Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 724
Filter
1.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731587

ABSTRACT

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Subject(s)
Fat Substitutes , Fatty Acids , Milk, Human , Plant Oils , Software , Triglycerides , Humans , Animals , Plant Oils/chemistry , Fatty Acids/chemistry , Milk, Human/chemistry , Mice , Triglycerides/chemistry , Fat Substitutes/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Linseed Oil/chemistry , Rapeseed Oil/chemistry , Corn Oil/chemistry , Caprylates/chemistry , Palmitic Acid/chemistry , Oleic Acid/chemistry
2.
Food Res Int ; 186: 114372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729730

ABSTRACT

The oxidation and degradation of fats lead to a decrease in the nutritional value of food and pose safety concerns. Saturated fatty acids also hold a significant position in the field of lipid oxidation. In this study, the oxidation products of methyl palmitate were investigated by using gas chromatography mass spectrometry (GC-MS). Seven monohydroperoxides and 72 secondary oxidation products were detected. Combined with density functional theory (DFT) calculations, the formation mechanisms of oxidation products can be summarized into four stages. The initial stage involved the formation of monohydroperoxides and alkanes, followed by the subsequent stage involving methyl x-oxo(hydroxy)hexadecanoates. The third stage involved the formation of methyl ketones, carboxylic acids, and aldehydes, while the final stage involved lactones. Meanwhile, methyl ketones were the most abundant oxidation product, approximately 25 times more abundant than aldehydes; the calculated results agreed well with the experimental results. The establishment of a comprehensive thermal oxidation mechanism for palmitic acid provided a new foundation for future lipid oxidation analyses.


Subject(s)
Gas Chromatography-Mass Spectrometry , Hot Temperature , Oxidation-Reduction , Aldehydes/chemistry , Aldehydes/analysis , Palmitates/chemistry , Palmitic Acid/chemistry , Ketones/chemistry , Carboxylic Acids/chemistry
3.
J Agric Food Chem ; 72(17): 9703-9716, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38567751

ABSTRACT

Cyanidin-3-O-glucoside (C3G) is classified as an anthocyanin (ACN) and is recognized for its remarkable antioxidant properties. Yet, the inadequate physicochemical stability of C3G restricts its potential for various biological applications. Thus, in this study, carboxymethyl chitosan (CMC)-coated nanonutriosomes (NS) were synthesized as a novel carrier for encapsulating C3G (CMC-C3G-NS) to improve C3G stability. CMC-C3G-NS exhibited a diameter of less than 200 nm along with an encouraging encapsulation efficiency exceeding 90%. Notably, the formulated CMC-C3G-NS possessed better stability under various pH, ionic, and oxygen conditions, improved controlled release properties, and higher hepatocellular uptake than uncoated particles (C3G-NS), indicating a longer retention time of C3G in a physiological environment. Of utmost significance, CMC-C3G-NS demonstrated superior alleviating effects against palmitic acid (PA)-induced oxidative hepatic damage compared to C3G-NS. Our study provided promising nanocarriers with the potential to deliver hydrophilic ACNs and controlled release properties for PA-induced hepatotoxicity alleviation.


Subject(s)
Anthocyanins , Chitosan , Chitosan/analogs & derivatives , Hepatocytes , Nanoparticles , Palmitic Acid , Chitosan/chemistry , Anthocyanins/chemistry , Anthocyanins/administration & dosage , Anthocyanins/pharmacology , Palmitic Acid/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Nanoparticles/chemistry , Drug Carriers/chemistry , Oxidative Stress/drug effects , Animals , Hep G2 Cells
4.
Article in English | MEDLINE | ID: mdl-36048499

ABSTRACT

We have previously published six esterified O-acyl (EFB1) and three N-acyl fumonisin B1 derivatives extracted from rice cultures inoculated with Fusarium verticillioides, amongst these the identification of N-palmitoyl-FB1 has been clearly established in a spiking experiment. At that time, it was assumed that as in the case of O-acyl-FB1 derivatives, linoleic-, oleic- or palmitic acid esterify through the OH group on the 3C or 5C atom of the carbon chain of the fumonisins. In our most recent experiments, we have synthetically acylated the FB1 toxin and subsequently purified 3-O-palmitoyl- and 5-O-palmitoyl-FB1 toxins in addition to the N-palmitoyl-FB1 toxin. They were identified and characterised using 1H and 13C NMR as well as LC-HRMS. Our aim was the identification of the previously detected O-acyl-FB1 derivatives over the course of a spiking experiment, which were obtained through the solid-phase fermentation of Fusarium verticillioides. By spiking the three synthesized and identified components one-by-one into the fungal culture extract and analysing these cultures using LC-MS, it was clearly demonstrated that the F. verticillioides strain produced both the 5-O-palmitoyl-FB1 and N-palmitoyl-FB1 toxins, but did not produce 3-O-palmitoyl-FB1. Thus, it is highly probable that the components thought to be 3-O-acyl-(linoleoyl-, oleoyl-, palmitoyl-) FB1 derivatives in our previous communication are presumably 10-O-acyl-FB1 derivatives. Since these acylated FB1 derivatives can occur naturally in e.g. maize, the use of these synthesized components as reference materials is of great importance in order to obtain accurate qualitative and quantitative data on the occurrence of acylated fumonisins in different matrices including maize based feed samples. The production of these substances has also made it possible to test their toxicity in cell culture and small animal experiments.


Subject(s)
Fumonisins , Fusarium , Animals , Carbon , Fumonisins/analysis , Fusarium/chemistry , Palmitic Acid/chemistry , Plant Extracts
5.
Food Chem ; 391: 133280, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35640342

ABSTRACT

Triacylglycerol (TAG) regioisomers containing palmitic acid (16:0) was identified using ultra-performance supercritical fluid chromatography and quadrupole time-of-flight mass spectrometry (UPSFC-Q-TOF-MS) and quantified using calibration curve method and calculation equation method. There were negative linear correlation between [RA-A]+/[RA-A]++[RA-B]+ and content of sn-A-B-A (%) for AAB/ABA type TAGs, [Rsn-1 FA-sn-3 FA]+/[RB-C]++[RA-C]++[RA-B]+ and content of fatty acid (FA) at sn-2 position (%) for BAC/ABC/ACB type TAGs. The difference between calculation equation and standard curve method was acceptable. The TAG regioisomers in human milk, mammalian milk, lard and fish oil were identified and quantified using the developed methods. This study provided a reliable and facile method for analysis of the TAG regioisomers, which was capable of the selection of oil materials for infant formula production.


Subject(s)
Chromatography, Supercritical Fluid , Animals , Calibration , Chromatography, High Pressure Liquid/methods , Fatty Acids , Humans , Mammals , Mass Spectrometry/methods , Milk, Human/chemistry , Palmitic Acid/chemistry , Plant Oils/chemistry , Triglycerides/chemistry
6.
J Phys Chem B ; 126(3): 643-649, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35026947

ABSTRACT

Langmuir monolayers consisting of fatty acids with relatively short alkyl chains (C14H29COOH (pentadecanoic acid), C15H31COOH (palmitic acid), and C16H33COOH (heptadecanoic acid)) are stable at a neutral pH (pH ≈ 6) but become unstable at a high pH (pH ≈ 11). Further addition of a small amount of divalent salt in subphase water was found to recover the monolayer at a high pH because binding of the divalent cations to the carboxylic headgroups renders the molecule more stable against dissolution in subphase water. This revival of the monolayer was observed via a pressure-area isotherm measurement and sum-frequency generation spectrum in the CHx and OH ranges. Fatty acids with longer alkyl chains needed less amount of MgCl2 to recover the monolayer at a high pH. A much lower concentration of Mg2+ as compared to Ca2+ is required to revive fatty acid molecules to the surface. Monovalent and trivalent salts were compared with the above divalent salts on the ability to recover the fatty acid monolayers.


Subject(s)
Fatty Acids , Salts , Fatty Acids/chemistry , Palmitic Acid/chemistry , Spectrum Analysis , Surface Properties , Water/chemistry
7.
Nucleic Acids Res ; 50(1): 17-34, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34893881

ABSTRACT

Tricyclo-DNA (tcDNA) is a conformationally constrained oligonucleotide analog that has demonstrated great therapeutic potential as antisense oligonucleotide (ASO) for several diseases. Like most ASOs in clinical development, tcDNA were modified with phosphorothioate (PS) backbone for therapeutic purposes in order to improve their biodistribution by enhancing association with plasma and cell protein. Despite the advantageous protein binding properties, systemic delivery of PS-ASO remains limited and PS modifications can result in dose limiting toxicities in the clinic. Improving extra-hepatic delivery of ASO is highly desirable for the treatment of a variety of diseases including neuromuscular disorders such as Duchenne muscular dystrophy. We hypothesized that conjugation of palmitic acid to tcDNA could facilitate the delivery of the ASO from the bloodstream to the interstitium of the muscle tissues. We demonstrate here that palmitic acid conjugation enhances the potency of tcDNA-ASO in skeletal and cardiac muscles, leading to functional improvement in dystrophic mice with significantly reduced dose of administered ASO. Interestingly, palmitic acid-conjugated tcDNA with a full phosphodiester backbone proved effective with a particularly encouraging safety profile, offering new perspectives for the clinical development of PS-free tcDNA-ASO for neuromuscular diseases.


Subject(s)
Muscular Dystrophy, Duchenne/therapy , Oligonucleotides, Antisense/chemistry , Palmitic Acid/chemistry , Animals , Genetic Therapy/methods , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Myocardium/metabolism , Oligonucleotides, Antisense/adverse effects , Oligonucleotides, Antisense/pharmacokinetics , Tissue Distribution
8.
Int J Mol Sci ; 22(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884899

ABSTRACT

Palmitic acid (C16:0) is the most abundant saturated fatty acid in animals serving as a substrate in synthesis and ß-oxidation of other lipids, and in the modification of proteins called palmitoylation. The influence of dietary palmitic acid on protein S-palmitoylation remains largely unknown. In this study we performed high-throughput proteomic analyses of a membrane-enriched fraction of murine liver to examine the influence of a palm oil-rich diet (HPD) on S-palmitoylation of proteins. HPD feeding for 4 weeks led to an accumulation of C16:0 and C18:1 fatty acids in livers which disappeared after 12-week feeding, in contrast to an accumulation of C16:0 in peritoneal macrophages. Parallel proteomic studies revealed that HPD feeding induced a sequence of changes of the level and/or S-palmitoylation of diverse liver proteins involved in fatty acid, cholesterol and amino acid metabolism, hemostasis, and neutrophil degranulation. The HPD diet did not lead to liver damage, however, it caused progressing obesity, hypercholesterolemia and hyperglycemia. We conclude that the relatively mild negative impact of such diet on liver functioning can be attributed to a lower bioavailability of palm oil-derived C16:0 vs. that of C18:1 and the efficiency of mechanisms preventing liver injury, possibly including dynamic protein S-palmitoylation.


Subject(s)
Liver/metabolism , Palm Oil/administration & dosage , Palmitic Acid/chemistry , Proteomics/methods , Soybean Oil/administration & dosage , Amino Acids/metabolism , Animals , Dietary Supplements , Fatty Acids/analysis , Homeostasis , Liver/drug effects , Macrophages, Peritoneal/chemistry , Male , Mass Spectrometry , Mice , Palm Oil/chemistry , Palm Oil/pharmacology , Soybean Oil/pharmacology
9.
Biochemistry ; 60(42): 3200-3212, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34633183

ABSTRACT

Fatty acid photodecarboxylase (FAP), one of the few natural photoenzymes characterized so far, is a promising biocatalyst for lipid-to-hydrocarbon conversion using light. However, the optimum supramolecular organization under which the fatty acid (FA) substrate should be presented to FAP has not been addressed. Using palmitic acid embedded in phospholipid liposomes, phospholipid-stabilized microemulsions, and mixed micelles, we show that FAP displays a preference for FAs present in liposomes and at the surface of microemulsions. The kinetics of adsorption onto phospholipid and galactolipid monomolecular films further suggests the ability of FAP to bind to and penetrate into membranes, with a higher affinity in the presence of FAs. The FAP structure reveals a potential interfacial recognition site with clusters of hydrophobic and basic residues surrounding the active site entrance. The resulting dipolar moment suggests the orientation of FAP at negatively charged interfaces. These findings provide important clues about the mode of action of FAP and the development of FAP-based bioconversion processes.


Subject(s)
Algal Proteins/chemistry , Carboxy-Lyases/chemistry , Adsorption , Animals , Biocatalysis , Cattle , Chlorella/enzymology , Emulsions/chemistry , Kinetics , Micelles , Palmitic Acid/chemistry , Serum Albumin, Bovine/chemistry , Unilamellar Liposomes/chemistry , Water/chemistry , beta-Cyclodextrins/chemistry
10.
ChemSusChem ; 14(18): 3935-3944, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34390212

ABSTRACT

Utilizing the inherent high nitrogen content in natural microalgae to produce value-added nitrogen-containing compounds such as fatty amides and fatty nitriles is a promising method. Herein, a method for producing value-added fatty amides and nitriles by liquefaction of natural microalgae from water blooms in n-heptane was developed. The effects of temperature, metal oxide catalyst (ZrO2 , Al2 O3 , TiO2 , ZnO, MgO, CaO), catalyst amount, and reaction time on the preparation of value-added nitrogen-containing compounds were studied. Under the optimized conditions (0.3 g ZrO2 , 300 °C, 6 h), the total yield of fatty amides was 6.9 wt %, and the yield of fatty nitriles was 1.9 wt %. Compared with the results obtained in the absence of ZrO2 , after adding ZrO2 the total yield of fatty acids was reduced by 4.7 wt % (18.5 to 13.8 wt %), while the total yield of fatty amides only increased by 0.9 wt % (6.0 to 6.9 wt %) and fatty nitriles was increased by 1.5 wt % (0.4 to 1.9 wt %). Exploring the role of ZrO2 by using model compounds (i. e., palmitic acid and palmitamide) revealed that ZrO2 could promote the dehydration of fatty amides to form fatty nitriles, but had limited effect on the reaction of fatty acid and NH3 .


Subject(s)
Biological Products/chemistry , Microalgae/chemistry , Nitrogen Compounds/chemistry , Zirconium/chemistry , Ammonium Compounds/chemistry , Catalysis , Fatty Acids/chemistry , Palmitic Acid/chemistry , Palmitic Acids/chemistry , Temperature , Water
11.
Chem Pharm Bull (Tokyo) ; 69(7): 652-660, 2021.
Article in English | MEDLINE | ID: mdl-34193714

ABSTRACT

The hydrocarbon-chain packing structure of intercellular lipids in the stratum corneum (SC) is critical to the skin's barrier function. We previously found that formation of V-shaped ceramide reduces the barrier function of skin. There are few agents, apart from ceramides and fatty acids that can improve the orthorhombic packing (Orth) ratio of the intercellular lipid packing structure. In this study, we investigated agents that directly increase the Orth ratio. We selected an intercellular lipid model consisting of ceramide, cholesterol, and palmitic acid and performed differential scanning calorimetry. We focused on natural moisturizing factor components in the SC, and therefore investigated amino acids and their derivatives. The results of our intercellular lipid model-based study indicate that N-acetyl-L-hydroxyproline (AHYP), remarkably, maintains the lamellar structure. We verified the effect of AHYP on the lamellar structure and hydrocarbon chain packing structure of intercellular lipids using time-resolved X-ray diffraction measurements of human SC. We also determined the direct physicochemical effects of AHYP on the Orth ratio of the hydrocarbon-chain packing structure. Hence, the results of our human SC study suggest that AHYP preserves skin barrier function by maintaining the hydrocarbon-chain packing structure of intercellular lipids via electrostatic repulsion. These findings will facilitate the development of skincare formulation that can maintain the skin's barrier function.


Subject(s)
Amino Acids/metabolism , Skin Absorption , Acetylation , Amino Acids/chemistry , Calorimetry, Differential Scanning , Cholesterol/chemistry , Epidermis/chemistry , Humans , Hydroxyproline/chemistry , Hydroxyproline/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Nanostructures/chemistry , Palmitic Acid/chemistry , Scattering, Small Angle , X-Ray Diffraction
12.
Molecules ; 26(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209258

ABSTRACT

Tripalmitin-(PPP, 81.2%), 1,3-dipalmitoyl-2-oleoylglycerol-(POP, 64.4%), 1,2-dipalmitoyl-3-oleoylglycerol-(PPO, 86.5%), and 1,3-dioleoyl-2-palmitoylglycerol-(OPO, 50.2%)-rich lipids with different regiospecific positions of palmitic acid (P) were synthesized via acetone fractionation and lipase-catalyzed acidolysis, and their physicochemical and hydrolytic characteristics were compared. Triacylglycerols (TAGs) with higher content of P, wherein P was at the sn-1 (or 3) position, had higher melting points, crystallization temperatures, and packing densities of fat crystals compared to those with a lower content of P, and with P at the sn-2 position. The in vitro digestion degree calculated as released fatty acid (FA) (%) at 30, 60, and 120 min was in the following order: OPO-rich > PPO-rich > POP-rich lipids. At 120 min, in vitro digestion of the OPO-rich lipid released 92.6% of fatty acids, resulting in the highest digestibility, while 89.7% and 87.2% of fatty acids were released from the OPO-rich and PPO-rich lipids, respectively. Over the digestion period, the TAG and monoacylglycerol (MAG) contents decreased, while the diacylglycerol (DAG) content initially increased and then decreased, and the 1,2-DAG content exceeded the 1,3-DAG content. Therefore, the content and stereospecific position of P attached to a specific TAG affected the physicochemical and in vitro digestion characteristics of the lipids.


Subject(s)
Lipase/chemistry , Palmitic Acid/chemistry , Triglycerides/chemistry , Digestion , Monoglycerides/chemistry , Monoglycerides/metabolism , Palmitic Acid/metabolism , Triglycerides/metabolism
13.
Biomed Res Int ; 2021: 9979419, 2021.
Article in English | MEDLINE | ID: mdl-34258287

ABSTRACT

Nigella sativa (NS) is a well-known plant for its various benefits and multiuse in traditional medicine. This study is aimed at investigating the chemical composition of the different NS fractions by using GC-MS for the esterified fatty acids or HPLC-UV for organic fraction and at evaluating the inhibitory effect on pancreatic α-amylase (in vitro, in vivo) and intestinal glucose absorption. Among all the investigated fractions, it was shown that they are rich with different molecules of great interest. The n-hexane fraction was characterized by the presence of linoleic acid (44.65%), palmitic acid (16.32%), stearic acid (14.60%), and thymoquinone (8.7%), while among the identified peaks in EtOH fraction we found catechin (89.03 mg/100 g DW), rutin (6.46 mg/100 g DW), and kaempferol (0.032 mg/100 g DW). The MeOH fraction was distinguished with the presence of gallic acid (19.91 mg/100 g DW), catechin (13.79 mg/100 g DW), and rutin (21.07 mg/100 g DW). Finally, the aqueous fraction was marked by the existence of different molecules; among them, we mention salicylic acid (32.26 mg/100 g DW), rutin (21.46 mg/100 g DW), and vanillic acid (3.81 mg/100 g DW). Concerning the inhibitory effect on pancreatic α-amylase, it was found that in the in vitro study, the best IC50 registered were those of EtOH (0.25 mg/ml), MeOH (0.10 mg/ml), aqueous (0.031 mg/ml), and n-hexane fraction (0.76 mg/ml), while in the in vivo study an important inhibition of α-amylase in normal and diabetic rats was observed. Finally, the percentage of intestinal glucose absorption was evaluated for all tested extracts and it was ranging from 24.82 to 60.12%. The results of the present study showed that the NS seed fractions exert an interesting inhibitory effect of α-amylase and intestinal glucose absorption activity which could be associated with the existent bioactive compounds. Indeed, these compounds can be used as antidiabetic agents because of their nontoxic effect and high efficacy.


Subject(s)
Chromatography, High Pressure Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Glucose/pharmacokinetics , Intestines/pathology , Nigella sativa/metabolism , Pancreas/enzymology , Pancreatic alpha-Amylases/biosynthesis , Animals , Benzoquinones/chemistry , Diabetes Mellitus, Experimental , Female , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Inhibitory Concentration 50 , Jejunum/metabolism , Linoleic Acid/chemistry , Male , Mice , Palmitic Acid/chemistry , Pancreas/drug effects , Rats , Rats, Wistar , Stearic Acids/chemistry
14.
Cell Metab ; 33(5): 1042-1061.e7, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33951465

ABSTRACT

Tubulointerstitial abnormalities are predictive of the progression of diabetic kidney disease (DKD), and their targeting may be an effective means for prevention. Proximal tubular (PT) expression of kidney injury molecule (KIM)-1, as well as blood and urinary levels, are increased early in human diabetes and can predict the rate of disease progression. Here, we report that KIM-1 mediates PT uptake of palmitic acid (PA)-bound albumin, leading to enhanced tubule injury with DNA damage, PT cell-cycle arrest, interstitial inflammation and fibrosis, and secondary glomerulosclerosis. Such injury can be ameliorated by genetic ablation of the KIM-1 mucin domain in a high-fat-fed streptozotocin mouse model of DKD. We also identified TW-37 as a small molecule inhibitor of KIM-1-mediated PA-albumin uptake and showed in vivo in a kidney injury model in mice that it ameliorates renal inflammation and fibrosis. Together, our findings support KIM-1 as a new therapeutic target for DKD.


Subject(s)
Diabetic Nephropathies/pathology , Fatty Acids/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Animals , Benzamides/pharmacology , Cell Cycle Checkpoints/drug effects , DNA Damage/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Endocytosis , Fibrosis , Hepatitis A Virus Cellular Receptor 1/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 1/genetics , Humans , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Palmitic Acid/chemistry , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacology , Sulfones/pharmacology
15.
Am J Clin Nutr ; 113(5): 1221-1231, 2021 05 08.
Article in English | MEDLINE | ID: mdl-33675343

ABSTRACT

BACKGROUND: Interesterified (IE) fats are widely used in place of trans fats; however, little is known about their metabolism. OBJECTIVES: To test the impact of a commonly consumed IE compared with a non-IE equivalent fat on in vivo postprandial and in vitro lipid metabolism, compared with a reference oil [rapeseed oil (RO)]. METHODS: A double-blinded, 3-phase crossover, randomized controlled trial was performed in healthy adults (n = 20) aged 45-75 y. Postprandial plasma triacylglycerol and lipoprotein responses (including stable isotope tracing) to a test meal (50 g fat) were evaluated over 8 h. The test fats were IE 80:20 palm stearin/palm kernel fat, an identical non-IE fat, and RO (control). In vitro, mechanisms of digestion were explored using a dynamic gastric model (DGM). RESULTS: Plasma triacylglycerol 8-h incremental area under the curves were lower following non-IE compared with RO [-1.7 mmol/L⋅h (95% CI: -3.3, -0.0)], but there were no differences between IE and RO or IE and non-IE. LDL particles were smaller following IE and non-IE compared with RO (P = 0.005). Extra extra large, extra large, and large VLDL particle concentrations were higher following IE and non-IE compared with RO at 6-8 h (P < 0.05). No differences in the appearance of [13C]palmitic acid in plasma triacylglycerol were observed between IE and non-IE fats. DGM revealed differences in phase separation of the IE and non-IE meals and delayed release of SFAs compared with RO. CONCLUSIONS: Interesterification did not modify fat digestion, postprandial lipemia, or lipid metabolism measured by stable isotope and DGM analysis. Despite the lower lipemia following the SFA-rich fats, increased proatherogenic large triacylglycerol-rich lipoprotein remnant and small LDL particles following the SFA-rich fats relative to RO adds a new postprandial dimension to the mechanistic evidence linking SFAs to cardiovascular disease risk.


Subject(s)
Dietary Fats, Unsaturated/adverse effects , Dietary Fats, Unsaturated/analysis , Fatty Acids, Monounsaturated/adverse effects , Lipoproteins/blood , Palmitic Acid/adverse effects , Postprandial Period , Aged , Apolipoprotein B-48 , Atherosclerosis/chemically induced , Chylomicrons/chemistry , Cross-Over Studies , Dietary Fats, Unsaturated/administration & dosage , Double-Blind Method , Fatty Acids, Monounsaturated/administration & dosage , Female , Humans , Hyperlipidemias/chemically induced , Male , Middle Aged , Palmitic Acid/administration & dosage , Palmitic Acid/chemistry , Triglycerides
16.
Anal Bioanal Chem ; 413(6): 1715-1727, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33564927

ABSTRACT

A colorimetric paper-based enzyme-coupled antimony tin oxide nanoparticle (ATONP) nanobiosensor for selective detection of Cd2+ ions in clams and mussels is presented. Alkaline phosphatase (ALP) was immobilized on ATONPs via 16-phosphonohexadecanoic acid (16-PHA) to develop ATONP-ALP nanobiosensor. The biosensor was characterized using XPS, Raman spectroscopy, SEM, and EDX. ATONP-ALP nanobiosensor exhibited high selectivity towards detection of Cd2+ ion with a LOD 0.006 µg L-1 and linear range of detection 0.005-1 µg L-1. The developed biosensor was further integrated into a low-cost paper-based format. A visual color change was obtained for Cd2+ ion in the range 0.1-10 µg L-1. The developed biosensor was successfully demonstrated for the analysis of Cd2+ ions in clams with recoveries 101-104%. The ATONP-ALP nanobiosensor was validated using mussel tissue (BCR-668) and the conventional ICP-OES and ICP-MS techniques.


Subject(s)
Biosensing Techniques , Cadmium/chemistry , Colorimetry/methods , Ions , Nanotechnology/methods , Alkaline Phosphatase/chemistry , Animals , Bivalvia , Calibration , Food Analysis/methods , Food Contamination/analysis , Kinetics , Limit of Detection , Microscopy, Electron, Scanning , Palmitic Acid/chemistry , Paper , Reproducibility of Results , Seafood , Spectrum Analysis, Raman
17.
J Chromatogr A ; 1637: 461844, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33445033

ABSTRACT

Charged aerosol detection (CAD) is an universal technique in liquid chromatography that is increasingly used for the quality control of drugs. Consequently, it has found its way into compendial monographs promoted by its simple and robust application. However, the response of CAD is inherently nonlinear due to its principle of function. Thus, easy and rapid linearization procedures, in particular regarding compendial applications, are highly desirable. One effective approach to linearize the detector's signal makes use of the built-in power function value (PFV) setting of the instrument. The PFV is basically a multiplication factor to the power law exponent of the equation describing the CAD's response, thereby altering the detector's signal output to optimize the quasi-linear range of the response curve. The experimental optimization of the PFV for a series of analytes is a time-consuming process, limiting the practicability of this approach. Here, two independent approaches for the determination of the optimal PFV based on an empirical model and a mathematical transformation in each case, are evaluated. Both approaches can be utilized to predict the optimal PFV for each analyte solely based on the experimental results of a series of calibration standards obtained at a single PFV. The approaches were applied to the HPLC-UV-CAD impurity analysis of the drug gabapentin to improve the observed nonlinear response of the impurities in the range of interest. The predicted optimal PFV of both approaches were in good agreement with the experimentally obtained optimal PFV of the analytes. As a result, the accuracy of the method was significantly improved when using the optimal PFV (90 - 105% versus 81 - 115% recovery rate for quantitation by either single-point calibration or linear regression) for the majority of the analytes. The final method with a PFV adjusted to 1.30 was validated with respect to ICH guideline Q2(R1).


Subject(s)
Aerosols/analysis , Chromatography, High Pressure Liquid/instrumentation , Calibration , Gabapentin/chemistry , Myristic Acid/chemistry , Palmitic Acid/chemistry , Quality Control , Reproducibility of Results , Software
18.
Chem Pharm Bull (Tokyo) ; 69(1): 72-80, 2021.
Article in English | MEDLINE | ID: mdl-33390523

ABSTRACT

Intercellular lipids in the stratum corneum protect the living body from invasion by allergens and pathogens, and also suppresses water evaporation within the body. It is important to understand how differences in the microstructure of intercellular lipids arise. This microstructure is affected by lipid composition. Studies using intercellular lipid models have reported the formation of two phases with different short lamellar periodicities. However, the details of the packing structure characteristics of the two phases observed in these intercellular lipid models are unclear. Our previous report revealed that different short periodicity phases coexist in the N-(α-hydroxyoctadecanoyl)-dihydrosphingosine (CER[ADS]), cholesterol (CHOL), and palmitic acid (PA) complex model. In this study, the characteristics of the packing structure of two phases with different short lamellar periodicities, which were observed in the intercellular lipid model (CER[ADS]/CHOL/PA) that we used previously, were adjusted for models with different lipid compositions. The characteristics of the packed and lamellar structures have been determined by temperature-scanning small-angle X-ray scattering and wide-angle X-ray diffraction measurements simultaneously. These differences in lamellar structure were thought to be caused by differences in ceramides (CER) conformation between the hairpin and the V-shape type. The lamellar structure of the V-shaped CER conformation has a low orthorhombic ratio. The above results suggest that an increase in the ratio of CER with the V-shaped structure causes the lamellar structure to have low orthorhombic ratio, thereby contributing to a decrease in the bilayer's barrier function.


Subject(s)
Ceramides/chemistry , Cholesterol/chemistry , Molecular Structure , Palmitic Acid/chemistry
19.
J Oleo Sci ; 70(2): 165-173, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33455999

ABSTRACT

The lipid products that consist of structured lipids rich in palmitic acid (16:0) at the sn-2 position of triacylglycerol (TAG) and rich in low-unsaturated fatty acids (FAs) (LUFAs), such as oleic acid; 18:1 and linoleic acid; 18:2 at the sn-1(3) positions, are useful intermediates for manufacturing human milk fat substitute (HMFS), which contains functional lipid components. In this study, the HMFS intermediate (HMFS-IM) was enzymatically prepared from palm oil without using other oil sources. First, the amount of 16:0 at the sn-2 position of TAG substrate was enhanced from 18.9% to more 34.5% via a random esterification reaction using a non-stereospecific lipase, Novozym® 435, to produce a random-palm substrate. Consequently, 2-monoacylglycerol (2-MAG) rich in 16:0 at the sn-2 position over 88%, together with the FA ethyl ester substrates rich in LUFAs, such as 18:1-Et and 18:2-Et above 93.5% was prepared through ethanolysis reaction using the same lipase from the random-palm substrate and by purification with urea complexation, respectively. As the preferred modified method, a continuous use of the same lipase to these reactions were achieved while reducing the usage of enzyme to half. Finally, an HMFS-IM rich in 16:0 at the sn-2 position more than 60% and LUFA at sn-1(3) positions was prepared using these palm oil-based products, including random-palm, palm-Et, and 2-MAG, via the interesterification reaction using a 1,3-stereospecific lipase, Lipozyme® RM-IM. Thus, HMFS-IM was successfully prepared by palm oil materials with a 65 wt% usage ratio. The concept described in this study will be useful for HMFS manufacturing from a single natural oil substrate, which is not initially rich in 16:0 at the sn-2 position.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Glycolipids/chemistry , Glycoproteins/chemistry , Lipid Droplets/chemistry , Milk Substitutes/chemical synthesis , Milk, Human/chemistry , Palm Oil/chemistry , Palmitic Acid/chemistry , Enzymes, Immobilized , Esterification , Fungal Proteins , Linoleic Acid/chemistry , Lipase/chemistry , Oleic Acid/chemistry , Triglycerides/chemistry
20.
Food Chem ; 339: 127808, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-32829241

ABSTRACT

This paper reports an experimental study of the formation and properties of dark chocolate prepared using novel CB alternative fats (CBAs): symmetric (OSatO) and asymmetric (SatSatO) mixed-acid triacylglycerols (TAGs), in which Sat and O represent saturated fatty acids (stearic:S + palmitic:P) and oleic acid moieties, respectively. It was found that the ternary fat mixtures of CB/SatSatO/OSatO with a ratio of CB/(SatSatO + OSatO) of 1:1 formed the most stable ß-form of the double chain length (DCL) structure (ß-2), which revealed sufficient hardness and sharp melting profiles around body temperature without tempering processes. Fat bloom formation was not observed in dark chocolate with CBAs at ratios of CB/SatSatO/OSatO of 50/20/30-50/0/50 during the one-year storage test at temperatures between 15 °C and 30 °C. Overall, the present study has shown that fat mixtures made of CB/SatSatO/OSatO, which are rich in oleic acid moieties, can be employed as a cocoa butter equivalent (CBE) fat without tempering procedures.


Subject(s)
Chocolate , Dietary Fats , Triglycerides/chemistry , Calorimetry, Differential Scanning , Crystallization , Fatty Acids/chemistry , Oleic Acid/chemistry , Palmitic Acid/chemistry , Stearic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...