Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.257
Filter
1.
Proc Natl Acad Sci U S A ; 121(32): e2303439121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39093948

ABSTRACT

Plants release a wealth of metabolites into the rhizosphere that can shape the composition and activity of microbial communities in response to environmental stress. The connection between rhizodeposition and rhizosphere microbiome succession has been suggested, particularly under environmental stress conditions, yet definitive evidence is scarce. In this study, we investigated the relationship between rhizosphere chemistry, microbiome dynamics, and abiotic stress in the bioenergy crop switchgrass grown in a marginal soil under nutrient-limited, moisture-limited, and nitrogen (N)-replete, phosphorus (P)-replete, and NP-replete conditions. We combined 16S rRNA amplicon sequencing and LC-MS/MS-based metabolomics to link rhizosphere microbial communities and metabolites. We identified significant changes in rhizosphere metabolite profiles in response to abiotic stress and linked them to changes in microbial communities using network analysis. N-limitation amplified the abundance of aromatic acids, pentoses, and their derivatives in the rhizosphere, and their enhanced availability was linked to the abundance of bacterial lineages from Acidobacteria, Verrucomicrobia, Planctomycetes, and Alphaproteobacteria. Conversely, N-amended conditions increased the availability of N-rich rhizosphere compounds, which coincided with proliferation of Actinobacteria. Treatments with contrasting N availability differed greatly in the abundance of potential keystone metabolites; serotonin and ectoine were particularly abundant in N-replete soils, while chlorogenic, cinnamic, and glucuronic acids were enriched in N-limited soils. Serotonin, the keystone metabolite we identified with the largest number of links to microbial taxa, significantly affected root architecture and growth of rhizosphere microorganisms, highlighting its potential to shape microbial community and mediate rhizosphere plant-microbe interactions.


Subject(s)
Metabolome , Microbiota , Rhizosphere , Soil Microbiology , Microbiota/physiology , Nitrogen/metabolism , RNA, Ribosomal, 16S/genetics , Nutrients/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Soil/chemistry , Phosphorus/metabolism , Plant Roots/microbiology , Plant Roots/metabolism , Panicum/metabolism , Panicum/microbiology
2.
Planta ; 260(3): 60, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052093

ABSTRACT

MAIN CONCLUSION: This article explores possible future initiatives, such as the development of targeted breeding and integrated omics approach to boost little millet production, nutritional value, and environmental adaptation. Little millet (P. sumatrense) is a staple grain in many parts of Asia and Africa owing to its abundance in vitamins and minerals and its ability to withstand harsh agro-ecological conditions. Enhancing little millet using natural resources and novel crop improvement strategy is an effective way of boosting nutritional and food security. To understand the genetic makeup of the crop and figure out important characteristics linked to nutritional value, biotic and abiotic resistance, and production, researchers in this field are currently resorting on genomic technology. These realizations have expedited the crop's response to shifting environmental conditions by enabling the production of superior cultivars through targeted breeding. Going forward, further improvements in breeding techniques and genetics may boost the resilience, nutritional content, and production of little millet, which would benefit growers and consumers alike. The research and development on little millet improvement using novel omics platform and the integration of genetic resources are summarized in this review paper. Improved cultivars of little millet that satisfy changing farmer and consumer demands have already been developed through the use of these novel breeding strategies. This article also explores possible future initiatives, such as the development of targeted breeding, genomics, and sustainable agriculture methods. The potential for these measures to boost little millet's overall production, nutritional value, and climate adaptation will be extremely helpful in addressing nutritional security.


Subject(s)
Genomics , Panicum , Plant Breeding , Plant Breeding/methods , Genomics/methods , Panicum/genetics , Crops, Agricultural/genetics , Nutritive Value , Proteomics/methods
3.
Nat Commun ; 15(1): 6347, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068162

ABSTRACT

Mitigating the effects of climate stress on crops is important for global food security. The microbiome associated with plant roots, the rhizobiome, can harbor beneficial microbes that alleviate stress, but the factors influencing their recruitment are unclear. We conducted a greenhouse experiment using field soil with a legacy of growing switchgrass and common bean to investigate the impact of short-term drought severity on the recruitment of active bacterial rhizobiome members. We applied 16S rRNA and 16S rRNA gene sequencing for both crops and metabolite profiling for switchgrass. We included planted and unplanted conditions to distinguish environment- versus plant-mediated rhizobiome drivers. Differences in community structure were observed between crops and between drought and watered and planted and unplanted treatments within crops. Despite crop-specific communities, drought rhizobiome dynamics were similar across the two crops. The presence of a plant more strongly explained the rhizobiome variation in bean (17%) than in switchgrass (3%), with a small effect of plant mediation during drought observed only for the bean rhizobiome. The switchgrass rhizobiome was stable despite changes in rhizosphere metabolite profiles between planted and unplanted treatments. We conclude that rhizobiome responses to short-term drought are crop-specific, with possible decoupling of plant exudation from rhizobiome responses.


Subject(s)
Bacteria , Droughts , Microbiota , Panicum , Plant Roots , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Plant Roots/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Panicum/microbiology , Panicum/genetics , Crops, Agricultural/microbiology , Phaseolus/microbiology , Phaseolus/physiology , Soil/chemistry
4.
Pharmacol Biochem Behav ; 242: 173825, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009088

ABSTRACT

Current medications for panic disorder each carry significant limitations that indicate the need for novel anxiolytics. The high costs and low success rates of drug development demand that testing trials be efficient. Lab panicogenic challenges in humans allow for the rapid biochemical induction of panic symptoms and hence an efficient means of testing potential anti-panic drugs. This paper describes ideal characteristics of lab panicogens, reviews the validity and utility of various biochemical panicogenic agents, identifies key outcome measures for studies of novel anti-panic drugs, and makes broad recommendations for labs wishing to perform such studies. We conclude by presenting a four-tiered hierarchy of panicogens that matches each against ideal characteristics and reflects our recommendations for their laboratory use.


Subject(s)
Anti-Anxiety Agents , Panic Disorder , Humans , Panic Disorder/drug therapy , Anti-Anxiety Agents/pharmacology , Animals , Panic/drug effects
5.
Planta ; 260(2): 44, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963439

ABSTRACT

MAIN CONCLUSION: The pilot-scale genome-wide association study in the US proso millet identified twenty marker-trait associations for five morpho-agronomic traits identifying genomic regions for future studies (e.g. molecular breeding and map-based cloning). Proso millet (Panicum miliaceum L.) is an ancient grain recognized for its excellent water-use efficiency and short growing season. It is an indispensable part of the winter wheat-based dryland cropping system in the High Plains of the USA. Its grains are endowed with high nutritional and health-promoting properties, making it increasingly popular in the global market for healthy grains. There is a dearth of genomic resources in proso millet for developing molecular tools to complement conventional breeding for developing high-yielding varieties. Genome-wide association study (GWAS) is a widely used method to dissect the genetics of complex traits. In this pilot study of the first-ever GWAS in the US proso millet, 71 globally diverse genotypes of 109 the US proso millet core collection were evaluated for five major morpho-agronomic traits at two locations in western Nebraska, and GWAS was conducted to identify single nucleotide polymorphisms (SNPs) associated with these traits. Analysis of variance showed that there was a significant difference among the genotypes, and all five traits were also found to be highly correlated with each other. Sequence reads from genotyping-by-sequencing (GBS) were used to identify 11,147 high-quality bi-allelic SNPs. Population structure analysis with those SNPs showed stratification within the core collection. The GWAS identified twenty marker-trait associations (MTAs) for the five traits. Twenty-nine putative candidate genes associated with the five traits were also identified. These genomic regions can be used to develop genetic markers for marker-assisted selection in proso millet breeding.


Subject(s)
Genome-Wide Association Study , Panicum , Polymorphism, Single Nucleotide , Panicum/genetics , Polymorphism, Single Nucleotide/genetics , Genetic Markers , Genotype , Phenotype , Quantitative Trait Loci/genetics , Pilot Projects , Genome, Plant/genetics , Plant Breeding/methods
6.
J Hazard Mater ; 476: 134904, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38996680

ABSTRACT

The heavy metal cadmium (Cd), known for its high toxicity, poses a grave threat to human health through the food chain. N6-methyladenosine (m6A), the most abundant internal modification, regulates plant adaptation to various adversities, yet the panorama of m6A modifications in switchgrass under cadmium stress remains elusive. This study examines the physiological responses of switchgrass roots and shoots exposed to 50 µM CdCl2, alongside an overview of transcriptome-wide m6A methylation patterns. After cadmium treatment, methylation modifications are primarily enriched near stop codons and the 3'UTR region, with a negative correlation between m6A modification and gene expression levels. In shoots, approximately 58 % of DEGs with m6A modifications show upregulation in expression and decrease in m6A peaks, including zinc transporter 4-like (ZIP4). In roots, about 43 % of DEGs with m6A modifications exhibit downregulation in expression and increase in m6A peaks, such as the ABC transporter family member (ABCG25). We further validate the m6A enrichment, gene expression and mRNA stability of ZIP4 in response to Cd treatment. The results suggest that the negative correlation of m6A enrichment and gene expression is due to altered mRNA stability. Our study establishes an m6A regulatory network governing cadmium transport in switchgrass roots and shoots, offering new avenues for candidate gene manipulation in phytoremediation applications of heavy metal pollution.


Subject(s)
Cadmium , Gene Expression Regulation, Plant , Panicum , Plant Roots , Transcriptome , Transcriptome/drug effects , Cadmium/toxicity , Panicum/genetics , Panicum/drug effects , Panicum/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Gene Expression Regulation, Plant/drug effects , Methylation , Adenosine/analogs & derivatives , Adenosine/metabolism , Stress, Physiological , Plant Shoots/drug effects , Plant Shoots/metabolism , Plant Shoots/genetics , Gene Regulatory Networks/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Article in English | MEDLINE | ID: mdl-38908504

ABSTRACT

CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.


Subject(s)
Carbon Dioxide , Hyperventilation , Locus Coeruleus , Norepinephrine , Animals , Locus Coeruleus/metabolism , Locus Coeruleus/drug effects , Female , Male , Norepinephrine/metabolism , Mice , Hypercapnia/metabolism , Mice, Inbred C57BL , Panic/drug effects , Panic/physiology , Disease Models, Animal , Panic Disorder/metabolism , Panic Disorder/chemically induced , Panic Disorder/physiopathology , Mice, Knockout , Sex Characteristics
8.
Sci Data ; 11(1): 657, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906866

ABSTRACT

Broomcorn millet (Panicum miliaceum L.), known for its traits of drought resistance, adaptability to poor soil, short growth period, and high photosynthetic efficiency as a C4 plant, represents one of the earliest domesticated crops globally. This study reports the telomere-to-telomere (T2T) gap-free reference genome for broomcorn millet (AJ8) using PacBio high-fidelity (HiFi) long reads, Oxford Nanopore long-read technologies and high-throughput chromosome conformation capture (Hi-C) sequencing data. The size of AJ8 genome was approximately 834.7 Mb, anchored onto 18 pseudo-chromosomes. Notably, 18 centromeres and 36 telomeres were obtained. The assembled genome showed high quality in terms of completeness (BUSCO score: 99.6%, QV: 61.7, LAI value: 20.4). In addition, 63,678 protein-coding genes and 433.8 Mb (~52.0%) repetitive sequences were identified. The complete reference genome for broomcorn millet provides a valuable resource for genetic studies and breeding of this important cereal crop.


Subject(s)
Genome, Plant , Panicum , Panicum/genetics , Telomere/genetics , Chromosomes, Plant
9.
World J Microbiol Biotechnol ; 40(8): 245, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884883

ABSTRACT

The addition of plant-growth-promoting bacteria (PGPB) to heavy-metal-contaminated soils can significantly improve plant growth and productivity. This study isolated heavy-metal-tolerant bacteria with growth-promoting traits and investigated their inoculation effects on the germination rates and growth of millet (Panicum miliaceum) and mustard (Brassica juncea) in Cd- and Zn-contaminated soil. Leifsonia sp. ZP3, which is resistant to Cd (0.5 mM) and Zn (1 mM), was isolated from forest soil. The ZP3 strain exhibited plant-growth-promoting activity, including indole-3-acetic acid production, phosphate solubilization, catalase activity, and 2,2-diphenyl-1-picrylhydrazyl radical scavenging. In soil contaminated with low concentrations of Cd (0.232 ± 0.006 mM) and Zn (6.376 ± 0.256 mM), ZP3 inoculation significantly increased the germination rates of millet and mustard 8.35- and 31.60-fold, respectively, compared to the non-inoculated control group, while the shoot and root lengths of millet increased 1.77- and 4.44-fold (p < 0.05). The chlorophyll content and seedling vigor index were also 4.40 and 18.78 times higher in the ZP3-treated group than in the control group (p < 0.05). The shoot length of mustard increased 1.89-fold, and the seedling vigor index improved 53.11-fold with the addition of ZP3 to the contaminated soil (p < 0.05). In soil contaminated with high concentrations of Cd and Zn (0.327 ± 0.016 and 8.448 ± 0.250 mM, respectively), ZP3 inoculation led to a 1.98-fold increase in the shoot length and a 2.07-fold improvement in the seedling vigor index compared to the control (p < 0.05). The heavy-metal-tolerant bacterium ZP3 isolated in this study thus represents a promising microbial resource for improving the efficiency of phytoremediation in Cd- and Zn-contaminated soil.


Subject(s)
Biodegradation, Environmental , Cadmium , Germination , Mustard Plant , Panicum , Soil Microbiology , Soil Pollutants , Zinc , Mustard Plant/microbiology , Mustard Plant/growth & development , Soil Pollutants/metabolism , Cadmium/metabolism , Zinc/metabolism , Panicum/microbiology , Panicum/growth & development , Plant Roots/microbiology , Plant Roots/growth & development , Metals, Heavy/metabolism , Soil/chemistry , Indoleacetic Acids/metabolism
10.
Ecotoxicol Environ Saf ; 281: 116592, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901167

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) and biochar application individually can enhance plant tolerance to saline-alkali stress and promote plant growth efficiency. However, little is known about the potential synergistic effects of their combination on improving plant growth and soil quality under saline-alkali stress. This experiment adopted the potted method to explore the effects of four treatments on switchgrass growth and soil quality: biochar (BC), Rhizophagus irregularis (Ri), biochar + Ri (BR) and a control without biochar or Ri (CK). Compared to the CK treatment, the switchgrass biomass increased by 92.4 %, 148.6 %, and 177.3 % in the BC, Ri, and BR treatment groups, respectively. Similarly, the rhizosphere soil quality index increased by 29.33 %, 22.7 %, and 49.1 % in the respective treatment groups. The BR treatment significantly altered the rhizosphere soil microbial composition and diversity. Notably, compared to the other treatments, the archaeal α-diversity in the BR group showed a significant decrease. BR treatment significantly increased the relative abundance of bacteria, fungi and archaea at the genus level (e.g., Bacillus, Trichome and candidatus_methanopenens). Network analysis showed that the complexity and closeness of interactions between different microbial taxa were stronger in the BC, Ri and BR treatments than in the CK treatment, with BR being the more prominent. In summary, biochar combined with Ri has a better effect on promoting the growth of switchgrass under saline-alkali stress, improving the quality of saline-alkali soil, and increasing soil microbial diversity. This study provides a new approach for the efficient development and utilization of saline-alkali land.


Subject(s)
Charcoal , Mycorrhizae , Rhizosphere , Soil Microbiology , Soil , Soil/chemistry , Mycorrhizae/physiology , Mycorrhizae/drug effects , Alkalies , Microbiota/drug effects , Biomass , Panicum/drug effects , Panicum/growth & development , Plant Development/drug effects
11.
Physiol Plant ; 176(3): e14367, 2024.
Article in English | MEDLINE | ID: mdl-38837234

ABSTRACT

Inoculation of arbuscular mycorrhizal fungi (AMF) or biochar (BC) application can improve photosynthesis and promote plant growth under saline-alkali stress. However, little is known about the effects of the two combined on growth and physiological characteristics of switchgrass under saline-alkali stress. This study examined the effects of four treatments: (1) no AMF inoculation and no biochar addition (control), (2) biochar (BC) alone, (3) AMF (Rhizophagus irregularis, Ri) alone, and (4) the combination of both (BC+Ri) on the plant biomass, antioxidant enzymes, chlorophyll, and photosynthetic parameters of switchgrass under saline-alkali stress. The results showed that the above-ground, belowground and total biomass of switchgrass in the BC+Ri treatment group was significantly higher (+136.7%, 120.2% and 132.4%, respectively) than in other treatments compared with Control. BC+Ri treatment significantly increased plant leaves' relative chlorophyll content, antioxidant enzyme activity, and photosynthesis parameters. It is worth noting that the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency and other photosynthetic-related indexes of the BC+Ri treatment group were the highest (38% to 54% higher than other treatments). The fitting results of light response and CO2 response curves showed that the light saturation point, light compensation point, maximum carboxylation rate and maximum electron transfer rate of switchgrass in the Ri+BC treatment group were the highest. In conclusion, biochar combined with Ri has potential beneficial effects on promoting switchgrass growth under saline-alkali stress and improving the activity of antioxidant enzymes and photosynthetic characteristics of plants.


Subject(s)
Charcoal , Chlorophyll , Mycorrhizae , Panicum , Photosynthesis , Charcoal/pharmacology , Panicum/physiology , Panicum/drug effects , Panicum/growth & development , Photosynthesis/physiology , Chlorophyll/metabolism , Mycorrhizae/physiology , Glomeromycota/physiology , Alkalies , Biomass , Plant Leaves/physiology , Antioxidants/metabolism
12.
J Integr Plant Biol ; 66(8): 1688-1702, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38695644

ABSTRACT

The ancient crop broomcorn millet (Panicum miliaceum L.) is an indispensable orphan crop in semi-arid regions due to its short life cycle and excellent abiotic stress tolerance. These advantages make it an important alternative crop to increase food security and achieve the goal of zero hunger, particularly in light of the uncertainty of global climate change. However, functional genomic and biotechnological research in broomcorn millet has been hampered due to a lack of genetic tools such as transformation and genome-editing techniques. Here, we successfully performed genome editing of broomcorn millet. We identified an elite variety, Hongmi, that produces embryogenic callus and has high shoot regeneration ability in in vitro culture. We established an Agrobacterium tumefaciens-mediated genetic transformation protocol and a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system for Hongmi. Using these techniques, we produced herbicide-resistant transgenic plants and edited phytoene desaturase (PmPDS), which is involved in chlorophyll biosynthesis. To facilitate the rapid adoption of Hongmi as a model line for broomcorn millet research, we assembled a near-complete genome sequence of Hongmi and comprehensively annotated its genome. Together, our results open the door to improving broomcorn millet using biotechnology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genome, Plant , Panicum , Gene Editing/methods , Panicum/genetics , CRISPR-Cas Systems/genetics , Plants, Genetically Modified/genetics , Oxidoreductases
13.
J Integr Plant Biol ; 66(8): 1544-1547, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38695642

ABSTRACT

A CRISPR/Cas12i.3-based gene editing platform is established in broomcorn millet (Panicum miliaceum) and used to create new elite germplasm for this ancient crop.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mutagenesis , Panicum , CRISPR-Cas Systems/genetics , Panicum/genetics , Mutagenesis/genetics , Gene Editing/methods
14.
Plant Biotechnol J ; 22(9): 2530-2540, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38690830

ABSTRACT

Dinitrotoluene sulfonates (DNTSes) are highly toxic hazards regulated by the Resource Conservation and Recovery Act (RCRA) in the United States. The trinitrotoluene (TNT) red water formed during the TNT purification process consists mainly of DNTSes. Certain plants, including switchgrass, reed and alfalfa, can detoxify low concentrations of DNTS in TNT red water-contaminated soils. However, the precise mechanism by which these plants detoxify DNTS remains unknown. In order to aid in the development of phytoremediation resources with high DNTS removal rates, we identified and characterized 1-hydroxymethyl-2,4-dinitrobenzene sulfonic acid (HMDNBS) and its glycosylated product HMDNBS O-glucoside as the degradation products of 2,4-DNT-3-SO3Na, the major isoform of DNTS in TNT red water-contaminated soils, in switchgrass via LC-MS/MS- and NMR-based metabolite analyses. Transcriptomic analysis revealed that 15 UDP-glycosyltransferase genes were dramatically upregulated in switchgrass plants following 2,4-DNT-3-SO3Na treatment. We expressed, purified and assayed the activity of recombinant UGT proteins in vitro and identified PvUGT96C10 as the enzyme responsible for the glycosylation of HMDNBS in switchgrass. Overexpression of PvUGT96C10 in switchgrass significantly alleviated 2,4-DNT-3-SO3Na-induced plant growth inhibition. Notably, PvUGT96C10-overexpressing transgenic switchgrass plants removed 83.1% of 2,4-DNT-3-SO3Na in liquid medium after 28 days, representing a 3.2-fold higher removal rate than that of control plants. This work clarifies the DNTS detoxification mechanism in plants for the first time, suggesting that PvUGT96C10 is crucial for DNTS degradation. Our results indicate that PvUGT96C10-overexpressing plants may hold great potential for the phytoremediation of TNT red water-contaminated soils.


Subject(s)
Biodegradation, Environmental , Glycosyltransferases , Panicum , Panicum/genetics , Panicum/metabolism , Panicum/enzymology , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Dinitrobenzenes/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Soil Pollutants/metabolism
15.
Am J Bot ; 111(5): e16349, 2024 05.
Article in English | MEDLINE | ID: mdl-38783552

ABSTRACT

PREMISE: Leaf tensile resistance, a leaf's ability to withstand pulling forces, is an important determinant of plant ecological strategies. One potential driver of leaf tensile resistance is growing season length. When growing seasons are long, strong leaves, which often require more time and resources to construct than weak leaves, may be more advantageous than when growing seasons are short. Growing season length and other ecological conditions may also impact the morphological traits that underlie leaf tensile resistance. METHODS: To understand variation in leaf tensile resistance, we measured size-dependent leaf strength and size-independent leaf toughness in diverse genotypes of the widespread perennial grass Panicum virgatum (switchgrass) in a common garden. We then used quantitative genetic approaches to estimate the heritability of leaf tensile resistance and whether there were genetic correlations between leaf tensile resistance and other morphological traits. RESULTS: Leaf tensile resistance was positively associated with aboveground biomass (a proxy for fitness). Moreover, both measures of leaf tensile resistance exhibited high heritability and were positively genetically correlated with leaf lamina thickness and leaf mass per area (LMA). Leaf tensile resistance also increased with the growing season length in the habitat of origin, and this effect was mediated by both LMA and leaf thickness. CONCLUSIONS: Differences in growing season length may promote selection for different leaf lifespans and may explain existing variation in leaf tensile resistance in P. virgatum. In addition, the high heritability of leaf tensile resistance suggests that P. virgatum will be able to respond to climate change as growing seasons lengthen.


Subject(s)
Plant Leaves , Seasons , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/growth & development , Panicum/genetics , Panicum/physiology , Panicum/anatomy & histology , Panicum/growth & development , Tensile Strength , Biomass , Phenotype , Genotype , Quantitative Trait, Heritable
16.
Plant Physiol Biochem ; 212: 108781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820914

ABSTRACT

N6-methyladenosine (m6A), a nucleotide modification that is frequently seen in RNA, plays a crucial role in plant growth, development and stress resistance. However, the m6A regulatory machinery in switchgrass (Panicum virgatum L.), a model plant for cellulose-to-ethanol conversion, remains largely unknown. In this study, we identified 57 candidate genes involved in m6A-regulation in the switchgrass genome, and analyzed their chromosomal distribution, evolutionary relationships, and functions. Notably, we observed distinct gene expression patterns under salt and drought stress, with salt stress inducing writer and eraser genes, alongside drought stress predominantly affecting reader genes. Additionally, we knocked out PvALKBH10, an m6A demethylase gene, via CRISPR/Cas9 and found its potential function in controlling flowering time. This study provides insight into the genomic organization and evolutionary features of m6A-associated putative genes in switchgrass, and therefore serves as the basis for further functional studies.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Panicum , Plant Proteins , Panicum/genetics , Panicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Genes, Plant , Multigene Family
17.
Chemosphere ; 359: 142393, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777198

ABSTRACT

The development of bio-friendly materials to replace single-use plastics is urgently needed. In this regard, cellulosic material from plants is a promising alternative. However, due to the risk of forest depletion, agricultural biomass stands out as a favorable choice. Toward this end, switchgrass, an underutilized grass, presents itself as a viable source of lignocellulose that can be turned into a bio-friendly material. Herein, lignocellulosic residue from switchgrass has been extracted using two different concentrations of NaOH (20% and 50% w/v), solubilized in aqueous ZnCl2 solution, and crosslinked with CaCl2 (200, 300, 400, and 500 mM) to prepare biodegradable films. The color, thickness and moisture, water solubility, water absorption, water vapor permeability, tensile strength and elongation, biodegradation, UV transmittance, and antioxidant activity of films have been studied. The films possess a high tensile strength of 14.7 MPa and elongation of 4.7%. They block UVB-radiation and hold antioxidant properties. They display good water vapor permeability of 1.410-1.6 × 10-11 gm-1s-1Pa-1 and lose over 80% of their weight at 30% soil moisture within 40 days. An increase in the CaCl2 amount decreased the water vapor permeability, elongation, UV transmittance, and biodegradation but increased the transparency, tensile strength and antioxidant property. Overall, films of alkali-digested lignocellulosic residue of switchgrass showed excellent potential to be used against lightweight plastics and support the circular economy.


Subject(s)
Antioxidants , Biodegradation, Environmental , Lignin , Permeability , Tensile Strength , Ultraviolet Rays , Lignin/chemistry , Antioxidants/chemistry , Panicum/chemistry , Alkalies/chemistry , Steam
18.
Int J Biol Macromol ; 267(Pt 1): 131488, 2024 May.
Article in English | MEDLINE | ID: mdl-38615862

ABSTRACT

This study aimed to reveal the underlying mechanisms of the differences in viscoelasticity and digestibility between mung bean starch (MBS) and proso millet starch (PMS) from the viewpoint of starch fine molecular structure. The contents of amylopectin B2 chains (14.94-15.09 %), amylopectin B3 chains (14.48-15.07 %) and amylose long chains (183.55-198.84) in MBS were significantly higher than PMS (10.45-10.76 %, 12.48-14.07 % and 70.59-88.03, respectively). MBS with higher amylose content (AC, 28.45-31.80 %) not only exhibited a lower weight-average molar mass (91,750.65-128,120.44 kDa) and R1047/1022 (1.1520-1.1904), but also was significantly lower than PMS in relative crystallinity (15.22-23.18 %, p < 0.05). MBS displayed a higher storage modulus (G') and loss modulus (G'') than PMS. Although only MBS-1 showed two distinct and discontinuous phases, MBS exhibited a higher resistant starch (RS) content than PMS (31.63-39.23 %), with MBS-3 having the highest RS content (56.15 %). Correlation analysis suggested that the amylopectin chain length distributions and AC played an important role in affecting the crystal structure, viscoelastic properties and in vitro starch digestibility of MBS and PMS. These results will provide a theoretical and scientific basis for the development of starch science and industrial production of low glycemic index starchy food.


Subject(s)
Amylopectin , Amylose , Panicum , Starch , Vigna , Amylopectin/analysis , Amylose/analysis , Vigna/chemistry , Starch/chemistry , Panicum/chemistry , Pepsin A/metabolism , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Molecular Weight , Kinetics
19.
Plant J ; 119(1): 577-594, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38576267

ABSTRACT

Little millet (Panicum sumatrense Roth ex Roem. & Schult.) is an essential minor millet of southeast Asia and Africa's temperate and subtropical regions. The plant is stress-tolerant, has a short life cycle, and has a mineral-rich nutritional profile associated with unique health benefits. We report the developmental gene expression atlas of little millet (genotype JK-8) from ten tissues representing different stages of its life cycle, starting from seed germination and vegetative growth to panicle maturation. The developmental transcriptome atlas led to the identification of 342 827 transcripts. The BUSCO analysis and comparison with the transcriptomes of related species confirm that this study presents high-quality, in-depth coverage of the little millet transcriptome. In addition, the eFP browser generated here has a user-friendly interface, allowing interactive visualizations of tissue-specific gene expression. Using these data, we identified transcripts, the orthologs of which in Arabidopsis and rice are involved in nutrient acquisition, transport, and response pathways. The comparative analysis of the expression levels of these transcripts holds great potential for enhancing the mineral content in crops, particularly zinc and iron, to address the issue of "hidden hunger" and to attain nutritional security, making it a valuable asset for translational research.


Subject(s)
Gene Expression Regulation, Plant , Panicum , Transcriptome , Transcriptome/genetics , Panicum/genetics , Panicum/metabolism , Panicum/growth & development , Minerals/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Gene Expression Profiling
20.
Yi Chuan ; 46(3): 242-255, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38632102

ABSTRACT

To understand the genome-wide information of the GRF family genes in broomcorn millet and their expression profile in the vegetative meristems, bioinformatic methods and transcriptome sequencing were used to analyze the characteristics, physical and chemical properties, phylogenetic relationship, chromosome distribution, gene structure, cis-acting elements and expression profile in stem meristem for the GRF family members. The results showed that the GRF gene family of millet contains 21 members, and the PmGRF gene is unevenly distributed on 12 chromosomes. The lengths of PmGRF proteins vary from 224 to 618 amino acids, and the isoelectric points are between 4.93-9.69. Each member of the family has 1-4 introns and 2-5 exons. The protein PmGRF13 is localized in both the nucleus and chloroplast, and the rest PmGRF proteins are located in the nucleus. Phylogenetic analysis showed that the 21 GRF genes were divided into 4 subfamilies (A,B,C and D) in broomcorn millet. The analysis of cis-acting elements showed that there were many cis-acting elements involved in light response, hormone response, drought induction, low temperature response and other environmental stress responses in the 2000 bp sequence upstream of the GRF genes. Transcriptome sequencing and qRT-PCR analyses showed that the expression levels of PmGRF3 and PmGRF12 in the dwarf variety Zhang778 were significantly higher than those of the tall variety Longmi12 in the internode and node meristems at the jointing stage, while the expression patterns of PmGRF4, PmGRF16 and PmGRF21 were reverse. In addition, the expression levels of PmGRF2 and PmGRF5 in the internode of Zhang778 were significantly higher than Longmi12. The other GRF genes were not or insignificantly expressed. These results indicated that seven genes, PmGRF2, PmGRF3, PmGRF4, PmGRF5, PmGRF12, PmGRF16 and PmGRF21, were related to the formation of plant height in broomcorn millet.


Subject(s)
Panicum , Phylogeny , Panicum/chemistry , Panicum/genetics , Transcription Factors/genetics , Meristem , Genome, Plant
SELECTION OF CITATIONS
SEARCH DETAIL