Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443484

ABSTRACT

The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.


Subject(s)
Crotalid Venoms/chemistry , Dimerization , Papain/antagonists & inhibitors , Peptides/chemistry , Peptides/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Molecular Docking Simulation , Papain/chemistry , Papain/metabolism , Peptides/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Conformation , SARS-CoV-2/drug effects
2.
Planta ; 252(2): 16, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32661769

ABSTRACT

MAIN CONCLUSION: A new Piper nigrum cysteine proteinase inhibitor, PnCPI, belonging to group I of phytocystatins, with inhibitory activity against papain and growth of Fusarium solani f. sp. piperis, was isolated and characterized. Previous studies (de Souza et al. 2011) have identified a partial cDNA sequence of putative cysteine proteinase inhibitor differentially expressed in roots of black pepper (P. nigrum L.) infected by F. solani f. sp. piperis. Here, we aimed to isolate the full-length cDNA and genomic sequences of the P. nigrum cysteine proteinase inhibitor gene, named PnCPI. Sequence analyses showed that the PnCPI gene encodes a deduced protein of 108 amino acid residues with a predicted molecular mass of 12.3 kDa and isoelectric point of 6.51. Besides the LARFAV-like sequence, common to all phytocystatins, PnCPI contains three conserved motifs of the superfamily cystatin: a glycine residue at the N-terminal region, the QxVxG reactive site more centrally positioned, and one tryptophan in the C-terminal region. PnCPI, belonging to group I of phytocystatins, showed high identity with cystatins isolated from several plant species. Sequence analyses also revealed no putative signal peptide at the N-terminal of PnCPI, as well as no introns within the genomic sequence corresponding to the PnCPI coding region. Molecular modeling showed the ability of PnCPI to interact with papain, while its inhibitory activity against this protease was confirmed after heterologous expression in Escherichia coli. The effects of heat treatments on the inhibitory activity of recombinant PnCPI, rPnCPI, were evaluated. In addition, rPnCPI exhibited in vitro activity against F. solani f. sp. piperis, revealing a new cystatin with the potential antifungal application. The identification of PnCPI as a functional cystatin able to inhibit the in vitro growth of F. solani f. sp. piperis indicates other factors contributing to in vivo susceptibility of black pepper to root rot disease.


Subject(s)
Antifungal Agents/pharmacology , Cystatins/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Fusarium/drug effects , Papain/antagonists & inhibitors , Piper nigrum/genetics , Plant Diseases/prevention & control , Antifungal Agents/isolation & purification , Cloning, Molecular , Cysteine Proteinase Inhibitors/isolation & purification , DNA, Complementary/genetics , Fusarium/enzymology , Piper nigrum/chemistry , Plant Diseases/microbiology
3.
Plant Mol Biol ; 92(1-2): 193-207, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27325119

ABSTRACT

Phytocystatins are well-known inhibitors of C1A cysteine proteinases. However, previous research has revealed legumain (C13) protease inhibition via a carboxy-extended phytocystatin. Among the 12 phytocystatins genes in rice, OcXII is the only gene possessing this carboxy-terminal extension. The specific legumain inhibition activity was confirmed, in our work, using a recombinant OcXII harboring only the carboxy-terminal domain and this part did not exhibit any effect on papain-like activities. Meanwhile, rice plants silenced at the whole OcXII gene presented higher legumain and papain-like proteolytic activities, resulting in a faster initial seedling growth. However, when germinated under stressful alkaline conditions, OcXII-silenced plants exhibited impaired root formation and delayed shoot growth. Interestingly, the activity of OcXII promoter gene was detected in the rice seed scutellum region, and decreases with seedling growth. Seeds from these plants also exhibited slower growth at germination under ABA or alkaline conditions, while maintaining very high levels of OcXII transcriptional activation. This likely reinforces the proteolytic control necessary for seed germination and growth. In addition, increased legumain activity was detected in OcXII RNAi plants subjected to a fungal elicitor. Overall, the results of this study highlight the association of OcXII with not only plant development processes, but also with stress response pathways. The results of this study reinforce the bifunctional ability of carboxy-extended phytocystatins in regulating legumain proteases via its carboxy-extended domain and papain-like proteases by its amino-terminal domain.


Subject(s)
Cystatins/metabolism , Cysteine Endopeptidases/metabolism , Oryza/enzymology , Papain/metabolism , Peptide Hydrolases/metabolism , Plant Proteins/metabolism , Cystatins/pharmacology , Oryza/metabolism , Papain/antagonists & inhibitors , Plant Proteins/antagonists & inhibitors
4.
Planta ; 240(2): 345-56, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24849173

ABSTRACT

MAIN CONCLUSION: Multiplicity of protease inhibitors induced by predators may increase the understanding of a plant's intelligent behavior toward environmental challenges. Information about defense mechanisms of non-genomic model plant passion fruit (Passiflora edulis Sims) in response to predator attack is still limited. Here, via biochemical approaches, we showed its flexibility to build-up a broad repertoire of potent Kunitz-type trypsin inhibitors (KTIs) in response to methyl jasmonate. Seven inhibitors (20-25 kDa) were purified from exposed leaves by chromatographic techniques. Interestingly, the KTIs possessed truncated Kunitz motif in their N-terminus and some of them also presented non-consensus residues. Gelatin-Native-PAGE established multiple isoforms for each inhibitor. Significant differences regarding inhibitors' activity toward trypsin and chymotrypsin were observed, indicating functional polymorphism. Despite its rarity, two of them also inhibited papain, and such bifunctionality suggests a recruiting process onto another mechanistic class of target protease (cysteine-type). All inhibitors acted strongly on midgut proteases from sugarcane borer, Diatraea saccharalis (a lepidopteran insect) while in vivo assays supported their insecticide properties. Moreover, the bifunctional inhibitors displayed activity toward midgut proteases from cowpea weevil, Callosobruchus maculatus (a coleopteran insect). Unexpectedly, all inhibitors were highly effective against midgut proteases from Aedes aegypti a dipteran insect (vector of neglected tropical diseases) opening new avenues for plant-derived PIs for vector control-oriented research. Our results reflect the KTIs' complexities in passion fruit which could be wisely exploited by influencing plant defense conditions. Therefore, the potential of passion fruit as source of bioactive compounds with diversified biotechnological application was strengthened.


Subject(s)
Acetates/pharmacology , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Papain/antagonists & inhibitors , Passiflora/metabolism , Plant Leaves/metabolism , Trypsin Inhibitors/metabolism , Animals , Insecta , Lepidoptera/metabolism , Passiflora/drug effects , Plant Leaves/drug effects , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Trypsin Inhibitors/pharmacology
5.
Plant Physiol Biochem ; 70: 61-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23770595

ABSTRACT

The present study aims to provide new in vitro and in vivo biochemical information about a novel Kunitz trypsin inhibitor purified from Piptadenia moniliformis seeds. The purification process was performed using TCA precipitation, Trypsin-Sepharose and reversed-phase C18 HPLC chromatography. The inhibitor, named PmTKI, showed an apparent molecular mass of around 19 kDa, visualized by SDS-PAGE, which was confirmed by mass spectrometry MALDI-ToF demonstrating a monoisotopic mass of 19.296 Da. The inhibitor was in vitro active against trypsin, chymotrypsin and papain. Moreover, kinetic enzymatic studies were performed aiming to understand the inhibition mode of PmTKI, which competitively inhibits the target enzyme, presenting Ki values of 1.5 × 10(-8) and 3.0 × 10(-1) M against trypsin and chymotrypsin, respectively. Also, the inhibitory activity was assayed at different pH ranges, temperatures and reduction environments (DTT). The inhibitor was stable in all conditions maintaining an 80% residual activity. N-terminal sequence was obtained by Edman degradation and the primary sequence presented identity with members of Kunitz-type inhibitors from the same subfamily. Finally after biochemical characterization the inhibitory effect was evaluated in vitro on insect digestive enzymes from different orders, PmTKI demonstrated remarkable activity against enzymes from Anthonomus grandis (90%), Plodia interpuncptella (60%), and Ceratitis capitata (70%). Furthermore, in vivo bioinsecticidal assays of C. capitata larvae were also performed and the concentration of PmTKI (w/w) in an artificial diet required to LD50 and ED50 larvae were 0.37 and 0.3% respectively. In summary, data reported here shown the biotechnological potential of PmTKI for insect pest control.


Subject(s)
Fabaceae/chemistry , Insecta/drug effects , Insecticides/pharmacology , Plant Proteins/pharmacology , Seeds/chemistry , Trypsin Inhibitors/pharmacology , Trypsin/metabolism , Amino Acid Sequence , Animals , Chymotrypsin/metabolism , Insecta/metabolism , Insecticides/chemistry , Insecticides/isolation & purification , Larva/drug effects , Lethal Dose 50 , Molecular Weight , Papain/antagonists & inhibitors , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification
6.
J Enzyme Inhib Med Chem ; 28(4): 661-70, 2013 Aug.
Article in English | MEDLINE | ID: mdl-22468751

ABSTRACT

Cruzain is the major cysteine protease of Trypanosoma cruzi, the infectious agent responsible for Chagas disease, and cruzain inhibitors display considerable antitrypanosomal activity. In the present work we elucidated crystallographic data of fukugetin, a biflavone isolated from Garcinia brasiliensis, and investigated the role of this molecule as cysteine protease inhibitor. The kinetic analyses demonstrated that fukugetin inhibited cruzain and papain by a slow reversible type inhibition with K(I) of 1.1 and 13.4 µM, respectively. However, cruzain inhibition was about 12 times faster than papain inhibition. Lineweaver-Burk plots demonstrated partial competitive inhibition for cruzain and hyperbolic mixed-type inhibition for papain. Furthermore, the docking results showed that the biflavone binds to ring C' in the S2 pocket and to ring C in the S3 pocket through hydrophobic interactions and hydrogen bonds. Finally, fukugetin also presented inhibitory activity on proteases of the T. cruzi extract, with IC50 of 7 µM.


Subject(s)
Biflavonoids/pharmacology , Biological Products/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Papain/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Fruit/chemistry , Garcinia/chemistry , Kinetics , Molecular Structure , Papain/metabolism , Protozoan Proteins/metabolism , Structure-Activity Relationship
7.
J Agric Food Chem ; 58(7): 4145-52, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20199085

ABSTRACT

A novel pathogenesis-related class 10 (PR-10) protein with papain inhibitory activity, named CpPRI, was purified from Crotalaria pallida roots by ammonium sulfate precipitation followed by three reverse-phase high-performance liquid chromatographies (HPLCs). CpPRI is made up of a single polypeptide chain with a M(r) of 15 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This protein exhibited a K(i) value of 1.8 x 10(-9) M and operates via a noncompetitive inhibition mechanism. The alignment of the N-terminal amino acid sequence of CpPRI with other proteins revealed its identity with PR-10 proteins. CpPRI acts against digestive proteinase from root-knot nematode Meloidogyne incognita and demonstrated nematostatic and nematicide effects on this parasite in bioassays. In a localization study, fluorescein-5-isothiocyanate (FITC)-CpPRI was observed to internalize and diffuse over the entire J2 body after 6 h of incubation. This fact could explain the natural tolerance of this plant species to nematodes.


Subject(s)
Crotalaria/chemistry , Enzyme Inhibitors/pharmacology , Papain/antagonists & inhibitors , Plant Diseases/parasitology , Plant Proteins/pharmacology , Tylenchoidea/drug effects , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Kinetics , Solanum lycopersicum/parasitology , Molecular Weight , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Roots/parasitology , Tylenchoidea/physiology
8.
Protein Pept Lett ; 16(12): 1526-32, 2009.
Article in English | MEDLINE | ID: mdl-20001901

ABSTRACT

Two trypsin inhibitors (called PdKI-3.1 and PdKI-3.2) were purified from the seeds of the Pithecellobium dumosum tree. Inhibitors were obtained by TCA precipitation, affinity chromatography on Trypsin-Sepharose and reversed-phase-HPLC. SDS-PAGE analysis with or without reducing agent showed that they are a single polypeptide chain, and MALDI-TOF analysis determined molecular masses of 19696.96 and 19696.36 Da, respectively. The N-terminal sequence of both inhibitors showed strong identity to the Kunitz family trypsin inhibitors. They were stable over a wide pH (2-9) and temperature (37 to 100 degrees C) range. These inhibitors reduced over 84% of trypsin activity with inhibition constant (Ki) of 4.20 x 10(-8) and 2.88 x 10(-8) M, and also moderately inhibited papain activity, a cysteine proteinase. PdKI-3.1 and PdKI-3.2 mainly inhibited digestive enzymes from Plodia interpunctella, Zabrotes subfasciatus and Ceratitis capitata guts. Results show that both inhibitors are members of the Kunitz-inhibitor family and that they affect the digestive enzyme larvae of diverse orders, indicating a potential insect antifeedant.


Subject(s)
Fabaceae/chemistry , Lepidoptera/drug effects , Papain/antagonists & inhibitors , Peptides/pharmacology , Plant Proteins/pharmacology , Trypsin/metabolism , Amino Acid Sequence , Animals , Bromelains/antagonists & inhibitors , Bromelains/metabolism , Cattle , Chymotrypsin/antagonists & inhibitors , Larva/drug effects , Larva/enzymology , Lepidoptera/enzymology , Molecular Sequence Data , Pancreatic Elastase/antagonists & inhibitors , Peptides/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Sequence Alignment , Sequence Analysis
9.
Biochemistry ; 48(33): 7948-58, 2009 Aug 25.
Article in English | MEDLINE | ID: mdl-19580333

ABSTRACT

Foot-and-mouth disease virus, a global animal pathogen, possesses a single-stranded RNA genome that, on release into the infected cell, is immediately translated into a single polyprotein. This polyprotein product is cleaved during synthesis by proteinases contained within it into the mature viral proteins. The first cleavage is performed by the leader protease (Lb(pro)) between its own C-terminus and the N-terminus of VP4. Lb(pro) also specifically cleaves the two homologues of cellular eukaryotic initiation factor (eIF) 4G, preventing translation of capped mRNA. Viral protein synthesis is initiated internally and is thus unaffected. We used a panel of specifically designed FRET peptides to examine the effects of pH and ionic strength on Lb(pro) activity and investigate the size of the substrate binding site and substrate specificity. Compared to the class prototypes, papain and the cathepsins, Lb(pro) possesses several unusual characteristics, including a high sensitivity to salt and a very specific substrate binding site extending up to P(7). Indeed, almost all substitutions investigated were detrimental to Lb(pro) activity. Analysis of structural data showed that Lb(pro) binds residues P(1)-P(3) in an extended conformation, whereas residues P(4)-P(7) are bound in a short 3(10) helix. The specificity of Lb(pro) as revealed by the substituted peptides could be explained for all positions except P(5). Strikingly, Lb(pro) residues L178 and L143 contribute to the architecture of more than one substrate binding pocket. The diverse functions of these two Lb(pro) residues explain why Lb(pro) is one of the smallest, but simultaneously most specific, papain-like enzymes.


Subject(s)
Endopeptidases/chemistry , Endopeptidases/metabolism , Foot-and-Mouth Disease Virus/enzymology , Amino Acid Sequence , Binding Sites , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Fluorescence Resonance Energy Transfer , Humans , Hydrolysis , Molecular Sequence Data , Papain/antagonists & inhibitors , Papain/chemistry , Papain/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Substrate Specificity
10.
Plant Physiol Biochem ; 45(10-11): 858-65, 2007.
Article in English | MEDLINE | ID: mdl-17888672

ABSTRACT

A novel trypsin-papain inhibitor, named PdKI-2, was purified from the seeds of Pithecelobium dumosum seeds by TCA precipitation, Trypsin-Sepharose chromatography and reversed-phase HPLC. PdKI-2 had an M(r) of 18.1 kDa as determined by SDS-PAGE and was composed of a single polypeptide chain. The inhibition on trypsin was stable at pH range 2-10, temperature of 50 degrees C and had a K(i) value of 1.65 x 10(-8)M, with a competitive inhibition mechanism. PdKI-2 was also active to papain, a cysteine proteinase, and showed a noncompetitive inhibition mechanism and K(i) value of 5.1 x 10(-7)M. PdKI-2 was effective against digestive proteinase from bruchids Zabrotes subfasciatus and Callosobruchus maculatus; Dipteran Ceratitis capitata; Lepidopterans Plodia interpunctella and Alabama argillacea, with 74.5%, 70.0%, 70.3%, 48.7%, and 13.6% inhibition, respectively. Results support that PdKI-2 is a member of Kunitz-inhibitor family and its effect on digestive enzyme larvae from diverse orders indicated this protein as a potent insect antifeedant.


Subject(s)
Digestive System/enzymology , Papain/antagonists & inhibitors , Protease Inhibitors/isolation & purification , Seeds/metabolism , Trypsin Inhibitors/isolation & purification , Animals , Diptera/enzymology , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Insect Proteins/antagonists & inhibitors , Insect Proteins/metabolism , Insecta/enzymology , Kinetics , Lepidoptera/enzymology , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Temperature , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/pharmacology
11.
Arch Biochem Biophys ; 446(2): 151-60, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16427023

ABSTRACT

Most protease prosegments are co-synthesized at the N-termini of cysteine proteases and are involved in folding assistance, inhibition, and activation of their mature enzymes. By using circular dichroism, UV-difference and fluorescence spectroscopies, we studied the thermal unfolding of papain prosegment. The transition seems to be two-state and reversible, with an unfolded state prone to aggregation. Unfolding thermodynamic parameters obtained show low values both for deltaH(Tm) and deltaCp(U), indicative of a loosely packed three-dimensional conformation for the prosegment at near-neutral pH conditions. In spite of these results, fluorescence experiments demonstrate that papain prosegment is able to recognize and inhibit its cognate protease. An acid medium induces a molten globule-like state without intermediates, which in turn undergoes an irreversible thermal unfolding. Our results suggest that papain prosegment has a high degree of conformational flexibility, with the ability to form not only a molten globule-like structure in activating conditions, but also requiring an induced fit in order to be functional as inhibitor.


Subject(s)
Models, Molecular , Papain/chemistry , Protein Folding , Animals , Circular Dichroism , Enzyme Inhibitors/chemistry , Genes, Synthetic/genetics , Humans , Hydrogen-Ion Concentration , Papain/antagonists & inhibitors , Protein Denaturation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Spectrometry, Fluorescence , Thermodynamics
12.
Protein Expr Purif ; 47(2): 483-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16330226

ABSTRACT

Phytocystatins are cysteine proteinase inhibitors from plants implicated in the endogenous regulation of protein turnover, programmed cell death, and in defense mechanisms against pathogens. To date, only few cystatin genes have been characterized in most plant species. We have previously characterized the protein Canecystatin, the first cystatin described in sugarcane. In an attempt to study novel Canecystatins, we identified two ORFs encoding cystatins (referred as CaneCPI-2 and CaneCPI-3) using the data from the Sugarcane EST genome project. These ORFs were then subcloned and expressed in Escherichia coli using pET28 expression vector. High amounts (approximately 20 mg/L) of pure recombinant proteins were obtained by affinity chromatography in a single step of purification. Polyclonal antibodies against the recombinant Canecystatins were raised, allowing the immunodetection of the endogenous proteins in the plant tissues. Moreover, the proteins were able to inhibit papain in a fluorometric assay with K(i) values of 0.2 and 0.25 microM for CaneCPI-2 and CaneCPI-3, respectively. These findings contribute to a better understanding of the activity of sugarcane cystatins and encourage future activity and structural studies of these proteins.


Subject(s)
Cystatins/biosynthesis , Cystatins/isolation & purification , Escherichia coli , Plant Proteins/biosynthesis , Plant Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Chromatography, Affinity , Cystatins/chemistry , Gene Expression , Papain/antagonists & inhibitors , Papain/chemistry , Plant Proteins/chemistry , Recombinant Proteins/chemistry
13.
J Agric Food Chem ; 52(9): 2533-40, 2004 May 05.
Article in English | MEDLINE | ID: mdl-15113152

ABSTRACT

The cowpea weevil Callosobruchus maculatus is one of the major pests of Vigna unguiculata cowpea. Digestion in the cowpea weevil is facilitated by high levels of cysteine and aspartic acid proteinases. Plants synthesize a variety of molecules, including proteinaceous proteinase inhibitors, to defend themselves against attack by insects. In this work, a trypsin inhibitor (ApTI) isolated from Adenanthera pavonina seeds showed activity against papain. The inhibition of papain by ApTI was of the noncompetitive type, with a K(i) of 1 microM. ApTI was highly effective against digestive proteinases from C. maculatus, Acanthoscelides obtectus (bean weevil), and Zabrotes subfasciatus (Mexican bean weevil) and was moderately active against midgut proteinases from the boll weevil Anthonomus grandis and the mealworm Tenebrio molitor. In C. maculates fed an artificial diet containing 0.25% and 0.5% ApTI (w/w), the latter concentration caused 50% mortality and reduced larval weight gain by approximately 40%. The action of ApTI on C. maculatus larvae may involve the inhibition of ApTI-sensitive cysteine proteinases and binding to chitin components of the peritrophic membrane (or equivalent structures) in the weevil midgut.


Subject(s)
Coleoptera/enzymology , Fabaceae/chemistry , Peptides/isolation & purification , Peptides/pharmacology , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Seeds/chemistry , Animals , Chitin/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Larva/enzymology , Papain/antagonists & inhibitors
14.
J Cell Sci ; 114(Pt 21): 3933-42, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11719560

ABSTRACT

Lysosomal cysteine proteases from mammalian cells and plants are regulated by endogenous tight-binding inhibitors from the cystatin superfamily. The presence of cystatin-like inhibitors in lower eukaryotes such as protozoan parasites has not yet been demonstrated, although these cells express large quantities of cysteine proteases and may also count on endogenous inhibitors to regulate cellular proteolysis. Trypanosoma cruzi, the causative agent of Chagas' heart disease, is a relevant model to explore this possibility because these intracellular parasites rely on their major lysosomal cysteine protease (cruzipain) to invade and multiply in mammalian host cells. Here we report the isolation, biochemical characterization, developmental stage distribution and subcellular localization of chagasin, an endogenous cysteine protease inhibitor in T. cruzi. We used high temperature induced denaturation to isolate a heat-stable cruzipain-binding protein (apparent molecular mass, 12 kDa) from epimastigote lysates. This protein was subsequently characterized as a tight-binding and reversible inhibitor of papain-like cysteine proteases. Immunoblotting indicated that the expression of chagasin is developmentally regulated and inversely correlated with that of cruzipain. Gold-labeled antibodies localized chagasin to the flagellar pocket and cytoplasmic vesicles of trypomastigotes and to the cell surface of amastigotes. Binding assays performed by probing living parasites with fluorescein (FITC)-cruzipain or FITC-chagasin revealed the presence of both inhibitor and protease at the cell surface of amastigotes. The intersection of chagasin and cruzipain trafficking pathways may represent a checkpoint for downstream regulation of proteolysis in trypanosomatid protozoa.


Subject(s)
Cystatins/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Animals , Binding Sites , Cell Membrane/metabolism , Chagas Disease/metabolism , Cystatins/biosynthesis , Cystatins/genetics , Cysteine Proteinase Inhibitors/biosynthesis , Cysteine Proteinase Inhibitors/genetics , Humans , Kinetics , Papain/antagonists & inhibitors , Protozoan Proteins/biosynthesis , Protozoan Proteins/genetics , Rabbits , Subcellular Fractions , Trypanosoma cruzi/growth & development
15.
Arch Biochem Biophys ; 394(2): 161-6, 2001 Oct 15.
Article in English | MEDLINE | ID: mdl-11594729

ABSTRACT

Electrostatic forces are involved in a wide variety of molecular interactions that are of biological interest, including, among others, DNA-Protein interactions, protein folding, and the interactions between enzymes and their substrates and inhibitors. In this work, the interaction between papain and an inhibitor, leupeptin, is analyzed from the point of view of their electrostatic interaction. The computations enable one to suggest that negatively charged amino acids located in the region of the active site are responsible for creating an environment that enables efficient binding of the inhibitor. This binding occurs despite the fact that the net global charge of both molecules is positive; an explanation for this apparent contradiction is proposed.


Subject(s)
Computer Simulation , Cysteine Proteinase Inhibitors/chemistry , Leupeptins/chemistry , Models, Molecular , Papain/chemistry , Binding Sites/physiology , Macromolecular Substances , Models, Chemical , Papain/antagonists & inhibitors , Protein Binding/physiology , Static Electricity
16.
J Pept Res ; 53(2): 109-19, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10195448

ABSTRACT

We synthesized short chromogenic peptidyl-Arg-p-nitroanilides containing either (Galbeta)Ser or (Glcalpha,beta)Tyr at P2 or P3 sites as well as O-acetylated sugar moieties and studied their hydrolysis by bovine trypsin, papain, human tissue kallikrein and rat tonin. For comparison, the susceptibility to these enzymes of Acetyl-X-Arg-pNa and Acetyl-X-Phe-Arg-pNa series, in which X was Ala, Phe, Gln and Asn were examined. We also synthesized internally quenched fluorescent peptides with the amino acid sequence Phe8-His-Leu-Val-Ile-His-Asn14 of human angiotensinogen, in which [GlcNAcbeta]Asn was introduced before Phe8 and/or after His13 and ortho-aminobenzoic acid (Abz) and N-[2-, 4-dinitrophenyl]-ethylenediamine (EDDnp) were attached at N- and C-terminal ends as a donor/receptor fluorescent pair. These peptides were examined as substrates for human renin, human cathepsin D and porcine pepsin. The chromogenic substrates with hydrophilic sugar moiety increased their susceptibility to trypsin, tissue kallikrein and rat tonin. For papain, the effect of sugar depends on its position in the substrate, namely, at P3 it is unfavorable, in contrast to the P2 position that resulted in increasing affinity, as demonstrated by the higher inhibitory activity of Ac-(Gal3)Ser-Arg-pNa in comparison to Ac-Ser-Arg-pNa, and by the hydrolysis of Ac-(Glcalpha,beta)Tyr-Arg-pNa. On the other hand, the acetylation of sugar hydroxyl groups improved hydrolysis of the susceptible peptides to all enzymes, except tonin. The P'4 glycosylated peptide [Abz-F-H-L-V-I-H-(GIcNAcbeta)N-E-EDDnp], that corresponds to one of the natural glycosylation sites of angiotensinogen, was shown to be the only glycosylated substrate susceptible to human renin, and was hydrolysed with lower K(m) and higher k(cat) values than the same peptide without the sugar moiety. Human cathepsin D and porcine pepsin are more tolerant to substrate glycosylation, hydrolysing both the P'4 and P4 glycosylated substrates.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Cysteine Endopeptidases/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Serine Endopeptidases/metabolism , Angiotensinogen/chemistry , Angiotensinogen/metabolism , Animals , Cathepsin D/metabolism , Cattle , Glycosylation , Humans , Kallikreins/antagonists & inhibitors , Kallikreins/metabolism , Papain/antagonists & inhibitors , Papain/metabolism , Pepsin A/metabolism , Peptide Fragments/chemical synthesis , Rats , Renin/metabolism , Structure-Activity Relationship , Substrate Specificity , Sulfhydryl Compounds/metabolism , Tissue Kallikreins , Trypsin/metabolism
17.
Agents Actions Suppl ; 38 ( Pt 1): 322-30, 1992.
Article in English | MEDLINE | ID: mdl-1466283

ABSTRACT

Kininogens are the major mammalian plasma cysteine proteinase inhibitors; a kininogen-like protein was also found in the snake Bothrops jararaca plasma. This communication describes a kininogen-like protein in plasma of Caiman crocodilus vacare. Caiman crude plasma, unlike snake plasma, contains a detectable cysteine proteinase inhibitor. The inhibitor was purified by DEAE-Sephadex ion-exchange chromatography and chromatography on carboxy-methylated-papain-Sepharose. The estimated molecular weight of Caiman cysteine proteinase inhibitor is 70,000. Caiman plasma also hydrolyzes plasma kallikrein synthetic substrates and inhibits trypsin. Reptilian kininogen may lack the site for interaction with plasma prokallikrein, and the sequence of the released kinin may be distinct from bradykinin. The poor effectiveness of bradykinin on reptile smooth muscle shows that the reptile kinin receptors may be adapted to a specific kinin.


Subject(s)
Cysteine Proteinase Inhibitors/blood , Kininogens/blood , Snakes/blood , Animals , Chromatography, Agarose , Chromatography, Ion Exchange , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/isolation & purification , Female , In Vitro Techniques , Kinetics , Kininogens/chemistry , Kininogens/isolation & purification , Male , Molecular Weight , Papain/antagonists & inhibitors , Species Specificity
18.
Braz J Med Biol Res ; 22(8): 945-8, 1989.
Article in English | MEDLINE | ID: mdl-2633847

ABSTRACT

A kininogen-like protein was purified from Bothrops jararaca plasma by DEAE-Sephadex ion-exchange and carboxy-methyl-papain-Sepharose affinity chromatography. The molecular weight, estimated by SDS-gel electrophoresis, is about 100,000 and a species of about 75,000 is formed after incubation with horse urinary kallikrein. After incubation with trypsin, only traces of biological activity were detected in tests on guinea pig ileum. The purified protein inhibits papain and bromelain, does not correct the clotting time of a kininogen-depleted human plasma, and does not affect the clotting time of plasma from Waglerophis merremii, a nonpoisonous snake; the same type of inhibitor was found in this nonpoisonous snake. The dissociation constant (Ki) for the papain-inhibitor complex is approximately 1.6 nM.


Subject(s)
Blood Coagulation/drug effects , Cysteine Proteinase Inhibitors/blood , Kininogens/pharmacology , Snakes/blood , Animals , Female , Humans , Kininogens/blood , Male , Mammals , Muscle Contraction/drug effects , Papain/antagonists & inhibitors
20.
Biol Chem Hoppe Seyler ; 369 Suppl: 229-32, 1988 May.
Article in English | MEDLINE | ID: mdl-3202965

ABSTRACT

A thiol proteinase inhibitor was purified from Enterolobium contortisiliquum beans by affinity chromatography on carboxy-methylated-papain-Sepharose. The inhibitor represents a single polypeptide chain with a molecular mass of 60 kDa and inactivates papain (Ki = 0.58 x 10(-9) M) and bromelain. The inhibitor shows activity in the pH range 2 to 10 and at temperatures up to 60 degrees C.


Subject(s)
Fabaceae/enzymology , Plants, Medicinal , Protease Inhibitors/isolation & purification , Chromatography, Affinity , Electrophoresis, Polyacrylamide Gel , Kinetics , Papain/antagonists & inhibitors , Protease Inhibitors/analysis
SELECTION OF CITATIONS
SEARCH DETAIL