Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 476: 135056, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38981235

ABSTRACT

To address the problem of the weak natural restoration ability of oligotrophic groundwater environments, a novel N/P controlled-release material (CRM) for biostimulation, prepared by an improved method, was developed. CRMs can encapsulate N and P (N/P) salts for sustained release in aquifers. Paraffin-based CRMs can be used to control N/P release rates by adjusting the particle size of CRMs and the mass ratio of the paraffin. The developed CRMs had a more remarkable adaptability to groundwater than other materials. Specifically, 0.4-cm CRMs released N/P stably and efficiently over a wide temperature range (7-25 â„ƒ), and the release properties of various CRMs were not affected by pH. The release of N/P followed Fickian diffusion, and a dissolution-diffusion model was established to elucidate the mechanism of the controlled release. In contrast to bare N/P, CRMs obviously enhanced the biodegradation rate of phenol and prolonged the effectiveness of supplying N/P. The degradation rate of phenol in the CRM system increased by 20.8 %. The different supply modes of N/P, CRMs and bare N/P, resulted in differences in salinity. Metagenomic analysis showed that this difference changed the proportion of various phenol-degrading genera and thus changed the abundance of genes associated with the phenol degradation pathway.


Subject(s)
Biodegradation, Environmental , Groundwater , Paraffin , Phenol , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Phenol/metabolism , Phenol/chemistry , Paraffin/chemistry , Paraffin/metabolism , Nitrogen/metabolism , Nitrogen/chemistry , Phosphorus/chemistry , Phosphorus/metabolism , Delayed-Action Preparations , Salinity
2.
Anal Chim Acta ; 1315: 342757, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38879205

ABSTRACT

BACKGROUND: Chlorinated paraffins (CPs) are industrial chemicals categorised as persistent organic pollutants because of their toxicity, persistency and tendency to long-range transport, bioaccumulation and biomagnification. Despite having been the subject of environmental attention for decades, analytical methods for CPs still struggle reaching a sufficient degree of accuracy. Among the issues negatively impacting the quantification of CPs, the unavailability of well-characterised standards, both as pure substances and as matrix (certified) reference materials (CRMs), has played a major role. The focus of this study was to provide a matrix CRM as quality control tool to improve the comparability of CPs measurement results. RESULTS: We present the process of certification of ERM®-CE100, the first fish reference material assigned with certified values for the mass fraction of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively). The certification was performed in accordance with ISO 17034:2016 and ISO Guide 35:2017, with the value assignment step carried out via an intercomparison of laboratories of demonstrated competence in CPs analysis and applying procedures based on different analytical principles. After confirmation of the homogeneity and stability of the CRM, two certified values were assigned for SCCPs, depending on the calibrants used: 31 ± 9 µg kg-1 and 23 ± 7 µg kg-1. The MCCPs certified value was established as 44 ± 17 µg kg-1. All assigned values are relative to wet weight in the CRM that was produced as a fish paste to enhance similarity to routine biota samples. SIGNIFICANCE AND NOVELTY: The fish tissue ERM-CE100 is the first matrix CRM commercially available for the analysis of CPs, enabling analytical laboratories to improve the accuracy and the metrological traceability of their measurements. The certified CPs values are based on results obtained by both gas and liquid chromatography coupled with various mass spectrometric techniques, offering thus a broad validity to laboratories employing different analytical methods and equipment.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , Reference Standards , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Paraffin/chemistry , Animals , Fishes
3.
Int J Biol Macromol ; 275(Pt 1): 133533, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945339

ABSTRACT

Firefighting clothing is an indispensable protective equipment for firefighters performing rescue activities under extreme heat and fire conditions. However, few bio-based thermal management materials that provide thermal comfort to firefighters in different operational scenarios have been reported. Herein, we present a novel strategy to prepare Janus-type aerogels based on sodium alginate biological macromolecules, consisting of a SiO2 nanoparticle layer and a microencapsulated paraffin@SiO2 phase-change composite layer. A passive radiative cooling and thermal energy storage was integrated into a functional dual-mode material system. Results show that Janus-type aerogel to cool down by 11.5 °C on a hot summer day. Meanwhile, paraffin@SiO2 has a high melting enthalpy of 127.5 J g-1 that effectively buffers temperature rise during the phase-change process. This Janus-type aerogel has ultra-low heat insulation (0.042 W/(m·K)), it can delay approximately 76.6 s to reach second-degree burn time for skin at a radiant heat exposure of 18.4 kW m-2. The work provides an innovative way to develop bio-based thermal management materials, which could enable multi-scenario thermal management for firefighting clothing.


Subject(s)
Alginates , Alginates/chemistry , Silicon Dioxide/chemistry , Protective Clothing , Gels/chemistry , Thermal Conductivity , Humans , Hot Temperature , Paraffin/chemistry , Nanoparticles/chemistry , Firefighters
4.
Environ Sci Technol ; 58(10): 4535-4544, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38408178

ABSTRACT

Concern over human exposure to chlorinated paraffin (CP) mixtures keeps increasing. The absence of a comprehensive understanding of how human exposure varies with the physicochemical properties of CP constituents has hindered the ability to determine at what level of aggregation exposure to CPs should be assessed. We answer this question by comparing exposure predicted with either a "complex" method that utilizes isomer-specific properties or "simplified" methods that rely on median properties of congener, homologue, or short-/medium-/long-chain CP groups. Our results demonstrate the wide range of physicochemical properties across CP mixtures and their dependence on molecular structures. Assuming unit emissions in the environment, these variances translate into an extensive disparity in whole-body concentrations predicted for different isomers, spanning ∼11 orders of magnitude. CPs with 13-19 carbons and 6-10 chlorines exhibit the highest human exposure potential, primarily owing to moderate to high hydrophobicity and slow environmental degradation and biotransformation. Far-field exposure is dominant for most CP constituents. Our study underscores that using average properties of congener, homologue, or S/M/LCCP groups yields results that are consistent with those derived from isomer-based modeling, thus offering an efficient and practical framework for future risk assessments and human exposure studies of CPs and other complex chemical mixtures.


Subject(s)
Hydrocarbons, Chlorinated , Humans , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Paraffin/chemistry , Environmental Monitoring/methods , Chlorine , Risk Assessment , China
5.
Water Res ; 253: 121337, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387266

ABSTRACT

The marine environment of the southern Bohai Sea is severely polluted by short-chain chlorinated paraffins (SCCPs). To improve understanding of how SCCPs occur and of how they migrate, are transformed, and transferred in this area, we collected seawater, sediment, and organism samples, and determined the SCCP contents using a new approach based on high-resolution mass spectrometry. The ΣSCCP concentrations in the seawater, sediment, and organism samples ranged from 57.5 to 1150.4 ng/L, 167.7-1105.9 ng/g (dry weight), and 11.4-583.0 ng/g (wet weight), respectively. Simulation of the spatial distribution of SCCPs using Kriging interpolation showed that SCCPs were markedly influenced by land-based pollution. Substantial quantities of SCCPs were transported to the marine environment via surface runoff from rivers that passed through areas of major SCCP production. Once discharged from such rivers into the Bohai Sea, these SCCPs were further dispersed under the influence of ocean currents. Furthermore, the logarithmic bioaccumulation factor that varied from 2.12 to 3.20 and the trophic magnification factor that reached 5.60 (r2 = 0.750, p < 0.01) suggest that organisms have the ability to accumulate and biomagnify SCCPs through the food chain, which could potentially present risks to both marine ecosystems and human health.


Subject(s)
Ecosystem , Hydrocarbons, Chlorinated , Humans , Paraffin/analysis , Paraffin/chemistry , Environmental Monitoring , China
6.
Water Res ; 250: 121073, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38154342

ABSTRACT

Owing to the extensive production and widespread use of chlorinated paraffins (CPs), various CP structural analogs (CPSAs) have been detected in the environment, and these hydrophobic pollutants preferentially adsorb onto sludge during treatment. However, the species and sources of CPSAs in sludge and their subsequent fate during sludge oxidation treatments remain unclear. In this study, 320 nitrogen- or sulfur-containing CPs (205 CPs-N and 115 CPs-S) were detected in sludge through an analysis of Ph4PCl-enhanced ionization coupled with ultra-performance liquid chromatography (UPLC)-orbitrap-mass spectrometry (MS). The intensities of the newly found CPSAs were approximately 3.9-4.1 times those of CPs. Among these CPSAs, 273 previously unknown compounds, namely, 184 CPs-NO3, 63 CPs-SO4H, and 26 CPs-SH, were identified based on the characteristic fragments of NO3, SO4H, and SH, respectively. MS/MS analysis showed that the identified CPs-NO3 included 74 CPs-NO3, 71 CPs-NO3-NH2, 23 CPs-NO3-OH, and 16 CPs-NO3-NH2-OH; CPs-SO4H included 40 CPs-SO4H and 23 CPs-SO4H-OH; and CPs-SH could be divided into 19 2-(methylthio)acetamide-, 6 2-(methylthio)acetamide-cysteine-, and 1 N-acetylcysteine- containing CPs. High abundances of CPs-NO3 and CPs-SO4H were found in both sludge and CP commercial mixtures, indicating that these CPSAs likely originated from the production or use of industrial products. CPs-SH, which were present only in the sludge, were potentially derived from the biotransformation of CPs with amino acids. The oxidation of sludge resulted in the removal of 20.4-60.7 % of the newly identified CPSAs. The oxidation of CPs-NO3 and CPs-SO4H involved both carbon chain decomposition and hydroxylation processes, whereas CPs-SH underwent oxidation through carbon chain decomposition.


Subject(s)
Hydrocarbons, Chlorinated , Sewage , Sewage/chemistry , Paraffin/analysis , Paraffin/chemistry , Nitrates/analysis , Amino Acids , Esters , Tandem Mass Spectrometry , Hydrocarbons, Chlorinated/chemistry , Acetamides , Carbon/analysis , Environmental Monitoring/methods
7.
J Hazard Mater ; 464: 132954, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37972496

ABSTRACT

Short chain chlorinated paraffins (SCCPs) are ubiquitous persistent organic pollutants. They have been widely detected in plant-based foods and might cause adverse impacts on humans. Nevertheless, uptake and accumulation mechanisms of SCCPs in plants remain unclear. In this study, the soil culture data indicated that SCCPs were strongly absorbed by roots (root concentration factor, RCF>1) yet limited translocated to shoots (translocation factor<1). The uptake mechanism was explored by hydroponic exposure, showing that hydrophobicity and molecular size influenced the root uptake and translocation of SCCPs. RCFs were significantly correlated with logKow values and molecular weights in a parabolic curve relationship. Besides, it was extremely difficult for SCCPs to translocate from shoots back to roots via phloem. An active energy-dependent process was proposed to be involved in the root uptake of SCCPs, which was supported by the uptake inhibition by the low temperature and metabolic inhibitor. Though SCCPs at environmentally relevant concentrations had no negative impacts on root morphology and chlorophyll contents, it caused obvious changes in cellular ultrastructure of root tip cells and induced a significant increase in superoxide dismutase activity. This information may be beneficial to moderate crop contamination by SCCPs, and to remedy soils polluted by SCCPs with plants.


Subject(s)
Hydrocarbons, Chlorinated , Triticum , Humans , Paraffin/chemistry , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Biological Transport , Soil/chemistry , China
9.
In. Castro Bobadilla, Dennis A; Dickerman Kraunick, Arema R. Compendio de medicina forense. Tegucigalpa, Alin Editora, oct. 1995. p.359-64, ilus.
Monography in Spanish | LILACS | ID: lil-166102
SELECTION OF CITATIONS
SEARCH DETAIL