric Acid Cycle , Diglycerides , Humans , Lysophosphatidylcholines , Oxaloacetates , Phenylalanine , Phosphatidylcholines , Phosphatidylethanolamines , Purines , Sphingomyelins , Tandem Mass Spectrometry , Tricarboxylic Acids , Triglycerides , Xanthines
16.
PLoS One ; 17(10): e0276579, 2022.
Article in English | MEDLINE | ID: mdl-36269753

ABSTRACT

Metabolic reprogramming is now considered a hallmark of cancer cells. KRas-driven cancer cells use glutaminolysis to generate the tricarboxylic acid cycle intermediate α-ketoglutarate via a transamination reaction between glutamate and oxaloacetate. We reported previously that exogenously supplied unsaturated fatty acids could be used to synthesize phosphatidic acid-a lipid second messenger that activates both mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTOR complex 2 (mTORC2). A key target of mTORC2 is Akt-a kinase that promotes survival and regulates cell metabolism. We report here that mono-unsaturated oleic acid stimulates the phosphorylation of ATP citrate lyase (ACLY) at the Akt phosphorylation site at S455 in an mTORC2 dependent manner. Inhibition of ACLY in KRas-driven cancer cells in the absence of serum resulted in loss of cell viability. We examined the impact of glutamine (Gln) deprivation in combination with inhibition of ACLY on the viability of KRas-driven cancer cells. While Gln deprivation was somewhat toxic to KRas-driven cancer cells by itself, addition of the ACLY inhibitor SB-204990 increased the loss of cell viability. However, the transaminase inhibitor aminooxyacetate was minimally toxic and the combination of SB-204990 and aminooxtacetate led to significant loss of cell viability and strong cleavage of poly-ADP ribose polymerase-indicating apoptotic cell death. This effect was not observed in MCF7 breast cancer cells that do not have a KRas mutation or in BJ-hTERT human fibroblasts which have no oncogenic mutation. These data reveal a synthetic lethality between inhibition of glutamate oxaloacetate transaminase and ACLY inhibition that is specific for KRas-driven cancer cells and the apparent metabolic reprogramming induced by activating mutations to KRas.


Subject(s)
ATP Citrate (pro-S)-Lyase , Glutamine , Neoplasms , Humans , Adenosine Diphosphate Ribose , Aminooxyacetic Acid , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Glutamates/genetics , Glutamine/antagonists & inhibitors , Glutamine/metabolism , Ketoglutaric Acids , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 2/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Oleic Acids , Oxaloacetates , Phosphatidic Acids , Proto-Oncogene Proteins c-akt/metabolism , Transaminases/genetics
17.
Nat Commun ; 13(1): 6185, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261450

ABSTRACT

Pyruvate carboxylase (PC) is a tetrameric enzyme that contains two active sites per subunit that catalyze two consecutive reactions. A mobile domain with an attached prosthetic biotin links both reactions, an initial biotin carboxylation and the subsequent carboxyl transfer to pyruvate substrate to produce oxaloacetate. Reaction sites are at long distance, and there are several co-factors that play as allosteric regulators. Here, using cryoEM we explore the structure of active PC tetramers focusing on active sites and on the conformational space of the oligomers. The results capture the mobile domain at both active sites and expose catalytic steps of both reactions at high resolution, allowing the identification of substrates and products. The analysis of catalytically active PC tetramers reveals the role of certain motions during enzyme functioning, and the structural changes in the presence of additional cofactors expose the mechanism for allosteric regulation.


Subject(s)
Biotin , Pyruvate Carboxylase , Pyruvate Carboxylase/genetics , Cryoelectron Microscopy , Oxaloacetates , Pyruvic Acid
18.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142128

ABSTRACT

Actinidia eriantha is a unique germplasm resource for kiwifruit breeding. Genetic diversity and nutrient content need to be evaluated prior to breeding. In this study, we looked at the metabolites of three elite A. eriantha varieties (MM-11, MM-13 and MM-16) selected from natural individuals by using a UPLC-MS/MS-based metabolomics approach and transcriptome, with a total of 417 metabolites identified. The biosynthesis and metabolism of phenolic acid, flavonoids, sugars, organic acid and AsA in A. eriantha fruit were further analyzed. The phenolic compounds accounted for 32.37% of the total metabolites, including 48 phenolic acids, 60 flavonoids, 7 tannins and 20 lignans and coumarins. Correlation analysis of metabolites and transcripts showed PAL (DTZ79_15g06470), 4CL (DTZ79_26g05660 and DTZ79_29g0271), CAD (DTZ79_06g11810), COMT (DTZ79_14g02670) and FLS (DTZ79_23g14660) correlated with polyphenols. There are twenty-three metabolites belonging to sugars, the majority being sucrose, glucose arabinose and melibiose. The starch biosynthesis-related genes (AeglgC, AeglgA and AeGEB1) were expressed at lower levels compared with metabolism-related genes (AeamyA and AeamyB) in three mature fruits of three varieties, indicating that starch was converted to soluble sugar during fruit maturation, and the expression level of SUS (DTZ79_23g00730) and TPS (DTZ79_18g05470) was correlated with trehalose 6-phosphate. The main organic acids in A. eriantha fruit are citric acid, quinic acid, succinic acid and D-xylonic acid. Correlation analysis of metabolites and transcripts showed ACO (DTZ79_17g07470) was highly correlated with citric acid, CS (DTZ79_17g00890) with oxaloacetic acid, and MDH1 (DTZ79_23g14440) with malic acid. Based on the gene expression, the metabolism of AsA acid was primarily through the L-galactose pathway, and the expression level of GMP (DTZ79_24g08440) and MDHAR (DTZ79_27g01630) highly correlated with L-Ascorbic acid. Our study provides additional evidence for the correlation between the genes and metabolites involved in phenolic acid, flavonoids, sugars, organic acid and AsA synthesis and will help to accelerate the kiwifruit molecular breeding approaches.


Subject(s)
Actinidia , Lignans , Actinidia/genetics , Actinidia/metabolism , Arabinose , Ascorbic Acid/metabolism , Chromatography, Liquid , Citric Acid/metabolism , Coumarins/metabolism , Fruit/genetics , Fruit/metabolism , Galactose/metabolism , Glucose/metabolism , Humans , Hydroxybenzoates , Lignans/metabolism , Melibiose/metabolism , Metabolomics , Oxaloacetates/metabolism , Phosphates/metabolism , Plant Breeding , Polyphenols/metabolism , Quinic Acid/metabolism , Starch/metabolism , Succinates/metabolism , Sucrose/metabolism , Tandem Mass Spectrometry , Tannins/metabolism , Transcriptome , Trehalose/metabolism
19.
Food Funct ; 13(20): 10695-10709, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36172851

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive disease that significantly endangers human health, where metabolism may drive pathogenesis: a shift from mitochondrial oxidation to glycolysis occurs in diseased pulmonary vessels and the right ventricle. An increase in pulmonary vascular resistance in patients with heart failure with a preserved ejection fraction portends a poor prognosis. Luteolin exists in numerous foods and is marketed as a dietary supplement assisting in many disease treatments. However, little is known about the protective effect of luteolin on metabolism disorders in diseased pulmonary vessels. In this study, we found that luteolin apparently reversed the pulmonary vascular remodeling of PAH rats by inhibiting the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs). Moreover, network pharmacology and metabolomics results revealed that the arachidonic acid pathway, amino acid pathway and TCA cycle were dysregulated in PAH. A total of 14 differential metabolites were significantly changed during the PAH, including DHA, PGE2, PGD2, LTB4, 12-HETE, 15-HETE, PGF2α, and 8-iso-PGF2α metabolites in the arachidonic acid pathway, and L-asparagine, oxaloacetate, N-acetyl-L-ornithine, butane diacid, ornithine, glutamic acid metabolites in amino acid and TCA pathways. However, treatment with luteolin recovered the LTB4, PGE2, PGD2, 12-HETE, 15-HETE, PGF2α and 8-iso-PGF2α levels close to normal. Meanwhile, we showed that luteolin also downregulated the gene and protein levels of COX 1, 5-LOX, 12-LOX, and 15-LOX in the arachidonic acid pathway. Collectively, this work highlighted the metabolic mechanism of luteolin-protected PAH and showed that luteolin would hold great potential in PAH prevention.


Subject(s)
Pulmonary Arterial Hypertension , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology , Animals , Arachidonic Acid/metabolism , Asparagine , Butanes/metabolism , Butanes/pharmacology , Cell Proliferation , Dinoprost/metabolism , Dinoprost/pharmacology , Dinoprostone/metabolism , Glutamic Acid/metabolism , Humans , Leukotriene B4/metabolism , Luteolin/pharmacology , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle/metabolism , Network Pharmacology , Ornithine/metabolism , Oxaloacetates/metabolism , Oxaloacetates/pharmacology , Prostaglandin D2/metabolism , Prostaglandin D2/pharmacology , Pulmonary Arterial Hypertension/drug therapy , Rats
20.
Bratisl Lek Listy ; 123(7): 487-490, 2022.
Article in English | MEDLINE | ID: mdl-35907054

ABSTRACT

Pyruvate carboxylase (PC) is a mitochondrial enzyme catalyzing the ATP-dependent reaction of pyruvate prolongation with bicarbonate ion to oxaloacetate. The synthesis of oxaloacetate by PC, an intermediate of the Krebs cycle, is recently recognized as a significant anaplerotic reaction that supports the biosynthetic capability, growth, aggressiveness, and even viability of several cancer cell types. PC expression was confirmed in several types of cancer cells and tumors. To evaluate the possibility that prostate tumor-forming cells are also exploiting the anaplerotic role of PC, we applied immunoblotting analysis to estimate its presence. Our results revealed that PC is present among the lysate proteins derived from prostate cancer and benign prostatic hyperplasia samples. The expression of PC in cells of prostate tumors and benign prostatic hyperplasia supposes that PC could facilitate the formation of oxaloacetate in situ and enhance the autonomy of their biosynthetic metabolism from the availability of extracellular substrates by increasing the cellular anaplerotic capability (Tab. 1, Fig. 1, Ref. 30). Keywords: pyruvate carboxylase, prostate cancer, cancer metabolism, anaplerosis.


Subject(s)
Prostatic Hyperplasia , Prostatic Neoplasms , Humans , Male , Oxaloacetates , Pyruvate Carboxylase/metabolism , Pyruvic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...