Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Am J Physiol Cell Physiol ; 325(1): C344-C361, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37125773

ABSTRACT

Kidney stones (KSs) are very common, excruciating, and associated with tremendous healthcare cost, chronic kidney disease (CKD), and kidney failure (KF). Most KSs are composed of calcium oxalate and small increases in urinary oxalate concentration significantly enhance the stone risk. Oxalate also potentially contributes to CKD progression, kidney disease-associated cardiovascular diseases, and poor renal allograft survival. This emphasizes the urgent need for plasma and urinary oxalate lowering therapies, which can be achieved by enhancing enteric oxalate secretion. We previously identified Oxalobacter formigenes (O. formigenes)-derived factors secreted in its culture-conditioned medium (CM), which stimulate oxalate transport by human intestinal Caco2-BBE (C2) cells and reduce urinary oxalate excretion in hyperoxaluric mice by enhancing colonic oxalate secretion. Given their remarkable therapeutic potential, we now identified Sel1-like proteins as the major O. formigenes-derived secreted factors using mass spectrometry and functional assays. Crystal structures for six proteins were determined to confirm structures and better understand functions. OxBSel1-14-derived small peptides P8 and P9 were identified as the major factors, with P8 + 9 closely recapitulating the CM's effects, acting through the oxalate transporters SLC26A2 and SLC26A6 and PKA activation. Besides C2 cells, P8 + 9 also stimulate oxalate transport by human ileal and colonic organoids, confirming that they work in human tissues. In conclusion, P8 and P9 peptides are identified as the major O. formigenes-derived secreted factors and they have significant therapeutic potential for hyperoxalemia, hyperoxaluria, and related disorders, impacting the outcomes of patients suffering from KSs, enteric hyperoxaluria, primary hyperoxaluria, CKD, KF, and renal transplant recipients.NEW & NOTEWORTHY We previously identified Oxalobacter formigenes-derived secreted factors stimulating oxalate transport by human intestinal epithelial cells in vitro and reducing urinary oxalate excretion in hyperoxaluric mice by enhancing colonic oxalate secretion. We now identified Sel1-like proteins and small peptides as the major secreted factors and they have significant therapeutic potential for hyperoxalemia and hyperoxaluria, impacting the outcomes of patients suffering from kidney stones, primary and secondary hyperoxaluria, chronic kidney disease, kidney failure, and renal transplant recipients.


Subject(s)
Hyperoxaluria , Kidney Calculi , Kidney Transplantation , Renal Insufficiency, Chronic , Renal Insufficiency , Humans , Mice , Animals , Oxalobacter formigenes/metabolism , Caco-2 Cells , Oxalates/metabolism , Hyperoxaluria/metabolism , Kidney Calculi/metabolism , Epithelial Cells/metabolism , Peptides/metabolism , Renal Insufficiency/metabolism , Renal Insufficiency, Chronic/metabolism
2.
Pediatr Nephrol ; 38(2): 403-415, 2023 02.
Article in English | MEDLINE | ID: mdl-35552824

ABSTRACT

BACKGROUND: Primary hyperoxalurias (PHs) are rare genetic diseases that increase the endogenous level of oxalate, a waste metabolite excreted predominantly by the kidneys and also the gut. Treatments aim to improve oxalate excretion, or reduce oxalate generation, to prevent kidney function deterioration. Oxalobacter formigenes is an oxalate metabolizing bacterium. This Phase III, double-blind, placebo-controlled randomized trial investigated the effectiveness of orally administered Oxabact™, a lyophilized O. formigenes formulation, at reducing plasma oxalate levels in patients suffering from PH. METHODS: Subjects (≥ 2 years of age) with a diagnosis of PH and maintained but suboptimal kidney function (mean estimated glomerular filtration rate at baseline < 90 mL/min/1.73 m2) were eligible to participate. Subjects were randomized to receive Oxabact or placebo twice daily for 52 weeks. Change from baseline in plasma oxalate concentration at Week 52 was the primary study endpoint. RESULTS: Forty-three subjects were screened, 25 were recruited and one was discontinued. At Week 52, O. formigenes was established in the gut of subjects receiving Oxabact. Despite decreasing plasma oxalate level in subjects treated with Oxabact, and stable/increased levels with placebo, there was no significant difference between groups in the primary outcome (Least Squares mean estimate of treatment difference was - 3.80 µmol/L; 95% CI: - 7.83, 0.23; p-value = 0.064). Kidney function remained stable in both treatments. CONCLUSIONS: Oxabact treatment may have stabilized/reduced plasma oxalate versus a rise with placebo, but the difference over 12 months was not statistically significant (p = 0.06). A subtle effect observed with Oxabact suggests that O. formigenes may aid in preventing kidney stones. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Kidney Calculi , Humans , Hyperoxaluria/therapy , Hyperoxaluria, Primary/therapy , Oxalobacter formigenes/metabolism , Oxalates , Kidney Calculi/metabolism
3.
Anaerobe ; 75: 102572, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35443224

ABSTRACT

Recent advances in understanding the association of gut microbiota with the host have shown evidence of certain bacterial therapeutic potentiality in preventing and treating metabolic diseases. Hyperoxaluria is a severe challenge in nephrology and has led to the novel gut eubiosis as current therapy. The human gut commensal, obligate anaerobic, and intestinal oxalate-degrading strains of Oxalobacter formigenes have drawn a promising significant interest for the next-generation probiotics (NGPs). This nonpathogenic, potential probiotic, and specialist oxalotrophic properties of O. formigenes give a new hope as a live biotherapeutic agent for calcium oxalate renal therapy. Numerous satisfactory outcomes of in vitro and in vivo studies were achieved on evaluating O. formigenes functionality, but the commercial production of this bacterium is yet to be achieved. This bacterium finds diverse application in dietary and endogenous oxalate degradation and the improvement of gut health, on which we concentrated our attention in this review. The relationship between good anaerobic gut bacterial dysbiosis and renal complications is comprehensively discussed to address the need for the development probiotic formulation. However, the commercial production of this bacteria on a broad scale is complex, with numerous obstacles, mainly because they are oxygen-sensitive and difficult to culture. This review will coherently present the current and available methodologies in producing, stabilizing, and delivering these NGPs to treat calcium stones. Moreover, the study presents the extensive work and key milestones achieved in the research on O. formigenes from tale to the truth.


Subject(s)
Hyperoxaluria , Probiotics , Bacteria, Anaerobic/metabolism , Calcium Oxalate/metabolism , Humans , Hyperoxaluria/complications , Hyperoxaluria/prevention & control , Oxalates/metabolism , Oxalobacter formigenes/metabolism , Probiotics/therapeutic use
4.
Pol Merkur Lekarski ; 50(295): 54-57, 2022 02 22.
Article in Polish | MEDLINE | ID: mdl-35278301

ABSTRACT

The number of calcium oxalate urolithiasis is increasing every year, especially in highly developed countries. The most common causes of precipitation are hyperoxaluria and hypercalciuria. The reason for increased oxalate excretion may be genetic defects of hepatic enzymes (primary hyperoxaluria), disturbances in metabolism or absorption of oxalate and changes in the composition of the intestinal microflora in the form of deficiency of oxalate metabolizing bacteria e.g. Oxalobacter formigenes. This bacterium has been the scientific focus of attention in recent years due to numerous reports on its impact on the reduction of oxaluria, resulting in a decreased recurrence risk of calcium oxalate stones by up to 70%. In recent years, attempts have been made to create a probiotic drug, the main element of which is O. formigenes.


Subject(s)
Hyperoxaluria , Kidney Calculi , Microbiota , Colon , Humans , Hyperoxaluria/complications , Kidney Calculi/complications , Kidney Calculi/prevention & control , Oxalobacter formigenes/metabolism
5.
Compr Physiol ; 12(1): 2835-2875, 2021 12 29.
Article in English | MEDLINE | ID: mdl-34964122

ABSTRACT

Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.


Subject(s)
Intestines , Membrane Transport Proteins , Oxalates , Gastrointestinal Tract/metabolism , Humans , Intestines/metabolism , Oxalates/metabolism , Oxalobacter formigenes/metabolism
6.
Appl Environ Microbiol ; 87(18): e0054421, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34190610

ABSTRACT

Oxalobacter formigenes, a unique anaerobic bacterium that relies solely on oxalate for growth, is a key oxalate-degrading bacterium in the mammalian intestinal tract. Degradation of oxalate in the gut by O. formigenes plays a critical role in preventing renal toxicity in animals that feed on oxalate-rich plants. The role of O. formigenes in reducing the risk of calcium oxalate kidney stone disease and oxalate nephropathy in humans is less clear, in part due to difficulties in culturing this organism and the lack of studies which have utilized diets in which the oxalate content is controlled. Herein, we review the literature on the 40th anniversary of the discovery of O. formigenes, with a focus on its biology, its role in gut oxalate metabolism and calcium oxalate kidney stone disease, and potential areas of future research. Results from ongoing clinical trials utilizing O. formigenes in healthy volunteers and in patients with primary hyperoxaluria type 1 (PH1), a rare but severe form of calcium oxalate kidney stone disease, are also discussed. Information has been consolidated on O. formigenes strains and best practices to culture this bacterium, which should serve as a good resource for researchers.


Subject(s)
Oxalates/metabolism , Oxalobacter formigenes , Animals , Gastrointestinal Microbiome , Genomics , Humans , Inactivation, Metabolic , Metabolomics , Nephrolithiasis , Oxalates/urine , Oxalobacter formigenes/genetics , Oxalobacter formigenes/metabolism , Oxalobacter formigenes/physiology
7.
Metabolomics ; 16(12): 122, 2020 11 21.
Article in English | MEDLINE | ID: mdl-33219444

ABSTRACT

INTRODUCTION: In the search for new potential therapies for pathologies of oxalate, such as kidney stone disease and primary hyperoxaluria, the intestinal microbiome has generated significant interest. Resident oxalate-degrading bacteria inhabit the gastrointestinal tract and reduce absorption of dietary oxalate, thereby potentially lowering the potency of oxalate as a risk factor for kidney stone formation. Although several species of bacteria have been shown to degrade oxalate, select strains of Oxalobacter formigenes (O. formigenes) have thus far demonstrated the unique ability among oxalotrophs to initiate a net intestinal oxalate secretion into the lumen from the bloodstream, allowing them to feed on both dietary and endogenous metabolic oxalate. There is significant interest in this function as a potential therapeutic application for circulating oxalate reduction, although its mechanism of action is still poorly understood. Since this species-exclusive, oxalate-regulating function is reported to be dependent on the use of a currently unidentified secreted bioactive compound, there is much interest in whether O. formigenes produces unique biochemicals that are not expressed by other oxalotrophs which lack the ability to transport oxalate. Hence, this study sought to analyze and compare the metabolomes of O. formigenes and another oxalate degrader, Bifidobacterium animalis subsp. lactis (B. animalis), to determine whether O. formigenes could produce features undetectable in another oxalotroph, thus supporting the theory of a species-exclusive secretagogue compound. METHODS: A comparative metabolomic analysis of O. formigenes strain HC1 (a human isolate) versus B. animalis, another oxalate-degrading human intestinal microbe, was performed by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Bacteria were cultured independently in anaerobic conditions, harvested, lysed, and extracted by protein precipitation. Metabolite extracts were chromatographically separated and analyzed by UHPLC-HRMS using reverse phase gradient elution (ACE Excel 2 C18-Pentafluorophenyl column) paired with a Q Exactive™ mass spectrometer. OBJECTIVES: The purpose of this study was to assess whether O. formigenes potentially produces unique biochemicals from other oxalate degraders to better understand its metabolic profile and provide support for the theoretical production of a species-exclusive secretagogue compound responsible for enhancing intestinal oxalate secretion. RESULTS: We report a panel of metabolites and lipids detected in the O. formigenes metabolome which were undetectable in B. animalis, several of which were identified either by mass-to-charge ratio and retention time matching to our method-specific metabolite library or MS/MS fragmentation. Furthermore, re-examination of data from our previous work showed most of these features were also undetected in the metabolomes of Lactobacillus acidophilus and Lactobacillus gasseri, two other intestinal oxalate degraders. CONCLUSIONS: Our observation of O. formigenes metabolites and lipids which were undetectable in other oxalotrophs suggests that this bacterium likely holds the ability to produce biochemicals not expressed by at least a selection of other oxalate degraders. These findings provide support for the hypothesized biosynthesis of a species-exclusive secretagogue responsible for the stimulation of net intestinal oxalate secretion.


Subject(s)
Lipid Metabolism , Metabolome , Metabolomics , Oxalobacter formigenes/metabolism , Bifidobacterium animalis/metabolism , Chromatography, High Pressure Liquid , Gastrointestinal Microbiome , Humans , Oxalates/metabolism , Tandem Mass Spectrometry
8.
Pediatr Nephrol ; 35(6): 1121-1124, 2020 06.
Article in English | MEDLINE | ID: mdl-32107618

ABSTRACT

BACKGROUND: Infantile oxalosis, the most devastating form of primary hyperoxaluria type 1 (PH1), often leads to end-stage renal disease (ESRD) during the first weeks to months of life. CASE-DIAGNOSIS: Here, we report the outcome of the therapeutic use of Oxalobacter formigenes (Oxabact OC5; OxThera AB, Stockholm, Sweden) in a female infant with PH1 who exhibited severely elevated plasma oxalate (Pox) levels, pronounced nephrocalcinosis, anuretic end-stage renal disease, and retinal oxalate deposits. Following the diagnosis of PH1 at an age of 8 weeks, a combined regimen of daily peritoneal dialysis, daily pyridoxine treatment and hemodialysis (3 times a week) was unable to reduce the pronounced hyperoxalemia. After the addition of Oxalobacter formigenes therapy to the otherwise unchanged treatment regimen, Pox levels first stabilized and subsequently declined from 130 µmol/L to around 80 µmol/L. Nephrocalcinosis and retinal deposits stabilized. Oxalobacter formigenes treatment was well-tolerated and no related adverse events were observed. The patient showed nearly age-appropriate growth and development and received successful combined liver-kidney transplantation at the age of two years. CONCLUSIONS: Treatment with O. formigenes combined with intensive dialysis led to reduction of Pox, stabilization of systemic oxalosis, and improvement in the clinical disease course. O. formigenes treatment may be an option for reduction of oxalosis in infantile patients with insufficient response to conservative treatments until combined liver-kidney transplantation can be performed.


Subject(s)
Hyperoxaluria/therapy , Oxalobacter formigenes/metabolism , Renal Dialysis/methods , Renal Insufficiency, Chronic/complications , Calcium Oxalate/blood , Disease Progression , Female , Humans , Hyperoxaluria/etiology , Infant , Kidney Transplantation , Liver Transplantation , Renal Insufficiency, Chronic/diagnosis
9.
BJU Int ; 125(1): 133-143, 2020 01.
Article in English | MEDLINE | ID: mdl-31145528

ABSTRACT

OBJECTIVES: To investigate potential oxalate-degrading bacteria, including Oxalobacter formigenes, Lactobacillus (Lac) and Bifidobacterium (Bif) genera, and Oxalyl-CoA decarboxylase (oxc) encoding Lac (LX) and Bif (BX) species in participants with recurrent calcium kidney stones, and their correlation with 24-h urine oxalate. PARTICIPANTS AND METHODS: Stool and 24-h urine samples were collected from 58 patients with urolithiasis (29 cases with and 29 without hyperoxaluria) and 29 healthy controls. Absolute quantitation and relative abundance of the bacteria were measured by real-time PCR. The relationship between the investigated bacteria and 24-h urine oxalate were assessed statistically. RESULTS: The count per gram of stool and relative abundance of O. formigenes, Lac, Bif, LX and BX and the number of participants carrying O. formigenes, LX and BX bacteria were not significantly different between the groups; however, the relative abundance of O. formigenes in the kidney stone group was lower than in healthy controls (P = 0.035). More healthy controls were O. formigenes-positive compared with participants in the kidney stone group (P = 0.052). The results of the linear regression model, including all study participants, showed that the presence of O. formigenes could decrease 24-h urine oxalate (ß = -8.4, P = 0.047). Neither Lac and Bif genera nor LX and BX species were correlated with calcium stones or urine oxalate. CONCLUSION: These results emphasize the role of O. formigenes in kidney stone formation and its role in hyperoxaluria, which may be independent of kidney stone disease. Moreover, our results suggest that, although some Lac and Bif strains have oxalate-degrading potential, they may not be among the major oxalate-degrading bacteria of the gut microbiome.


Subject(s)
Bifidobacterium/metabolism , Calcium , Hyperoxaluria/microbiology , Kidney Calculi/microbiology , Lactobacillus/metabolism , Oxalates/metabolism , Oxalobacter formigenes/metabolism , Adult , Calcium/analysis , Carboxy-Lyases/metabolism , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Kidney Calculi/chemistry , Male , Middle Aged , Recurrence
10.
Urolithiasis ; 48(1): 1-8, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31201468

ABSTRACT

Oxalobacter sp. promotion of enteric oxalate excretion, correlating with reductions in urinary oxalate excretion, was previously reported in rats and mice, but the mechanistic basis for this affect has not been described. The main objective of the present study was to determine whether the apical oxalate transport proteins, PAT1 (slc26a6) and DRA (slc26a3), are involved in mediating the Oxalobacter-induced net secretory flux across colonized mouse cecum and distal colon. We measured unidirectional and net fluxes of oxalate across tissues removed from colonized PAT1 and DRA knockout (KO) mice and also across two double knockout (dKO) mouse models with primary hyperoxaluria, type 1 (i.e., deficient in alanine-glyoxylate aminotransferase; AGT KO), including PAT1/AGT dKO and DRA/AGT dKO mice compared to non-colonized mice. In addition, urinary oxalate excretion was measured before and after the colonization procedure. The results demonstrate that Oxalobacter can induce enteric oxalate excretion in the absence of either apical oxalate transporter and urinary oxalate excretion was reduced in all colonized genotypes fed a 1.5% oxalate-supplemented diet. We conclude that there are other, as yet unidentified, oxalate transporters involved in mediating the directional changes in oxalate transport across the Oxalobacter-colonized mouse large intestine.


Subject(s)
Antiporters/metabolism , Intestinal Mucosa/metabolism , Oxalates/metabolism , Oxalobacter formigenes/metabolism , Sulfate Transporters/metabolism , Animals , Antiporters/genetics , Cecum/metabolism , Cecum/microbiology , Colon/metabolism , Colon/microbiology , Feces/microbiology , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Male , Mice , Mice, Knockout , Oxalobacter formigenes/isolation & purification , Renal Elimination , Sulfate Transporters/genetics , Symbiosis
11.
Kidney Int ; 96(1): 180-188, 2019 07.
Article in English | MEDLINE | ID: mdl-31130222

ABSTRACT

The incidence of urinary stone disease is rapidly increasing, with oxalate being a primary constituent of approximately 80% of all kidney stones. Despite the high dietary exposure to oxalate by many individuals and its potential nephrotoxicity, mammals do not produce enzymes to metabolize this compound, instead relying in part on bacteria within the gut to reduce oxalate absorption and urinary excretion. While considerable research has focused on isolated species of oxalate-degrading bacteria, particularly those with an absolute requirement for oxalate, recent studies have pointed to broader roles for microbiota both in oxalate metabolism and inhibition of urinary stone disease. Here we examined gut microbiota from patients with and live-in individuals without urinary stone disease to determine if healthy individuals harbored a more extensive microbial network associated with oxalate metabolism. We found a gender-specific association between the gut microbiota composition and urinary stone disease. Bacteria enriched in healthy individuals largely overlapped with those that exhibited a significant, positive correlation with Oxalobacter formigenes, a species presumed to be at the center of an oxalate-metabolizing microbial network. Furthermore, differential abundance analyses identified multiple taxa known to also be stimulated by oxalate in rodent models. Interestingly, the presence of these taxa distinguished patients from healthy individuals better than either the relative abundance or colonization of O. formigenes. Thus, our work shows that bacteria stimulated by the presence of oxalate in rodents may, in addition to obligate oxalate users, play a role in the inhibition of urinary stone disease in man.


Subject(s)
Gastrointestinal Microbiome/physiology , Hyperoxaluria/microbiology , Oxalates/metabolism , Oxalobacter formigenes/isolation & purification , Urinary Calculi/microbiology , Aged , Case-Control Studies , DNA, Bacterial/isolation & purification , Female , Humans , Hyperoxaluria/complications , Hyperoxaluria/urine , Male , Middle Aged , Oxalates/urine , Oxalobacter formigenes/genetics , Oxalobacter formigenes/metabolism , RNA, Ribosomal, 16S/genetics , Urinary Calculi/urine
12.
Anal Chem ; 91(8): 4964-4968, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30888152

ABSTRACT

Paper spray ionization mass spectrometry (PSI-MS) is a relatively new analytical technique allowing for rapid mass spectrometric analysis of biological samples with little or no sample preparation. The expeditious nature of the analysis and minimal requirement for sample preparation make PSI-MS a promising avenue for future clinical assays with one potential application in the identification of different types of bacteria. Although past PSI-MS studies have demonstrated the ability to distinguish between bacteria of different species and morphological classes, achieving within-species strain-level differentiation has never been performed. In this report, we demonstrate the first strain-level bacterial differentiation by PSI-MS with the mammalian intestinal bacterium Oxalobacter formigenes ( Oxf). This novel application holds promising clinical significance as it could be used to differentiate between pathogenic bacteria and their harmless, commensal relatives, saving time and money in clinical diagnostics. Both whole cells and cell lysates of  Oxf strains HC1 and OxWR were analyzed using the Prosolia Velox 360TM PSI source coupled to a Thermo Scientific Q Exactive high-resolution mass spectrometer with a rapid 30 s analytical method. Multivariate statistical analysis followed by examination of significant features provided for and confirmed differentiation between Oxf HC1 and OxWR. We report a panel of strain-exclusive metabolites that could serve as potential strain-indicating biomarkers.


Subject(s)
Mass Spectrometry/methods , Oxalobacter formigenes/chemistry , Oxalobacter formigenes/metabolism , Paper , Species Specificity
13.
Anal Bioanal Chem ; 411(19): 4807-4818, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30740635

ABSTRACT

Diseases of oxalate, such as nephrolithiasis and primary hyperoxaluria, affect a significant portion of the US population and have limited treatment options. Oxalobacter formigenes, an obligate oxalotrophic bacterium in the mammalian intestine, has generated great interest as a potential probiotic or therapeutic treatment for oxalate-related conditions due to its ability to degrade both exogenous (dietary) and endogenous (metabolic) oxalate, lowering the risk of hyperoxaluria/hyperoxalemia. Although all oxalotrophs degrade dietary oxalate, Oxalobacter formigenes is the only species shown to initiate intestinal oxalate secretion to draw upon endogenous, circulating oxalate for consumption. Evidence suggests that Oxalobacter regulates oxalate transport proteins in the intestinal epithelium using an unidentified secreted bioactive compound, but the mechanism of this function remains elusive. It is essential to gain an understanding of the biochemical relationship between Oxalobacter and the host intestinal epithelium for this microbe to progress as a potential remedy for oxalate diseases. This investigation includes the first profiling of the metabolome and lipidome of Oxalobacter formigenes, specifically the human strain HC1 and rat strain OxWR, the only two strains shown thus far to initiate net intestinal oxalate secretion across native gut epithelia. This study was performed using untargeted and targeted metabolomics and lipidomics methodologies utilizing ultra-high-performance liquid chromatography-mass spectrometry. We report our findings that the metabolic profiles of these strains, although largely conserved, show significant differences in their expression of many compounds. Several strain-specific features were also detected. Discussed are trends in the whole metabolic profile as well as in individual features, both identified and unidentified. Graphical abstract ᅟ.


Subject(s)
Chromatography, High Pressure Liquid/methods , Lipids/chemistry , Mass Spectrometry/methods , Metabolomics , Oxalobacter formigenes/metabolism
14.
Urolithiasis ; 47(1): 67-78, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30430197

ABSTRACT

Primary hyperoxalurias (PHs) are rare inherited disorders of liver glyoxylate metabolism, characterized by the abnormal production of endogenous oxalate, a metabolic end-product that is eliminated by urine. The main symptoms are related to the precipitation of calcium oxalate crystals in the urinary tract with progressive renal damage and, in the most severe form named Primary Hyperoxaluria Type I (PH1), to systemic oxalosis. The therapies currently available for PH are either poorly effective, because they address the symptoms and not the causes of the disease, or highly invasive. In the last years, advances in our understanding of the molecular bases of PH have paved the way for the development of new therapeutic strategies. They include (i) substrate-reduction therapies based on small-molecule inhibitors or the RNA interference technology, (ii) gene therapy, (iii) enzyme administration approaches, (iv) colonization with oxalate-degrading intestinal microorganisms, and, in PH1, (v) design of pharmacological chaperones. This paper reviews the basic principles of these new therapeutic strategies and what is currently known about their application to PH.


Subject(s)
Calcium Oxalate/metabolism , Hyperoxaluria, Primary/therapy , Nephrolithiasis/therapy , Renal Elimination , Transaminases/genetics , Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/metabolism , Gastrointestinal Microbiome/physiology , Genetic Therapy/methods , Glyoxylates/metabolism , Humans , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/metabolism , Kidney/metabolism , Kidney Transplantation , Liver/metabolism , Liver Transplantation , Nephrolithiasis/genetics , Nephrolithiasis/metabolism , Oxalobacter formigenes/metabolism , Pyridoxine/therapeutic use , RNA Interference , Transaminases/metabolism , Treatment Outcome
15.
Urolithiasis ; 46(4): 313-323, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28718073

ABSTRACT

Primary hyperoxaluria (PH) patients overproduce oxalate because of rare genetic errors in glyoxylate metabolism. Recurrent urolithiasis and/or progressive nephrocalcinosis are PH hallmarks and can lead to kidney damage, systemic oxalosis and death. Based on previous studies, we hypothesised that treatment with the oxalate-metabolizing bacterium Oxalobacter formigenes would mediate active elimination of oxalate from the plasma to the intestine of PH patients, thereby reducing urinary oxalate excretion (Uox). The efficacy and safety of O. formigenes (Oxabact™ OC3) were evaluated for 24 weeks in a randomised, placebo-controlled, double-blind study. The primary endpoint was reduction in Uox. Secondary endpoints included change in plasma oxalate (Pox) concentration, frequency of stone events, number of responders, and Uox in several subgroups. Additional post hoc analyses were conducted. Thirty-six patients were randomised; two patients withdrew from placebo treatment. Both OC3 and placebo groups demonstrated a decrease in Uox/urinary creatinine ratio, but the difference was not statistically significant. No differences were observed with respect to change in Pox concentration, stone events, responders' number or safety measures. In patients with estimated glomerular filtration rate (eGFR) < 90 mL/min/1.73 m2, Pox increased by 3.25 µmol/L in the placebo group and decreased by -1.7 µmol/L in the OC3 group (p = 0.13). After 24 weeks, eGFR had declined to a greater degree in the placebo than in the OC3 group: -8.00 ± 2.16 versus -2.71 ± 2.50; p = 0.01. OC3 treatment did not reduce urinary oxalate over 24 weeks of treatment compared with placebo in patients with PH. The treatment was well tolerated.


Subject(s)
Biological Therapy/methods , Calcium Oxalate/metabolism , Hyperoxaluria, Primary/therapy , Kidney Calculi/epidemiology , Oxalobacter formigenes/metabolism , Adolescent , Adult , Biological Therapy/adverse effects , Calcium Oxalate/blood , Child , Child, Preschool , Creatinine/blood , Double-Blind Method , Female , Glomerular Filtration Rate , Humans , Hyperoxaluria, Primary/blood , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/metabolism , Kidney Calculi/blood , Kidney Calculi/etiology , Kidney Calculi/metabolism , Kidney Function Tests , Male , Placebos/administration & dosage , Renal Elimination , Treatment Outcome , Young Adult
16.
Microb Pathog ; 109: 287-291, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28624518

ABSTRACT

Nephrolithiasis is a condition marked by the presence or formation of stones in kidneys. Several factors contribute to kidney stones development such as environmental conditions, type of dietary intake, gender and gastrointestinal flora. Most of the kidney stones are composed of calcium phosphate and calcium oxalate, which enter in to the body through diet. Both sources of oxalates become dangerous when normal flora of gastrointestinal tract is disturbed. Oxalobacter and Lactobacillus species exist symbiotically in the human gut and prevent stone formation by altering some biochemical pathways through production of specific enzymes which help in the degradation of oxalate salts. Both Oxalobacter and Lactobacillus have potential probiotic characteristics for the prevention of kidney stone formation and this avenue should be further explored.


Subject(s)
Calcium Oxalate/metabolism , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Calcium/metabolism , Calcium Oxalate/urine , Calcium Phosphates/metabolism , Diet , Dietary Supplements , Gastrointestinal Tract/metabolism , Humans , Kidney Calculi/prevention & control , Lactobacillus/metabolism , Nephrolithiasis/prevention & control , Oxalates/metabolism , Oxalobacter formigenes/metabolism , Probiotics/therapeutic use
17.
Sci Rep ; 6: 34712, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27708409

ABSTRACT

Hyperoxaluria due to endogenously synthesized and exogenously ingested oxalates is a leading cause of recurrent oxalate stone formations. Even though, humans largely rely on gut microbiota for oxalate homeostasis, hyperoxaluria associated gut microbiota features remain largely unknown. Based on 16S rRNA gene amplicons, targeted metagenomic sequencing of formyl-CoA transferase (frc) gene and qPCR assay, we demonstrate a selective enrichment of Oxalate Metabolizing Bacterial Species (OMBS) in hyperoxaluria condition. Interestingly, higher than usual concentration of oxalate was found inhibitory to many gut microbes, including Oxalobacter formigenes, a well-characterized OMBS. In addition a concomitant enrichment of acid tolerant pathobionts in recurrent stone sufferers is observed. Further, specific enzymes participating in oxalate metabolism are found augmented in stone endures. Additionally, hyperoxaluria driven dysbiosis was found to be associated with oxalate content, stone episodes and colonization pattern of Oxalobacter formigenes. Thus, we rationalize the first in-depth surveillance of OMBS in the human gut and their association with hyperoxaluria. Our findings can be utilized in the treatment of hyperoxaluria associated recurrent stone episodes.


Subject(s)
Bacteria/classification , Dysbiosis/etiology , Hyperoxaluria/complications , Kidney Calculi/microbiology , Bacteria/genetics , Bacteria/metabolism , Case-Control Studies , Dysbiosis/microbiology , Gastrointestinal Microbiome , Humans , Hyperoxaluria/urine , Kidney Calculi/urine , Male , Metagenomics , Oxalates/urine , Oxalobacter formigenes/genetics , Oxalobacter formigenes/isolation & purification , Oxalobacter formigenes/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
18.
Arch Microbiol ; 198(10): 1019-1026, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27449000

ABSTRACT

Oxalobacter formigenes (O. formigenes) is a nonpathogenic, Gram-negative, obligate anaerobic bacterium that commonly inhabits the human gut and degrades oxalate as its major energy and carbon source. Results from a case-controlled study suggested that lack of O. formigenes colonization is a risk factor for recurrent calcium oxalate stone formation. Hence, O. formigenes colonization may prove to be an efficacious method for limiting calcium oxalate stone risk. However, challenges exist in the preparation of O. formigenes as a successful probiotic due to it being an anaerobe with fastidious growth requirements. Here we examine in vitro properties expected of a successful probiotic strain. The data show that the Group 1 O. formigenes strain OxCC13 is sensitive to pH < 5.0, persists in the absence of oxalate, is aerotolerant, and survives for long periods when freeze-dried or mixed with yogurt. These findings highlight the resilience of this O. formigenes strain to some processes and conditions associated with the manufacture, storage and distribution of probiotic strains.


Subject(s)
Gastrointestinal Microbiome , Oxalates/metabolism , Oxalobacter formigenes/growth & development , Oxalobacter formigenes/metabolism , Probiotics/metabolism , Carbon/metabolism , Energy Metabolism/physiology , Humans , Risk Factors
19.
Microb Ecol ; 72(2): 470-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27312892

ABSTRACT

Gut microbes are essential for the degradation of dietary oxalate, and this function may play a role in decreasing the incidence of kidney stones. However, many oxalate-degrading bacteria are susceptible to antibiotics and the use of oxalate-degrading probiotics has only led to an ephemeral reduction in urinary oxalate. The objective of the current study was to determine the efficacy of using whole-community microbial transplants from a wild mammalian herbivore, Neotoma albigula, to increase oxalate degradation over the long term in the laboratory rat, Rattus norvegicus. We quantified the change in total oxalate degradation in lab rats immediately after microbial transplants and at 2- and 9-month intervals following microbial transplants. Additionally, we tracked the fecal microbiota of the lab rats, with and without microbial transplants, using high-throughput Illumina sequencing of a hyper-variable region of the 16S rRNA gene. Microbial transplants resulted in a significant increase in oxalate degradation, an effect that persisted 9 months after the initial transplants. Functional persistence was corroborated by the transfer, and persistence of a group of bacteria previously correlated with oxalate consumption in N. albigula, including an anaerobic bacterium from the genus Oxalobacter known for its ability to use oxalate as a sole carbon source. The results of this study indicate that whole-community microbial transplants are an effective means for the persistent colonization of oxalate-degrading bacteria in the mammalian gut.


Subject(s)
Bacteria, Anaerobic/metabolism , Gastrointestinal Microbiome , Oxalates/metabolism , Oxalobacter formigenes/metabolism , Sigmodontinae/microbiology , Animals , Bacteria, Anaerobic/isolation & purification , Biomass , Feces/chemistry , Feces/microbiology , Female , Male , Oxalobacter formigenes/isolation & purification , Probiotics , Rats , Rats, Sprague-Dawley
20.
Appl Environ Microbiol ; 82(9): 2669-2675, 2016 May.
Article in English | MEDLINE | ID: mdl-26896138

ABSTRACT

Diet is one of the primary drivers that sculpts the form and function of the mammalian gut microbiota. However, the enormous taxonomic and metabolic diversity held within the gut microbiota makes it difficult to isolate specific diet-microbe interactions. The objective of the current study was to elucidate interactions between the gut microbiota of the mammalian herbivore Neotoma albigula and dietary oxalate, a plant secondary compound (PSC) degraded exclusively by the gut microbiota. We quantified oxalate degradation in N. albigula fed increasing amounts of oxalate over time and tracked the response of the fecal microbiota using high-throughput sequencing. The amount of oxalate degraded in vivo was linearly correlated with the amount of oxalate consumed. The addition of dietary oxalate was found to impact microbial species diversity by increasing the representation of certain taxa, some of which are known to be capable of degrading oxalate (e.g., Oxalobacter spp.). Furthermore, the relative abundances of 117 operational taxonomic units (OTU) exhibited a significant correlation with oxalate consumption. The results of this study indicate that dietary oxalate induces complex interactions within the gut microbiota that include an increase in the relative abundance of a community of bacteria that may contribute either directly or indirectly to oxalate degradation in mammalian herbivores.


Subject(s)
Diet , Gastrointestinal Microbiome/drug effects , Oxalates/administration & dosage , Sigmodontinae/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Ecology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Herbivory , Microbial Interactions , Oxalates/metabolism , Oxalobacter formigenes/drug effects , Oxalobacter formigenes/genetics , Oxalobacter formigenes/metabolism , Plant Extracts/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...