Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Bioprocess Biosyst Eng ; 45(10): 1661-1672, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35984504

ABSTRACT

Excess amount of nitrogen in wastewater has caused serious concerns, such as water eutrophication. Paracoccus pantotrophus MA3, a novel isolated strain of heterotrophic nitrification-anaerobic denitrification bacteria, was evaluated for nitrogen removal using formic acid as the sole carbon source. The results showed that the maximum ammonium removal efficiency was observed under the optimum conditions of 26.25 carbon to nitrogen ratio, 3.39% (v/v) inoculation amount, 34.64 °C temperature, and at 180 rpm shaking speed, respectively. In addition, quantitative real-time PCR technique analysis assured that the gene expression level of formate dehydrogenase, formate tetrahydrofolate ligase, 5,10-methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, respiratory nitrate reductase beta subunit, L-glutamine synthetase, glutamate dehydrogenase, and glutamate synthase were up-regulated compared to the control group, and combined with nitrogen mass balance analysis to conclude that most of the ammonium was removed by assimilation. A small amount of nitrate and nearly no nitrite were accumulated during heterotrophic nitrification. MA3 exhibited significant denitrification potential under anaerobic conditions with a maximum nitrate removal rate of 4.39 mg/L/h, and the only gas produced was N2. Additionally, 11.50 ± 0.06 mg/L/h of NH4+-N removal rate from biogas slurry was achieved.


Subject(s)
Ammonium Compounds , Formate-Tetrahydrofolate Ligase , Paracoccus pantotrophus , Aerobiosis , Ammonium Compounds/metabolism , Anaerobiosis , Biofuels , Carbon , Denitrification , Formate Dehydrogenases/metabolism , Formate-Tetrahydrofolate Ligase/metabolism , Formates , Glutamate Dehydrogenase , Glutamate Synthase/metabolism , Glutamate-Ammonia Ligase/metabolism , Glycine Hydroxymethyltransferase/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Nitrate Reductase/metabolism , Nitrates/metabolism , Nitrification , Nitrogen/metabolism , Paracoccus pantotrophus/metabolism , Wastewater , Water
2.
J Air Waste Manag Assoc ; 70(12): 1236-1243, 2020 12.
Article in English | MEDLINE | ID: mdl-32069193

ABSTRACT

The effluent generated from poultry waste processing industries contains several organic compounds such as collagen, gelatin, bovine serum albumin, carbohydrates, essential fatty acids, and so forth. This enabled the establishment of poultry waste processing industries to produce value-added products such as animal feed and organic fertilizers. During poultry waste processing, huge amounts of ammoniacal nitrogen and organic pollutants such as proteins, various carbohydrates, and fatty materials are discharged into the effluent stream which contributes to several environmental issues. Because of the shortcomings of the current conventional treatment, the present study is about with the development of a sequential bioreactor system for the effective treatment of poultry waste processing industrial effluent. Facultative anaerobe Paracoccus pantotrophus FMR19 along with the indigenous isolate Bacillus albus MN527241 obtained from clarifying sludge was used as mixed consortia for the treatment of poultry waste processing industrial effluent. The mixed microbial consortia resulted in the maximum activity of enzymes such as protease (247 U/mL) and lipase (28.266 U/mL) thereby achieving 90% of ammoniacal nitrogen reduction and 98% of COD removal within five days. Further, the confirmatory analysis of poultry effluent treatment was carried out using gas chromatography-mass spectroscopy (GC-MS), High-Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FT-IR), and SDS-PAGE. Hence, the sequential bioreactor-based treatment approach has proved to be highly effective in removal of organic pollutants in the poultry waste processing industrial effluent.Implications: The poultry waste processing industrial (PWPI) effluent contains huge ammoniacal nitrogen and COD and affects the environment. Aerobic moving bed biofilm reactor and up-flow anaerobic sludge blanket reactor are in current practice and shows considerable reduction in the ammoniacal nitrogen and COD in long retention time. Therefore, there is a need of sustainable treatment process that could effectively remove the organic pollutants from the effluent in short duration. Our study focused on the application of sequential bioreactor approach for the treatment of PWPI using aerobic followed by anaerobic treatment process and observed efficient organic pollutants removal in short duration.


Subject(s)
Ammonia/metabolism , Bacillus/metabolism , Bioreactors , Nitrogen/metabolism , Paracoccus pantotrophus/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Aerobiosis , Anaerobiosis , Animals , Biological Oxygen Demand Analysis , Industrial Waste , Poultry
3.
Bioresour Technol ; 272: 40-47, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30308406

ABSTRACT

In this study, the activities of hydrogen sulphide (H2S) oxidation and nitrate (N-NO3-) reduction by three pure and mixed strains of nitrate-reducing, sulphide oxidizing bacteria (NR-SOB) were determined. Batch experiments were performed at 35 °C and pH 7.0-8.0 with initial H2S concentrations of 650-900 ppmv and N-NO3- concentrations of ∼120 mg/L. The strains MAL 1HM19, TPN 1HM1 and TPN 3HM1 were capable of removing 100% gas-phase H2S. The co-cultures showed better performance for H2S and N-NO3- removal. The mixed NR-SOB strains showed a higher H2S oxidation rate (143 ±â€¯18 ppmv/h), while the highest N-NO3- removal rate (5.5 ±â€¯0 and 5.1 ±â€¯0.6 N-NO3- mg/L·h) was obtained by a mixture of two NR-SOB strains. The 16S rDNA sequence analysis revealed that all strains belonged to the sub-class Alphaproteobacteria and are closely related to Paracoccus sp. (>99%).


Subject(s)
Nitrates/isolation & purification , Paracoccus pantotrophus/metabolism , Sulfides/isolation & purification , Wastewater/chemistry , Oxidation-Reduction
4.
Microbes Environ ; 32(1): 54-60, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28260736

ABSTRACT

Hydrogen sulfide (H2S) is emitted from industrial activities, and several chemotrophs possessing Sox enzymes are used for its removal. Oral malodor is a common issue in the dental field and major malodorous components are volatile sulfur compounds (VSCs), including H2S and methyl mercaptan. Paracoccus pantotrophus is an aerobic, neutrophilic facultatively autotrophic bacterium that possesses sulfur-oxidizing (Sox) enzymes in order to use sulfur compounds as an energy source. In the present study, we cloned the Sox enzymes of P. pantotrophus GB17 and evaluated their VSC-degrading activities for the prevention of oral malodor. Six genes, soxX, soxY, soxZ, soxA, soxB, and soxCD, were amplified from P. pantotrophus GB17. Each fragment was cloned into a vector for the expression of 6×His-tagged fusion proteins in Escherichia coli. Recombinant Sox (rSox) proteins were purified from whole-cell extracts of E. coli using nickel affinity chromatography. The enzyme mixture was investigated for the degradation of VSCs using gas chromatography. Each of the rSox enzymes was purified to apparent homogeneity, as confirmed by SDS-PAGE. The rSox enzyme mixture degraded H2S in dose- and time-dependent manners. All rSox enzymes were necessary for degrading H2S. The H2S-degrading activities of rSox enzymes were stable at 25-80°C, and the optimum pH was 7.0. The amount of H2S produced by periodontopathic bacteria or oral bacteria collected from human subjects decreased after an incubation with rSox enzymes. These results suggest that the combination of rSox enzymes from P. pantotrophus GB17 is useful for the prevention of oral malodor.


Subject(s)
Hydrogen Sulfide/metabolism , Oxidoreductases/metabolism , Paracoccus pantotrophus/enzymology , Paracoccus pantotrophus/metabolism , Recombinant Proteins/metabolism , Biotransformation , Chromatography, Affinity , Chromatography, Gas , Cloning, Molecular , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrogen-Ion Concentration , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Paracoccus pantotrophus/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Temperature
5.
Environ Sci Pollut Res Int ; 23(20): 20065-20080, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26965273

ABSTRACT

Biological treatment of high-strength nitrogenous wastewater is challenging due to low growth rate of autotrophic nitrifiers. This study reports bioaugmentation of Thiosphaera pantotropha capable of simultaneously performing heterotrophic nitrification and aerobic denitrification (SND) in sequencing batch reactors (SBRs). SBRs fed with 1:1 organic-nitrogen (N) and NH4+-N were started up with activated sludge and T. pantotropha by gradual increase in N concentration. Sludge bulking problems initially observed could be overcome through improved aeration and mixing and change in carbon source. N removal decreased with increase in initial nitrogen concentration, and only 50-60 % removal could be achieved at the highest N concentration of 1000 mg L-1 at 12-h cycle time. SND accounted for 28 % nitrogen loss. Reducing the settling time to 5-10 min and addition of divalent metal ions gradually improved the settling characteristics of sludge. Sludge aggregates of 0.05-0.2 mm diameter, much smaller than typical aerobic granules, were formed and progressive increase in settling velocity, specific gravity, Ca2+, Mg2+, protein, and polysaccharides was observed over time. Granulation facilitated total nitrogen (TN) removal at a constant rate over the entire 12-h cycle and thus increased TN removal up to 70 %. Concentrations of NO2--N and NO3--N were consistently low indicating effective denitrification. Nitrogen removal was possibly limited by urea hydrolysis/nitrification. Presence of T. pantotropha in the SBRs was confirmed through biochemical tests and 16S rDNA analysis.


Subject(s)
Nitrogen/analysis , Paracoccus pantotrophus/growth & development , Sewage/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Bioreactors , Carbon/metabolism , Denitrification , Heterotrophic Processes , Nitrification , Paracoccus pantotrophus/metabolism
6.
J Environ Manage ; 169: 78-83, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26724506

ABSTRACT

Melanoidin is the hazardous byproduct formed during the production of ethanol in distilleries. In the present study, a highly effective melanoidin decolorizing bacterial isolate, SAG1, was isolated from the effluent enriched soil of a distillery. This strain, identified as Paracoccus pantotrophus, was highly efficient to decolorize melanoidins up to 81.2 ± 2.43% in the presence of glucose and NH4NO3. The effects of autoclaved as well as living cells and inoculums size on decolorization activity were investigated. The results indicated that only living cell showed the decolorization activity i.e. 78.6 ± 2.62%, while, no activity has been observed using autoclaved cells. The inoculums size of 8% v/v, showed maximum activity of 62.9 ± 3.00%. The isolate SAG1 was found to be more efficient in decolorizing the melanoidins from distillery effluent as compared to the reference culture Pseudomonas putida.


Subject(s)
Paracoccus pantotrophus/metabolism , Polymers/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Paracoccus pantotrophus/classification , Waste Management/methods
7.
Environ Technol ; 37(6): 768-73, 2016.
Article in English | MEDLINE | ID: mdl-26269005

ABSTRACT

One of the problems in waste water treatment plants (WWTPs) is the increase in emissions of hydrogen sulphide (H2S), which can cause damage to the health of human populations and ecosystems. To control emissions of this gas, sulphur-oxidizing bacteria can be used to convert H2S to sulphate. In this work, sulphate detection was performed by spectrophotometry, ion chromatography and atomic absorption spectrometry, using Paracoccus pantotrophus ATCC 35512 as a reference strain growing in an inorganic broth supplemented with sodium thiosulphate (Na2S2O3·5H2O), sodium sulphide (Na2S) or sodium sulphite (Na2SO3), separately. The strain was metabolically competent in sulphate production. However, it was only possible to observe significant differences in sulphate production compared to abiotic control when the inorganic medium was supplemented with sodium thiosulphate. The three methods for sulphate detection showed similar patterns, although the chromatographic method was the most sensitive for this study. This strain can be used as a reference for sulphate production in studies with sulphur-oxidizing bacteria originating from environmental samples of WWTPs.


Subject(s)
Paracoccus pantotrophus/metabolism , Sulfates/metabolism , Sulfides/metabolism , Sulfites/metabolism , Thiosulfates/metabolism
8.
Appl Environ Microbiol ; 79(14): 4455-64, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23686269

ABSTRACT

During chemolithoautotrophic thiosulfate oxidation, the phylogenetically diverged proteobacteria Paracoccus pantotrophus, Tetrathiobacter kashmirensis, and Thiomicrospira crunogena rendered steady enrichment of (34)S in the end product sulfate, with overall fractionation ranging between -4.6‰ and +5.8‰. The fractionation kinetics of T. crunogena was essentially similar to that of P. pantotrophus, albeit the former had a slightly higher magnitude and rate of (34)S enrichment. In the case of T. kashmirensis, the only significant departure of its fractionation curve from that of P. pantotrophus was observed during the first 36 h of thiosulfate-dependent growth, in the course of which tetrathionate intermediate formation is completed and sulfate production starts. The almost-identical (34)S enrichment rates observed during the peak sulfate-producing stage of all three processes indicated the potential involvement of identical S-S bond-breaking enzymes. Concurrent proteomic analyses detected the hydrolase SoxB (which is known to cleave terminal sulfone groups from SoxYZ-bound cysteine S-thiosulfonates, as well as cysteine S-sulfonates, in P. pantotrophus) in the actively sulfate-producing cells of all three species. The inducible expression of soxB during tetrathionate oxidation, as well as the second leg of thiosulfate oxidation, by T. kashmirensis is significant because the current Sox pathway does not accommodate tetrathionate as one of its substrates. Notably, however, no other Sox protein except SoxB could be detected upon matrix-assisted laser desorption ionization mass spectrometry analysis of all such T. kashmirensis proteins as appeared to be thiosulfate inducible in 2-dimensional gel electrophoresis. Instead, several other redox proteins were found to be at least 2-fold overexpressed during thiosulfate- or tetrathionate-dependent growth, thereby indicating that there is more to tetrathionate oxidation than SoxB alone.


Subject(s)
Alcaligenaceae/metabolism , Hydrolases/metabolism , Paracoccus pantotrophus/metabolism , Piscirickettsiaceae/metabolism , Proteome/metabolism , Thiosulfates/metabolism , Autotrophic Processes , Bacterial Proteins/metabolism , Disulfides/metabolism , Oxidation-Reduction , Paracoccus pantotrophus/enzymology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sulfur Isotopes/metabolism , Two-Dimensional Difference Gel Electrophoresis
9.
Bioresour Technol ; 128: 273-80, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23196250

ABSTRACT

Nitrophenol removal was assessed using four identical lab scale sequencing batch reactors R (background control), R1 (4-nitrophenol i.e. 4-NP), R2 (2,4-dinitrophenol i.e. 2,4-DNP), and R3 (2,4,6-trinitrophenol i.e. 2,4,6-TNP). In the present study, the SND based SBR system was used to carry out total nitrogen removal at reduced aeration (DO=2mg/L) using a specifically designed single sludge biomass containing Thiosphaera pantotropha. The concentration of each of the nitrophenols was gradually increased from 2.5 to 200mg/L during acclimation. The nitrophenols were used as the sole source of nitrogen during study. A synthetic feed was designed to direct SND in the bioreactors. It was observed that overall removal for 4-NP was 98% and for 2,4-DNP and 2,4,6 TNP, removals varied between 83% and 84%. The COD removal for 4-NP was 99% and for 2,4-DNP and 2,4,6-TNP was 97-98% during acclimation. Total nitrogen and nitrophenol removals were achieved via SND.


Subject(s)
Batch Cell Culture Techniques/instrumentation , Bioreactors/microbiology , Nitrophenols/isolation & purification , Nitrophenols/metabolism , Paracoccus pantotrophus/metabolism , Wastewater/microbiology , Water Purification/instrumentation , Biodegradation, Environmental , Denitrification , Equipment Design , Nitrification , Wastewater/chemistry
10.
Water Res ; 46(7): 2405-14, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22386885

ABSTRACT

The effect of nitrophenolic shock loads on the performance of three lab scale SBRs was studied using a synthetic feed. Nitrophenols were biotransformed by Simultaneous heterotrophic Nitrification and aerobic Denitrification (SND) using a specially designed single sludge biomass containing Thiosphaera pantotropha. Reactors R1, R2 and R3 were fed with 200mg/L concentration of 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP), and 2,4,6-trinitrophenol (2,4,6-TNP) whereas reactor R was used as a background control. Three nitrophenolic shock loadings of 400, 600 and 800 mg/Ld were administrated by increasing the influent nitrophenolic concentration while keeping the hydraulic retention time as 48 h. The shocks were given continuously for a period of 4 days before switching back to normal nitrophenolic loading (200mg/Ld). The reactors were allowed to recover to normal performance level before administrating the next nitrophenolic shock load. The study showed that a nitrophenolic shock load, as high as 600 mg/Ld was completely degraded by the 4-NP & 2,4-DNP bioreactors while almost half degraded by the 2,4,6-TNP bioreactor without affecting the reactor's performance irreversibly. After resuming the normal nitrophenolic loading, it took almost 8-10 days for the reactors to recover from the shock effect. The study was further extended to evaluate the maximum possible mixed nitrophenolic loading (4-NP:2,4-DNP:2,4,6-TNP 1:1:1) to which a reactor (R3) containing 2,4,6-TNP acclimated single sludge biomass can be exposed without hampering the reactor performance irreversibly. The reactor was able to achieve pseudo-steady-state at a mixed nitrophenolic loading of 300 mg/Ld with more than 90% removal of all the three nitrophenols, but could remove half of the mixed nitrophenolic loading of 600 mg/Ld.


Subject(s)
Bioreactors , Nitrophenols/metabolism , Paracoccus pantotrophus/metabolism , Sewage/microbiology , Waste Disposal, Fluid/methods , Water Purification/methods , Biodegradation, Environmental/drug effects , Denitrification , Nitrification , Nitrophenols/analysis , Nitrophenols/pharmacology
11.
Biodegradation ; 23(3): 455-63, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22119896

ABSTRACT

Four identical lab scale sequencing batch reactors R, R1, R2, and R3, were used to assess nitrophenol biodegradation using a single sludge biomass containing Thiosphaera pantotropha. Nitrophenols [4-Nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP) and 2,4,6-trinitrophenol (2,4,6-TNP)] were biotransformed by heterotrophic nitrification and aerobic denitrification (SND). Reactor R was used as background control, whereas R1, R2, and R3 were fed with 4-NP, 2,4-DNP, and 2,4,6-TNP, respectively. The concentration of each nitrophenol was gradually increased from 2.5 to 200 mg/l along with increase in COD, during acclimation studies. The final COD maintained was 4,500 mg/l with each nitrophenolic loading of 200 mg/l. During late phase of acclimation and HRT study, a filamentous organism started appearing in 2,4-DNP and 2,4,6-TNP bioreactors. Filaments were never found in 4-NP and background control reactor. Biochemistry and physiology behind filamentous organism development, was studied to obtain permanent solution for its removal. The effect of different input parameters such as COD loading, DO levels, SVI etc. were analyzed. The morphology and development of filamentous organism were examined extensively using microscopic techniques involving ESEM, oil immersion, phase contrast, and dark field microscopy. The organism was grown and isolated on selective agar plates and was identified as member of Streptomyses species.


Subject(s)
Bioreactors/microbiology , Nitrophenols/metabolism , Paracoccus pantotrophus/isolation & purification , Paracoccus pantotrophus/metabolism , Sewage/microbiology , Biodegradation, Environmental , Biotransformation , Denitrification , Nitrification , Paracoccus pantotrophus/genetics
12.
Anal Biochem ; 419(2): 110-6, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21864495

ABSTRACT

Magnetic circular dichroism (MCD) spectra, at ultraviolet-visible or near-infrared wavelengths (185-2000 nm), contain the same transitions observed in conventional absorbance spectroscopy, but their bisignate nature and more stringent selection rules provide greatly enhanced resolution. Thus, they have proved to be invaluable in the study of many transition metal-containing proteins. For mainly technical reasons, MCD has been limited almost exclusively to the measurement of static samples. But the ability to employ the resolving power of MCD to follow changes at transition metal sites would be a potentially significant advance. We describe here the development of a cuvette holder that allows reagent injection and sample mixing within the 50-mm-diameter ambient temperature bore of an energized superconducting solenoid. This has allowed us, for the first time, to monitor time-resolved MCD resulting from in situ chemical manipulation of a metalloprotein sample. Furthermore, we report the parallel development of an electrochemical cell using a three-electrode configuration with physically separated working and counter electrodes, allowing true potentiometric titration to be performed within the bore of the MCD solenoid.


Subject(s)
Circular Dichroism/methods , Electrochemical Techniques/methods , Magnetics/methods , Animals , Azurin/analysis , Copper/analysis , Cytochromes c/analysis , Electrochemical Techniques/instrumentation , Heme/analysis , Horses , Oxidation-Reduction , Paracoccus pantotrophus/metabolism , Time Factors , Titrimetry
13.
FEBS J ; 277(23): 4944-55, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21054787

ABSTRACT

The cytochrome cd1 nitrite reductase from Paracoccus pantotrophus catalyses the one electron reduction of nitrite to nitric oxide using two heme cofactors. The site of nitrite reduction is the d1 heme, which is synthesized under anaerobic conditions by using nirECFD-LGHJN gene products. In vivo studies with an unmarked deletion strain, ΔnirF, showed that this gene is essential for cd1 assembly and consequently for denitrification, which was restored when the ΔnirF strain was complemented with wild-type, plasmid-borne, nirF. Removal of a signal sequence and deletion of a conserved N-terminal Gly-rich motif from the NirF coded on a plasmid resulted in loss of in vivo NirF activity. We demonstrate here that the product of the nirF gene is a periplasmic protein and, hence, must be involved in a late stage of the cofactor biosynthesis. In vitro studies with purified NirF established that it could bind d1 heme. It is concluded that His41 of NirF, which aligns with His200 of the d1 heme domain of cd1, is essential both for this binding and for the production of d1 heme; replacement of His41 by Ala, Cys, Lys and Met all gave nonfunctional proteins. Potential functions of NirF are discussed.


Subject(s)
Bacterial Proteins/metabolism , Heme/metabolism , Periplasmic Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Binding Sites/genetics , Cytochromes/chemistry , Cytochromes/genetics , Cytochromes/metabolism , DNA, Bacterial/genetics , Gene Deletion , Genes, Bacterial , Genetic Complementation Test , Heme/biosynthesis , Molecular Sequence Data , Nitrite Reductases/chemistry , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Operon , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/metabolism , Paracoccus pantotrophus/genetics , Paracoccus pantotrophus/metabolism , Periplasmic Proteins/chemistry , Periplasmic Proteins/genetics , Protein Processing, Post-Translational , Protein Sorting Signals/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion , Sequence Homology, Amino Acid
14.
FEBS Lett ; 583(8): 1281-6, 2009 Apr 17.
Article in English | MEDLINE | ID: mdl-19303410

ABSTRACT

Organisms using the thiosulfate-oxidizing Sox enzyme system fall into two groups: group 1 forms sulfur globules as intermediates (Allochromatium vinosum), group 2 does not (Paracoccus pantotrophus). While several components of their Sox systems are quite similar, i.e. the proteins SoxXA, SoxYZ and SoxB, they differ by Sox(CD)(2) which is absent in sulfur globule-forming organisms. Still, the respective enzymes are partly exchangeable in vitro: P. pantotrophus Sox enzymes work productively with A. vinosum SoxYZ whereas A. vinosum SoxB does not cooperate with the P. pantotrophus enzymes. Furthermore, A. vinosum SoxL, a rhodanese-like protein encoded immediately downstream of soxXAK, appears to play an important role in recycling SoxYZ as it increases thiosulfate depletion velocity in vitro without increasing the electron yield.


Subject(s)
Chromatiaceae/metabolism , Paracoccus pantotrophus/metabolism , SOX Transcription Factors/metabolism , Thiosulfates/metabolism , Chromatiaceae/genetics , Kinetics , Oxidation-Reduction , Paracoccus pantotrophus/genetics , Protein Binding , SOX Transcription Factors/genetics
15.
Microbiology (Reading) ; 154(Pt 7): 1980-1988, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18599826

ABSTRACT

The periplasmic thiol-disulfide oxidoreductase SoxS is essential for chemotrophic growth of Paracoccus pantotrophus with thiosulfate. To trap its periplasmic partner, the cysteine residues of the CysXaaXaaCys motif of SoxS (11 kDa) were changed to alanine by site-directed mutagenesis. The disrupted soxS gene of the homogenote mutant G OmegaS was complemented with plasmids carrying the mutated soxS[C13A] or soxS[C16A] gene. Strain G OmegaS(pRD179.6[C16A](S)) displayed a marginal thiosulfate-oxidizing activity, suggesting that Cys13(S) binds the target protein. Evidence is presented that SoxS specifically binds SoxY. (i) Immunoblot analysis using non-reducing SDS gel electrophoresis and anti-SoxS and anti-SoxYZ antibodies identified the respective antigens of strain G OmegaS(pRD179.6[C16A](S)) at the 25 kDa position, suggesting an adduct of about 14 kDa, close to the value expected for SoxY migration. (ii) A mutant unable to produce SoxYZ, such as strain G OmegaX(pRD187.7[C16A](S)), did not form a SoxS(C16A) adduct, while addition of homogeneous SoxYZ resulted in the 25 kDa adduct. (iii) The SoxY and SoxZ subunits were distinguished by site-directed mutagenesis of the cysteine residue in SoxZ. SoxYZ(C53S) formed the 25 kDa adduct with SoxS(C16A). These results demonstrate that the target of SoxS is the sulfur-binding protein SoxY of the SoxYZ complex. As SoxYZ is reversibly inactivated, SoxS may activate SoxYZ as a crucial function for chemotrophy of P. pantotrophus.


Subject(s)
Bacterial Proteins/metabolism , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Paracoccus pantotrophus/metabolism , Periplasmic Proteins/metabolism , Protein Disulfide Reductase (Glutathione)/metabolism , Thiosulfates/metabolism , Amino Acid Motifs , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Mutagenesis, Site-Directed , Mutation, Missense , Oxidation-Reduction , Oxidoreductases Acting on Sulfur Group Donors/chemistry , Oxidoreductases Acting on Sulfur Group Donors/genetics , Paracoccus pantotrophus/chemistry , Paracoccus pantotrophus/enzymology , Paracoccus pantotrophus/genetics , Periplasmic Proteins/chemistry , Periplasmic Proteins/genetics , Protein Binding , Protein Disulfide Reductase (Glutathione)/chemistry , Protein Disulfide Reductase (Glutathione)/genetics
16.
J Biol Chem ; 283(18): 12555-63, 2008 May 02.
Article in English | MEDLINE | ID: mdl-18310770

ABSTRACT

Cytochrome cd(1) is a respiratory nitrite reductase found in the periplasm of denitrifying bacteria. When fully reduced Paracoccus pantotrophus cytochrome cd(1) is mixed with nitrite in a stopped-flow apparatus in the absence of excess reductant, a kinetically stable complex of enzyme and product forms, assigned as a mixture of cFe(II) d(1)Fe(II)-NO(+) and cFe(III) d(1)Fe(II)-NO (cd(1)-X). However, in order for the enzyme to achieve steady-state turnover, product (NO) release must occur. In this work, we have investigated the effect of a physiological electron donor to cytochrome cd(1), the copper protein pseudoazurin, on the mechanism of nitrite reduction by the enzyme. Our data clearly show that initially oxidized pseudoazurin causes rapid further turnover by the enzyme to give a final product that we assign as all-ferric cytochrome cd(1) with nitrite bound to the d(1) heme (i.e. from which NO had dissociated). Pseudoazurin catalyzed this effect even when present at only one-tenth the stoichiometry of cytochrome cd(1). In contrast, redox-inert zinc pseudoazurin did not affect cd(1)-X, indicating a crucial role for electron movement between monomers or individual enzyme dimers rather than simply a protein-protein interaction. Furthermore, formation of cd(1)-X was, remarkably, accelerated by the presence of pseudoazurin, such that it occurred at a rate consistent with cd(1)-X being an intermediate in the catalytic cycle. It is clear that cytochrome cd(1) functions significantly differently in the presence of its two substrates, nitrite and electron donor protein, than in the presence of nitrite alone.


Subject(s)
Azurin/pharmacology , Cytochromes/metabolism , Nitric Oxide/metabolism , Nitrite Reductases/metabolism , Nitrites/metabolism , Paracoccus pantotrophus/metabolism , Catalysis/drug effects , Catalysis/radiation effects , Cytochrome c Group , Light , Nitrites/pharmacology , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Paracoccus pantotrophus/drug effects , Paracoccus pantotrophus/radiation effects , Reducing Agents/pharmacology , Spectrum Analysis , Zinc/metabolism
17.
Biochem J ; 409(1): 159-68, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17900239

ABSTRACT

Paracoccus pantotrophus expresses two nitrate reductases associated with respiratory electron transport, termed NapABC and NarGHI. Both enzymes derive electrons from ubiquinol to reduce nitrate to nitrite. However, while NarGHI harnesses the energy of the quinol/nitrate couple to generate a transmembrane proton gradient, NapABC dissipates the energy associated with these reducing equivalents. In the present paper we explore the nitrate reductase activity of purified NapAB as a function of electrochemical potential, substrate concentration and pH using protein film voltammetry. Nitrate reduction by NapAB is shown to occur at potentials below approx. 0.1 V at pH 7. These are lower potentials than required for NarGH nitrate reduction. The potentials required for Nap nitrate reduction are also likely to require ubiquinol/ubiquinone ratios higher than are needed to activate the H(+)-pumping oxidases expressed during aerobic growth where Nap levels are maximal. Thus the operational potentials of P. pantotrophus NapAB are consistent with a productive role in redox balancing. A Michaelis constant (K(M)) of approx. 45 muM was determined for NapAB nitrate reduction at pH 7. This is in line with studies on intact cells where nitrate reduction by Nap was described by a Monod constant (K(S)) of less than 15 muM. The voltammetric studies also disclosed maximal NapAB activity in a narrow window of potential. This behaviour is resistant to change of pH, nitrate concentration and inhibitor concentration and its possible mechanistic origins are discussed.


Subject(s)
Electrochemistry/methods , Nitrate Reductase/chemistry , Oxidation-Reduction , Paracoccus pantotrophus/metabolism , Catalysis , Dimerization , Hydrogen-Ion Concentration , Iron-Sulfur Proteins/chemistry , Kinetics , Nitrates/chemistry , Potentiometry/methods , Spectrophotometry/methods , Substrate Specificity , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
18.
J Biol Chem ; 282(32): 23194-204, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17522046

ABSTRACT

The bacterial Sox (sulfur oxidizing) system allows the utilization of inorganic sulfur compounds in energy metabolism. Central to this process is the SoxYZ complex that carries the pathway intermediates on a cysteine residue near the C terminus of SoxY. Crystal structures have been determined for Paracoccus pantotrophus SoxYZ with the carrier cysteine in the underivatized state, conjugated to the polysulfide mimic beta-mercaptoethanol, and as the sulfonate adduct pathway intermediate. The carrier cysteine is located on a peptide swinging arm and is bracketed on either side by diglycine dipeptides acting as molecular universal joints. This structure provides a novel solution to the requirement that the cysteine-bound intermediates be able to access and orient themselves within the active sites of multiple partner enzymes. Adjacent to the swinging arm there is a conserved, deep, apolar pocket into which the beta-mercaptoethanol adduct extends. This pocket would be well suited to a role in protecting labile pathway intermediates from adventitious reactions.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Oxidoreductases Acting on Sulfur Group Donors/chemistry , Oxidoreductases Acting on Sulfur Group Donors/physiology , Paracoccus pantotrophus/metabolism , Sulfur/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Cysteine/chemistry , Mercaptoethanol/chemistry , Models, Biological , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Plasmids/metabolism , Protein Conformation , Sequence Homology, Amino Acid , Sulfonic Acids/chemistry
19.
Microbiology (Reading) ; 153(Pt 4): 1081-1086, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17379716

ABSTRACT

The significance of the soxS gene product on chemotrophic sulfur oxidation of Paracoccus pantotrophus was investigated. The thioredoxin SoxS was purified, and the N-terminal amino acid sequence identified SoxS as the soxS gene product. The wild-type formed thiosulfate-oxidizing activity and Sox proteins during mixotrophic growth with succinate plus thiosulfate, while there was no activity, and only traces of Sox proteins, under heterotrophic conditions. The homogenote mutant strain GBOmegaS is unable to express the soxSR genes, of which soxR encodes a transcriptional regulator. Strain GBOmegaS cultivated mixotrophically showed about 22 % of the specific thiosulfate-dependent O(2) uptake rate of the wild-type, and when cultivated heterotrophically it produced 35 % activity. However, under both mixotrophic and heterotrophic conditions, strain GBOmegaS formed Sox proteins essential for sulfur oxidation in vitro at the same high level as the wild-type produced them during mixotrophic growth. Genetic complementation of strain GBOmegaS with soxS restored the activity upon mixotrophic and heterotrophic growth. Chemical complementation by reductants such as L-cysteine, DTT and tris(2-carboxyethyl)phosphine also restored the activity of strain GBOmegaS in the presence of chloramphenicol, which is an inhibitor of de novo protein synthesis. The data demonstrate that SoxS plays a key role in activation of the Sox enzyme system, and this suggests that SoxS is part of a novel type of redox control in P. pantotrophus.


Subject(s)
Bacterial Proteins/metabolism , Paracoccus pantotrophus/metabolism , Periplasm/chemistry , Sulfur/metabolism , Thioredoxins/metabolism , Bacterial Proteins/isolation & purification , Heterotrophic Processes , Oxidation-Reduction , Paracoccus pantotrophus/chemistry , Thioredoxins/isolation & purification
20.
Water Sci Technol ; 54(8): 219-28, 2006.
Article in English | MEDLINE | ID: mdl-17163031

ABSTRACT

Nitrate removal under aerobic conditions was investigated using pure cultures of Paracoccus pantotrophus, which is a well-known aerobic-denitrifying (AD) bacterium. When a high concentration of cultures with a high carbon/nitrogen (C/N) ratio was preserved at the beginning of batch experiments, subsequently added nitrate was completely removed. When continuous culturing was perpetuated, a high nitrate removal rate (66.5%) was observed on day 4 post-culture, although gradual decreases in AD ability with time were observed. The attenuation in AD ability was probably caused by carbon limitation, because when carbon concentration of inflow water was doubled, nitrate removal efficiency improved from 18.1% to 59.6%. Bacterial community analysis using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method showed that P. pantotrophus disappeared in the suspended medium on day 8 post-culture, whereas other bacterial communities dominated by Acidovorax sp. appeared. Interestingly, this replaced bacterial community also showed AD ability. As P. pantotrophus was detected as attached colonies around the membrane and bottom of the reactor, this bacterium can therefore be introduced in a fixed form for treatment of wastewater containing nitrate with a high C/N ratio.


Subject(s)
Nitrates/isolation & purification , Nitrogen/metabolism , Paracoccus pantotrophus/metabolism , Waste Disposal, Fluid/methods , Aerobiosis , Biodegradation, Environmental , Bioreactors , Carbon/metabolism , Comamonadaceae/metabolism , Nitrates/metabolism , Oxidation-Reduction , Time Factors , Waste Disposal, Fluid/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL