Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 471
Filter
1.
BMC Pharmacol Toxicol ; 25(1): 38, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978151

ABSTRACT

BACKGROUND: Dihydroartemisinin-piperaquine (DHP) recently showed superior effectiveness over sulfadoxine-pyrimethamine for malaria intermittent preventive treatment in pregnancy (IPTp). We investigated day 7 piperaquine pharmacokinetics and its therapeutic efficacy in preventing malaria during pregnancy. METHODS: Malaria-free (mRDT) pregnant women (n = 400) who received monthly IPTp-DHP were enrolled and followed till delivery. Day 7 Plasma piperaquine concentrations were determined after each IPTp dose using UPLC/MS/MS. IPTp outcomes (symptomatic malaria and parasitemia during pregnancy, placental malaria, and maternal malaria at delivery) were monitored. Linear mixed model and Cox regression were used to assess predictors of day 7 piperaquine concentration and treatment outcome, respectively. RESULTS: The incidences of symptomatic malaria and parasitemia during pregnancy per 100 person-year at risk were 2 and 33, respectively. The prevalence of histopathologically confirmed placental malaria and maternal malaria at delivery were 3% and 9.8%, respectively. Repeated monthly IPTp-DHP resulted in significantly increased day 7 plasma piperaquine concentration (p < 0.001). Following the 1st, 2nd, and 3rd monthly IPTp-DHP doses, the proportions of women with day 7 piperaquine concentration below the therapeutic threshold (< 30 ng/mL) were 6.1%, 4.1% and 3.6%, respectively. Factors such as maternal age, body weight and trimester were not significant predictors of day 7 piperaquine concentration. However, having a low day 7 piperaquine plasma concentration (< 30 ng/mL) was significantly associated with a higher risk of parasitemia during pregnancy (p = 0.004). CONCLUSION: Lower day 7 piperaquine plasma concentration is a risk factor for parasitemia during pregnancy. Single plasma sampling at day 7 can be used to monitor piperaquine effectiveness during IPTp-DHP. TRIAL REGISTRATION: Registered 09/12/2016, PACTR201612001901313.


Subject(s)
Antimalarials , Malaria , Pregnancy Complications, Parasitic , Quinolines , Humans , Female , Pregnancy , Quinolines/pharmacokinetics , Quinolines/blood , Quinolines/therapeutic use , Quinolines/administration & dosage , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Antimalarials/blood , Antimalarials/administration & dosage , Adult , Pregnancy Complications, Parasitic/prevention & control , Pregnancy Complications, Parasitic/blood , Young Adult , Malaria/prevention & control , Malaria/drug therapy , Artemisinins/pharmacokinetics , Artemisinins/therapeutic use , Artemisinins/administration & dosage , Artemisinins/blood , Parasitemia/blood , Parasitemia/prevention & control , Treatment Outcome , Drug Combinations , Adolescent , Piperazines
2.
PLoS One ; 19(6): e0304789, 2024.
Article in English | MEDLINE | ID: mdl-38829858

ABSTRACT

Malaria is a deadly disease that is transmitted through mosquito bites. Microscopists use a microscope to examine thin blood smears at high magnification (1000x) to identify parasites in red blood cells (RBCs). Estimating parasitemia is essential in determining the severity of the Plasmodium falciparum infection and guiding treatment. However, this process is time-consuming, labor-intensive, and subject to variation, which can directly affect patient outcomes. In this retrospective study, we compared three methods for measuring parasitemia from a collection of anonymized thin blood smears of patients with Plasmodium falciparum obtained from the Clinical Department of Parasitology-Mycology, National Reference Center (NRC) for Malaria in Paris, France. We first analyzed the impact of the number of field images on parasitemia count using our framework, MALARIS, which features a top-classifier convolutional neural network (CNN). Additionally, we studied the variation between different microscopists using two manual techniques to demonstrate the need for a reliable and reproducible automated system. Finally, we included thin blood smear images from an additional 102 patients to compare the performance and correlation of our system with manual microscopy and flow cytometry. Our results showed strong correlations between the three methods, with a coefficient of determination between 0.87 and 0.92.


Subject(s)
Malaria, Falciparum , Microscopy , Parasitemia , Plasmodium falciparum , Humans , Plasmodium falciparum/isolation & purification , Parasitemia/diagnosis , Parasitemia/blood , Parasitemia/parasitology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Retrospective Studies , Microscopy/methods , Erythrocytes/parasitology , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Flow Cytometry/methods
3.
EBioMedicine ; 105: 105189, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851058

ABSTRACT

BACKGROUND: The interaction between iron status and malaria is incompletely understood. We evaluated longitudinal changes in iron homeostasis in volunteers enrolled in malaria volunteer infection studies (VIS) and in Malaysian patients with falciparum and vivax malaria. METHODS: We retrieved data and samples from 55 participants (19 female) enrolled in malaria VIS, and 171 patients (45 female) with malaria and 30 healthy controls (13 female) enrolled in clinical studies in Malaysia. Ferritin, hepcidin, erythropoietin, and soluble transferrin receptor (sTfR) were measured by ELISA. FINDINGS: In the VIS, participants' parasitaemia was correlated with baseline mean corpuscular volume (MCV), but not iron status (ferritin, hepcidin or sTfR). Ferritin, hepcidin and sTfR all increased during the VIS. Ferritin and hepcidin normalised by day 28, while sTfR remained elevated. In VIS participants, baseline ferritin was associated with post-treatment increases in liver transaminase levels. In Malaysian patients with malaria, hepcidin and ferritin were elevated on admission compared to healthy controls, while sTfR increased following admission. By day 28, hepcidin had normalised; however, ferritin and sTfR both remained elevated. INTERPRETATION: Our findings demonstrate that parasitaemia is associated with an individual's MCV rather than iron status. The persistent elevation in sTfR 4 weeks post-infection in both malaria VIS and clinical malaria may reflect a causal link between malaria and iron deficiency. FUNDING: National Health and Medical Research Council (Program Grant 1037304, Project Grants 1045156 and 1156809; Investigator Grants 2016792 to BEB, 2016396 to JCM, 2017436 to MJG); US National Institute of Health (R01-AI116472-03); Malaysian Ministry of Health (BP00500420).


Subject(s)
Ferritins , Hepcidins , Homeostasis , Iron , Malaria , Humans , Female , Iron/metabolism , Iron/blood , Male , Adult , Hepcidins/blood , Hepcidins/metabolism , Malaria/blood , Malaria/parasitology , Malaria/metabolism , Ferritins/blood , Receptors, Transferrin/metabolism , Receptors, Transferrin/blood , Middle Aged , Malaysia/epidemiology , Young Adult , Longitudinal Studies , Malaria, Falciparum/parasitology , Malaria, Falciparum/blood , Malaria, Falciparum/metabolism , Erythropoietin/metabolism , Erythropoietin/blood , Biomarkers , Parasitemia/blood
4.
Exp Parasitol ; 261: 108754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636935

ABSTRACT

The apicomplexa Toxoplasma gondii is capable of actively proliferating in numerous types of nucleated cells, and therefore has a high potential for dissemination and resistance. Thus, the present work aimed to correlate the inoculum concentrations and amount of post-infection parasites with porcine hematological parameters (including biochemistry) through in vitro culture. Porcine blood was incubated with different concentrations of parasites (1.2 × 107, 6/3/1.5 × 106 cells/mL), then the concentrations of red blood cells (RBC) and their morphology, total and differential leukocytes, and free peptides were evaluated. In addition, eight different blood samples analyzed before inoculation, where subsequent multivariate analysis was applied to correlate different variables with trophozoite concentration. The results showed no significant variation (p < 0.05) in the relative levels of free peptides, or the relative percentage of RBC at all the parasite concentrations tested. However, the normalized percentages of leukocytes and neutrophils showed a significant reduction, while those of lymphocytes, eosinophils and monocytes showed the opposite behavior. Semi-automatic processing of images exhibited significant microcytosis and hypochromia. The multivariate analysis revealed a positive correlation between the amount number of protozoa (AP) and the variables: "Red cells" and "Neutrophils", an indifference between the AP and the content of free peptides, and the concentration of monocytes in the samples; and a negative correlation for AP and the percentages of lymphocytes and eosinophils. Our results suggest that specific changes in hematological parameters may be associated with different degrees of parasitemia, demanding a thorough diagnostic process and adequate treatment.


Subject(s)
Erythrocytes , Swine Diseases , Toxoplasma , Toxoplasmosis, Animal , Animals , Toxoplasma/immunology , Toxoplasma/physiology , Swine , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Animal/blood , Erythrocytes/parasitology , Swine Diseases/parasitology , Swine Diseases/blood , Multivariate Analysis , Leukocyte Count , Leukocytes/parasitology , Erythrocyte Count/veterinary , Neutrophils , Parasitemia/parasitology , Parasitemia/blood
5.
J Pediatric Infect Dis Soc ; 13(5): 288-296, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38512283

ABSTRACT

BACKGROUND: Subclinical inflammation and cognitive deficits have been separately associated with asymptomatic Plasmodium falciparum infections in schoolchildren. However, whether parasite-induced inflammation is associated with worse cognition has not been addressed. We conducted a cross-sectional pilot study to better assess the effect of asymptomatic P. falciparum parasitemia and inflammation on cognition in Kenyan schoolchildren. METHODS: We enrolled 240 children aged 7-14 years residing in high malaria transmission in Western Kenya. Children performed five fluid cognition tests from a culturally adapted NIH toolbox and provided blood samples for blood smears and laboratory testing. Parasite densities and plasma concentrations of 14 cytokines were determined by quantitative PCR and multiplex immunoassay, respectively. Linear regression models were used to determine the effects of parasitemia and plasma cytokine concentrations on each of the cognitive scores as well as a composite cognitive score while controlling for age, gender, maternal education, and an interaction between age and P. falciparum infection status. RESULTS: Plasma concentrations of TNF, IL-6, IL-8, and IL-10 negatively correlated with the composite score and at least one of the individual cognitive tests. Parasite density in parasitemic children negatively correlated with the composite score and measures of cognitive flexibility and attention. In the adjusted model, parasite density and TNF, but not P. falciparum infection status, independently predicted lower cognitive composite scores. By mediation analysis, TNF significantly mediated ~29% of the negative effect of parasitemia on cognition. CONCLUSIONS: Among schoolchildren with PCR-confirmed asymptomatic P. falciparum infections, the negative effect of parasitemia on cognition could be mediated, in part, by subclinical inflammation. Additional studies are needed to validate our findings in settings of lower malaria transmission and address potential confounders that could affect both inflammation and cognitive performance.


Subject(s)
Inflammation , Malaria, Falciparum , Parasitemia , Plasmodium falciparum , Humans , Child , Malaria, Falciparum/blood , Malaria, Falciparum/complications , Male , Parasitemia/blood , Female , Cross-Sectional Studies , Adolescent , Inflammation/blood , Kenya/epidemiology , Cytokines/blood , Pilot Projects , Asymptomatic Infections , Cognitive Dysfunction/parasitology , Cognitive Dysfunction/blood , Cognitive Dysfunction/etiology
6.
PLoS One ; 17(4): e0266441, 2022.
Article in English | MEDLINE | ID: mdl-35390054

ABSTRACT

Malaria is often most endemic in remote regions where diagnostic microscopy services are unavailable. In such regions, the use of rapid diagnostic tests fails to quantify parasitemia measurements which reflect the concentration of Plasmodium parasites in the bloodstream. Thus, novel diagnostic and monitoring technologies capable of providing such information could improve the quality of treatment, monitoring, and eradication efforts. A low-cost, portable microscope for gathering quantitative parasitemia data from fluorescently stained thin blood smears is presented. The system employs bimodal imaging using components optimized for cost savings, system robustness, and optical performance. The microscope is novel for its use of monochromatic visible illumination paired with a long working distance singlet aspheric objective lens that can image both traditionally mounted and cartridge-based blood smears. Eight dilutions of red blood cells containing laboratory cultured wild-type P. falciparum were used to create thin smears which were stained with SYBR Green-1 fluorescent dye. Two subsequent images are captured for each field-of-view, with brightfield images providing cell counts and fluorescence images providing parasite localization data. Results indicate the successful resolution of sub-micron sized parasites, and parasitemia measurements from the prototype microscope display linear correlation with measurements from a benchtop microscope with a limit of detection of 0.18 parasites per 100 red blood cells.


Subject(s)
Malaria/diagnosis , Erythrocytes/parasitology , Fluorescent Dyes , Humans , Malaria/blood , Malaria/parasitology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Microscopy, Fluorescence , Parasitemia/blood , Parasitemia/diagnosis , Parasitemia/parasitology , Plasmodium falciparum/isolation & purification
7.
PLoS Negl Trop Dis ; 15(8): e0009632, 2021 08.
Article in English | MEDLINE | ID: mdl-34351903

ABSTRACT

BACKGROUND: Visceral leishmaniasis is a disease caused by disseminated Leishmania donovani infection which affects almost half a million people annually. Most of the patients are reported from the Indian sub-continent, Eastern Africa and Brazil. In this study, we aimed to determine the levels of antibodies and cytokines in visceral leishmaniasis patients and to examine associations of parasitemia with the clinical states of patients. A prospective study was carried out, enrolling a total of 48 active VL patients who were evaluated before, during different time points and, three months after treatment. Serum cytokine concentrations, antibody levels, parasitemia, laboratory (hematologic and biochemical) measurements, and clinical parameters were assessed. RESULTS: Counts of WBC and platelets, and measurements of hemoglobin (Hb) increased during treatment (P ≤ 0.05). Elevated levels of circulating IL-10, IFN-γ, and TGF-ß1 were measured before treatment. The observed increase in serum IL-10 remarkably declined within 7 days after the start of treatment. Anti-leishmanial antibody index (AI) was high in all VL patients irrespective of spleen aspirate parasite grade before treatment and at different times during treatment. However, a significant (P ≤ 0.05) decrease of AI was observed 120 days post-treatment. IL-2 serum levels were below the detection limit at all sampling points. CONCLUSIONS: The present results suggest that IL-10, IFN-γ, and TGF-ß1 can be used as markers of active visceral leishmaniasis. In addition, measuring circulating cytokines concentrations, particularly IL-10, in combination with other clinical evaluations, could be used as criteria for the cure. The observation that a high serum concentration of IFN-gamma at baseline was associated with low parasitemia deserves further investigations.


Subject(s)
Antibodies, Protozoan/blood , Interferon-gamma/blood , Interleukin-10/blood , Leishmania donovani/immunology , Leishmaniasis, Visceral/blood , Transforming Growth Factor beta1/blood , Adolescent , Adult , Child , Child, Preschool , Ethiopia , Female , Hospitals, General , Humans , Interferon-gamma/immunology , Interleukin-10/immunology , Leishmania donovani/isolation & purification , Male , Middle Aged , Parasitemia/blood , Prospective Studies , Transforming Growth Factor beta1/immunology , Young Adult
8.
Am J Trop Med Hyg ; 105(3): 643-650, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34398818

ABSTRACT

This cross-sectional study evaluated epidemiologic characteristics of persons living with HIV (PWH) coinfected with Trypanosoma cruzi in Cochabamba, Bolivia, and estimated T. cruzi parasitemia by real-time quantitative polymerase chain reaction (qPCR) in patients with and without evidence of reactivation by direct microscopy. Thirty-two of the 116 HIV patients evaluated had positive serology for T. cruzi indicative of chronic Chagas disease (27.6%). Sixteen of the 32 (50%) patients with positive serology were positive by quantitative polymerase chain reaction (qPCR), and four of the 32 (12.5%) were positive by direct microscopy. The median parasite load by qPCR in those with CD4+ < 200 was 168 parasites/mL (73-9951) compared with 28.5 parasites/mL (15-1,528) in those with CD4+ ≥ 200 (P = 0.89). There was a significant inverse relationship between the degree of parasitemia estimated by qPCR from blood clot and CD4+ count on the logarithmic scale (rsBC= -0.70, P = 0.007). The correlation between T. cruzi estimated by qPCR+ blood clot and HIV viral load was statistically significant with rsBC = 0.61, P = 0.047. Given the significant mortality of PWH and Chagas reactivation and that 57% of our patients with CD4+ counts < 200 cells/mm3 showed evidence of reactivation, we propose that screening for chronic Chagas disease be considered in PWH in regions endemic for Chagas disease and in the immigrant populations in nonendemic regions. Additionally, our study showed that PWH with advancing immunosuppression have higher levels of estimated parasitemia measured by qPCR and suggests a role for active surveillance for Chagas reactivation with consideration of treatment with antitrypanosomal therapy until immune reconstitution can be achieved.


Subject(s)
Chagas Disease/blood , HIV Infections/blood , Latent Infection/blood , Parasitemia/blood , Adult , Antibodies, Protozoan/immunology , Bolivia , CD4 Lymphocyte Count , Chagas Disease/complications , Chagas Disease/diagnosis , Chagas Disease/drug therapy , Coinfection , Cross-Sectional Studies , Female , HIV Infections/complications , Humans , Latent Infection/complications , Latent Infection/diagnosis , Latent Infection/drug therapy , Male , Microscopy , Middle Aged , Nitroimidazoles/therapeutic use , Parasite Load , Parasitemia/complications , Parasitemia/diagnosis , Parasitemia/drug therapy , Real-Time Polymerase Chain Reaction/methods , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi , Viral Load
9.
Nat Commun ; 12(1): 4711, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330920

ABSTRACT

Following Plasmodium falciparum infection, individuals can remain asymptomatic, present with mild fever in uncomplicated malaria cases, or show one or more severe malaria symptoms. Several studies have investigated associations between parasite transcription and clinical severity, but no broad conclusions have yet been drawn. Here, we apply a series of bioinformatic approaches based on P. falciparum's tightly regulated transcriptional pattern during its ~48-hour intraerythrocytic developmental cycle (IDC) to publicly available transcriptomes of parasites obtained from malaria cases of differing clinical severity across multiple studies. Our analysis shows that within each IDC, the circulation time of infected erythrocytes without sequestering to endothelial cells decreases with increasing parasitaemia or disease severity. Accordingly, we find that the size of circulating infected erythrocytes is inversely related to parasite density and disease severity. We propose that enhanced adhesiveness of infected erythrocytes leads to a rapid increase in parasite burden, promoting higher parasitaemia and increased disease severity.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial , Malaria, Falciparum/blood , Parasitemia/blood , Plasmodium falciparum/genetics , Blood Circulation Time , Erythrocytes/parasitology , Gene Ontology , Genes, Bacterial/genetics , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/physiopathology , Parasitemia/parasitology , Parasitemia/physiopathology , Plasmodium falciparum/physiology
10.
Malar J ; 20(1): 333, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34325689

ABSTRACT

BACKGROUND: Insecticide-treated nets (ITNs) are the most widely used interventions for malaria control in Africa. The aim of this study was to assess the ownership and utilization of ITNs and the knowledge of malaria and their effects on malariometric and haematological indices in children living in the Mount Cameroon area. METHODS: A community-based cross-sectional study involving a total of 405 children aged between 6 months and 14 years living in Batoke-Limbe was carried out between July and October 2017. A semi-structured questionnaire was used to document demographic status, knowledge on malaria and ITN ownership and usage. Venous blood sample was collected from each child to determine the prevalence and intensity of parasitaemia by Giemsa-stained microscopy and full blood count by auto haematology analysis to obtain white blood cell (WBC) and red blood cell (RBC) counts, haemoglobin (Hb) level, haematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC). A multilinear regression model was used to determine the relationship between haematological parameter as dependent variable and the independent variables. RESULTS: The overall prevalence of parasitaemia, anaemia, knowledge about malaria, ITN ownership, usage and effective usage was 46.7%, 54.7%, 40.7%, 78.8%, 50.9% and 29.9%, respectively. The prevalence of parasitaemia was significantly higher (P < 0.001) in children who ineffectively utilized ITNs (54.9%) than effective users (27.3%). Having knowledge of malaria, negatively correlated with WBC counts (P = 0.005), but positively correlated with Hb levels (P < 0.001), RBC counts (P < 0.001), Hct (P < 0.001), MCV (P < 0.001) and MCH (P < 0.001). ITN use positively correlated with WBC counts (P = 0.005) but negatively with Hb levels (P = 0.004), RBC counts (P = 0.006), and MCH (P < 0.001). Meanwhile, parasitaemia negatively correlated with Hb levels (P = 0.004), RBC counts (P = 0.01), Hct (P = 0.04) and MCHC (P = 0.015). CONCLUSION: There is need for more sensitization on the benefits of using the ITNs to meet up with the intended and expected impact of the free distribution of ITNs.


Subject(s)
Insecticide-Treated Bednets , Malaria/prevention & control , Ownership/statistics & numerical data , Adolescent , Age Factors , Azure Stains , Cameroon/epidemiology , Child , Child, Preschool , Coloring Agents , Cross-Sectional Studies , Female , Hematologic Tests , Humans , Infant , Insecticide-Treated Bednets/statistics & numerical data , Knowledge , Linear Models , Malaria/blood , Malaria/epidemiology , Male , Parasitemia/blood , Parasitemia/epidemiology , Parasitemia/prevention & control , Prevalence , Sex Factors , Surveys and Questionnaires
11.
Am J Trop Med Hyg ; 105(1): 159-166, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34097645

ABSTRACT

Asymptomatic malarial parasitemia represents the largest reservoir of infection and transmission, and the impact of coinfection with HIV-1 on this reservoir remains incompletely described. Accordingly, we sought to determine the prevalence of asymptomatic malarial parasitemia in Kombewa, Western Kenya, a region that is endemic for both malaria and HIV-1. A total of 1,762 dried blood spots were collected from asymptomatic adults in a cross-sectional study. The presence of parasitemia was first determined by a sensitive Plasmodium genus-specific 18S assay, followed by less sensitive species-specific DNA-based quantitative polymerase chain reaction (PCR) assays. The prevalence of asymptomatic malarial parasitemia by 18S genus-specific PCR assay was 64.4% (1,134/1,762). Of the 1,134 malaria positive samples, Plasmodium falciparum was the most prevalent species (57.4%), followed by Plasmodium malariae (3.8%) and Plasmodium ovale (2.6%) as single or mixed infections. As expected, the majority of infections were below the detection limit of microscopy and rapid diagnostic tests. HIV-1 prevalence was 10.6%, and we observed a significant association with malarial parasitemia by χ2 analysis (P = 0.0475). Seventy-one percent of HIV-1 infected volunteers were positive for Plasmodium 18S (132/186), with only 29% negative (54/186). In HIV-1-negative volunteers, the proportion was lower; 64% were found to be positive for 18S (998/1,569) and 36% were negative (571/1,569). Overall, the prevalence of asymptomatic malarial parasitemia in Western Kenya is high, and knowledge of these associations with HIV-1 infection are critically important for malaria elimination and eradication efforts focused on this important reservoir population.


Subject(s)
Coinfection/pathology , HIV-1/pathogenicity , Malaria, Falciparum/pathology , Malaria/pathology , Plasmodium falciparum/genetics , Adolescent , Adult , Asymptomatic Infections/epidemiology , Cohort Studies , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Kenya/epidemiology , Malaria/blood , Malaria/epidemiology , Malaria, Falciparum/blood , Malaria, Falciparum/epidemiology , Male , Middle Aged , Parasitemia/blood , Prevalence , Young Adult
12.
Exp Parasitol ; 226-227: 108125, 2021.
Article in English | MEDLINE | ID: mdl-34129877

ABSTRACT

Chagas disease, caused by Trypanosoma cruzi, is a major public health problem and is described as one of the most neglected diseases worldwide. It affects about 6-7 million people. Currently, only two drugs are available for the treatment of this disease: nifurtimox and benznidazole. However, both drugs are highly toxic and have several side effects, which lead many patients to discontinue treatment. Moreover, these compounds show a significant curative efficacy only in the acute phase of the disease. Therefore, searching for new drugs is necessary. The objective of this study was to evaluate the in vitro and in vivo activity of a benzofuroxan derivative (EA2) against T. cruzi, and to evaluate the hematological and biochemical changes induced by its treatment in animals infected with T. cruzi. The results were then compared with those of healthy controls. In vitro testing was first performed with T. cruzi epimastigote forms. In this experiment, EA2 was diluted at three different concentrations (0.25, 0.50, and 1%). In vitro evaluation of the trypanocidal activity was performed 24, 48, and 72 h after incubation. In vivo assays were performed using three different doses (10, 5, and 2,5 mg/kg). Mice were divided into 10 groups (five animals/group), wherein four groups comprised non-infected animals (A, G, H, I) and six groups comprised infected animals (B, C, D E, F, J). Groups B and J represented the negative and positive controls, respectively. Groups G, H, and I were used to confirm that EA2 was not toxic to non-infected animals. Parasitemia was measured in infected animals and the hematological and biochemical profiles (urea, creatinine, albumin, aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) were evaluated in all animals. EA2 demonstrated in vitro trypanocidal activity at all concentrations tested. Although it did not demonstrate a curative effect in vivo, EA2 was able to retard the onset of parasitemia, and significantly reduced the parasite count in groups D and E (treated with 5 and 2.5 mg/kg, respectively). EA2 did not induce changes in hematological and biochemical parameters in non-infected animals, demonstrating that it is not toxic. However, further assessments should aim to confirm the safety of EA2 since this was the first in vitro and in vivo study conducted with this molecule.


Subject(s)
Benzofurans/therapeutic use , Chagas Disease/drug therapy , Parasitemia/drug therapy , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects , Animals , Benzofurans/pharmacology , Blood Chemical Analysis , Chagas Disease/blood , Erythrocyte Count , Female , Hemoglobins/analysis , Mice , Parasitemia/blood , Platelet Count , Random Allocation , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/growth & development
13.
Parasitology ; 148(11): 1328-1338, 2021 09.
Article in English | MEDLINE | ID: mdl-34078494

ABSTRACT

Ectotherms are vulnerable to environmental changes and their parasites are biological health indicators. Thus, parasite load in ectotherms is expected to show a marked phenology. This study investigates temporal host­parasite dynamics in a lizard community in Eastern Spain during an entire annual activity period. The hosts investigated were Acanthodactylus erythrurus, Psammodromus algirus and Psammodromus edwardsianus, three lizard species coexisting in a mixed habitat of forests and dunes, providing a range of body sizes, ecological requirements and life history traits. Habitat and climate were considered as potential environmental predictors of parasite abundance, while size, body condition and sex as intrinsic predictors. Linear models based on robust estimates were fitted to analyse parasite abundance and prevalence. Ectoparasitic mites and blood parasites from two haemococcidian genera were found: Lankesterella spp. and Schellackia spp. Habitat type was the only predictor explaining the abundance of all parasites, being mostly higher in the forest than in the dunes. The results suggest that particularities in each host­parasite relationship should be accounted even when parasites infect close-related hosts under the same environmental pressures. They also support that lizard parasites can be biomarkers of environmental perturbation, but the relationships need to be carefully interpreted for each host­parasite assemblage.


Subject(s)
Coccidiosis/veterinary , Lizards/parasitology , Mite Infestations/veterinary , Parasitemia/veterinary , Animals , Coccidia/classification , Coccidia/physiology , Coccidiosis/blood , Coccidiosis/parasitology , Ecosystem , Female , Forests , Linear Models , Male , Mite Infestations/parasitology , Parasite Load/veterinary , Parasitemia/blood , Parasitemia/parasitology , Sand , Spain
14.
BMC Infect Dis ; 21(1): 507, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34059017

ABSTRACT

BACKGROUND: Hematological abnormalities are common features in falciparum malaria but vary among different populations across countries. Therefore, we compared hematological indices and abnormalities between Plasmodium falciparum-infected patients and malaria-negative subjects in Kosti city of the White Nile State, Sudan. METHODS: A comparative, cross-sectional study was conducted at the Clinical Laboratory Unit of Kosti Teaching Hospital from June to December 2018. A total of 392 participants (192 P. falciparum-infected patients and 200 malaria-negative subjects) were recruited in the study. Hematological indices of hemoglobin (Hb), red blood cells (RBCs), white blood cells (WBCs) and platelets were measured, and their median values were statistically compared. RESULTS: The majority of P. falciparum-infected patients (67.6%) showed a low-level parasitemia. The median values of Hb concentration, RBC count, mean corpuscular volume (MCV), mean corpuscular Hb (MCH) and mean corpuscular Hb concentration (MCHC) were significantly lower in P. falciparum-infected patients, while the median red cell distribution width (RDW) was significantly higher in the patients compared to malaria-negative subjects. Anemia, low MCV, low MCH, low MCHC and high RDW were significantly associated with falciparum malaria, but parasitemia level was not significantly associated with anemia severity. The median total WBC count was non-significantly higher in P. falciparum-infected patients, with neutropenia being significantly associated with falciparum malaria. The median platelet count was significantly lower in P. falciparum-infected patients, with thrombocytopenia being significantly associated with falciparum malaria. CONCLUSIONS: Falciparum malaria among patients in Kosti city of the White Nile State, Sudan is predominantly of low-level parasitemia. It is significantly associated with anemia, low MCV, low MCH, low MCHC, high RDW, thrombocytopenia and neutropenia. However, parasitemia level is not a significant predictor of anemia severity. On the other hand, leucopenia is not useful to predict falciparum malaria. Further large-scale studies in community and healthcare settings and inclusion of patients with complicated or severe malaria and those with high parasite densities are recommended.


Subject(s)
Malaria, Falciparum/blood , Adolescent , Adult , Anemia/blood , Anemia/parasitology , Child , Child, Preschool , Cross-Sectional Studies , Female , Hematologic Tests , Humans , Infant , Leukopenia/blood , Leukopenia/parasitology , Malaria, Falciparum/parasitology , Male , Middle Aged , Parasitemia/blood , Parasitemia/parasitology , Plasmodium falciparum , Thrombocytopenia/blood , Thrombocytopenia/parasitology , Young Adult
15.
Front Immunol ; 12: 650028, 2021.
Article in English | MEDLINE | ID: mdl-33815410

ABSTRACT

Variation within the HLA locus been shown to play an important role in the susceptibility to and outcomes of numerous infections, but its influence on immunity to P. falciparum malaria is unclear. Increasing evidence indicates that acquired immunity to P. falciparum is mediated in part by the cellular immune response, including NK cells, CD4 and CD8 T cells, and semi-invariant γδ T cells. HLA molecules expressed by these lymphocytes influence the epitopes recognized by P. falciparum-specific T cells, and class I HLA molecules also serve as ligands for inhibitory receptors including KIR. Here we assessed the relationship of HLA class I and II alleles to the risk of P. falciparum infection and symptomatic malaria in a cohort of 892 Ugandan children and adults followed prospectively via both active and passive surveillance. We identified two HLA class I alleles, HLA-B*53:01 and HLA-C*06:02, that were associated with a higher prevalence of P. falciparum infection. Notably, no class I or II HLA alleles were found to be associated with protection from P. falciparum parasitemia or symptomatic malaria. These findings suggest that class I HLA plays a role in the ability to restrict parasitemia, supporting an essential role for the cellular immune response in P. falciparum immunity. Our findings underscore the need for better tools to enable mechanistic studies of the T cell response to P. falciparum at the epitope level and suggest that further study of the role of HLA in regulating pre-erythrocytic stages of the P. falciparum life cycle is warranted.


Subject(s)
HLA Antigens/genetics , HLA-C Antigens/genetics , Malaria, Falciparum/epidemiology , Parasitemia/epidemiology , Plasmodium falciparum/immunology , Adult , Alleles , Antigens, Protozoan/immunology , Child , Child, Preschool , Epitopes, T-Lymphocyte/immunology , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genotyping Techniques , HLA Antigens/metabolism , HLA-C Antigens/metabolism , Humans , Incidence , Infant , Malaria, Falciparum/blood , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Male , Parasitemia/blood , Parasitemia/genetics , Parasitemia/parasitology , Plasmodium falciparum/isolation & purification , Prospective Studies , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Uganda/epidemiology
16.
PLoS One ; 16(4): e0250350, 2021.
Article in English | MEDLINE | ID: mdl-33878140

ABSTRACT

In 2012 the World Health Organisation (WHO) revised the policy on Intermittent Preventive Treatment with Sulphadoxine Pyrimethamine (IPTp-SP) to at least three doses for improved protection against malaria parasitaemia and its associated effects such as anaemia during pregnancy. We assessed the different SP dosage regimen available under the new policy to determine the dose at which women obtained optimal protection against anaemia during pregnancy. A cross-sectional study was conducted among pregnant women who attended antenatal clinic at four different health facilities in Ghana. The register at the facilities served as a sampling frame and simple random sampling was used to select all the study respondents; they were enrolled consecutively as they kept reporting to the facility to receive antenatal care to obtain the required sample size. The haemoglobin level was checked using the Cyanmethemoglobin method. Multivariable logistic regression was performed to generate odds ratios, confidence intervals and p-values. The overall prevalence of anaemia among the pregnant women was 62.6%. Pregnant women who had taken 3 or more doses of IPTp-SP had anaemia prevalence of 54.1% compared to 66.6% of those who had taken one or two doses IPTp-SP. In the multivariable logistic model, primary (aOR 0.61; p = 0.03) and tertiary education (aOR 0.40; p = <0.001) decreased the odds of anaemia in pregnancy. Further, pregnant women who were anaemic at the time of enrollment (aOR 3.32; p = <0.001) to the Antenatal Care clinic and had malaria infection at late gestation (aOR 2.36; p = <0.001) had higher odds of anaemia in pregnancy. Anaemia in pregnancy remains high in the Northern region of Ghana. More than half of the pregnant women were anaemic despite the use of IPTp-SP. Maternal formal education reduced the burden of anaemia in pregnancy. The high prevalence of anaemia in pregnancy amid IPTp-SP use in Northern Ghana needs urgent attention to avert negative maternal and neonatal health outcomes.


Subject(s)
Anemia/drug therapy , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Parasitemia/drug therapy , Pregnancy Complications, Parasitic/drug therapy , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Adult , Anemia/blood , Anemia/epidemiology , Anemia/parasitology , Cross-Sectional Studies , Drug Combinations , Educational Status , Female , Ghana/epidemiology , Health Knowledge, Attitudes, Practice , Humans , Malaria, Falciparum/blood , Malaria, Falciparum/epidemiology , Odds Ratio , Parasitemia/blood , Parasitemia/epidemiology , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity , Pregnancy , Pregnancy Complications, Parasitic/blood , Pregnancy Complications, Parasitic/epidemiology , Pregnancy Complications, Parasitic/parasitology , Prenatal Care , Prevalence , Sample Size
18.
Parasitol Int ; 80: 102206, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33049417

ABSTRACT

The automated hematology analyzers XN-30 (for research) and XN-31 prototype (for diagnosis support) can easily and rapidly detect Plasmodium-infected red blood cells (iRBCs) and distinguish the developmental stages of the parasite in approximately 1 min. Two dedicated reagents, Lysercell M and Fluorocell M, are available with the analyzers. Lysercell M plays an indispensable role in enhancing the fluorescence intensity of the nucleic acid staining dye in Fluorocell M and altering cell morphology. These effects of Lysercell M have been empirically determined but insufficiently analyzed. In this study, the properties of Lysercell M were analyzed using two flow cytometers and a fluorescence microscope. First, the fluorescence intensity emitted by iRBCs treated with Lysercell M or phosphate-buffered saline (PBS) was evaluated. Second, the size of RBCs treated with Lysercell M or PBS was measured. Finally, the morphology of individual parasites was observed after reconstruction of an M scattergram, a cytogram of the XN-31 prototype system, using an imaging flow cytometer. These analyses showed that treatment of iRBCs with Lysercell M increased the fluorescence intensity of stained parasite nucleic acids by approximately 10-fold and reduced the size of iRBCs in a stage-specific manner, facilitating the identification and quantification of ring form, trophozoite, and schizont stage iRBCs. These properties suggest that Lysercell M is useful for rapidly detecting iRBCs and accurately distinguishing the parasite developmental stages, thereby contributing to the usability of the XN-30 and XN-31 prototype analyzers.


Subject(s)
Diagnostic Tests, Routine/methods , Hematology/methods , Malaria/diagnosis , Parasitemia/diagnosis , Automation, Laboratory , Diagnostic Tests, Routine/instrumentation , Flow Cytometry , Hematology/instrumentation , Humans , Malaria/blood , Microscopy, Fluorescence , Parasitemia/blood
19.
J Ethnopharmacol ; 267: 113449, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33129949

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is a global public health burden due to large number of annual infections and casualties caused by its hematological complications. The bark of Annickia polycarpa is an effective anti-malaria agent in African traditional medicine. However, there is no standardization parameters for A. polycarpa. The anti-malaria properties of its leaf are also not known. AIM OF THE STUDY: To standardize the ethanol leaf extract of A. polycarpa (APLE) and investigate its anti-malaria properties and the effect of its treatment on hematological indices in Plasmodium berghei infected mice in the Rane's test. MATERIALS AND METHODS: Malaria was induced by inoculating female ICR mice with 1.0 × 107P. berghei-infected RBCs in 0.2 mL (i.p.) of blood. Treatment was commenced 3 days later with APLE 50, 200, 400 mg/kg p.o., Quinine 30 mg/kg i.m. (Standard drug) or sterile water (Negative control) once daily per group for 4 successive days. Anti-malarial activity and gross malaria indices such as hyperparasitemia, mean change in body weight and mean survival time (MST) were determined for each group. Changes in white blood cells (WBCs), red blood cells (RBCs), platelets (PLT) counts, hemoglobin (HGB) concentration, hematocrit (HCT) and mean corpuscular volume (MCV) were also measured in the healthy mice before infection as baseline and on day 3 and 8 after inoculation using complete blood count. Standardization was achieved by UHPLC-MS chemical fingerprint analysis and quantitative phytochemical tests. RESULTS: APLE, standardized to its total alkaloids, phenolics and saponin contents, produced significant (P < 0.05) dose-dependent clearance of mean hyperparasitemia of 22.78 ± 0.93% with the minimum parasitemia level of 2.01 ± 0.25% achieved at 400 mg/kg p.o. on day 8. Quinine 30 mg/kg i.m. achieved a minimum parasitemia level of 6.15 ± 0.92%. Moreover, APLE (50-400 mg/kg p.o.) evoked very significant anti-malaria activity of 89.22-95.50%. Anti-malaria activity of Quinine 30 mg/kg i.m. was 86.22%. APLE also inverse dose-dependently promotes weight gain with the effect being significant (P < 0.05) at 50 mg/kg p.o. Moreover, APLE dose-dependently increased the MST of malaria infested mice with 100% survival at 400 mg/kg p.o. Quinine 30 mg/kg i.m. also produce 100% survival rate but did not promote (P > 0.05) weight gain. Hematological studies revealed the development of leukocytopenia, erythrocytosis, microcytic anemia and thrombocytopenia in the malaria infected mice which were reverted with the treatment of APLE 50-400 mg/kg p.o. or Quinine 30 mg/kg i.m. but persisted in the negative control. The UHPLC-MS fingerprint analysis of APLE led to identification of one oxoaporphine and two aporphine alkaloids (1-3). Alkaloids 1 and 3 are being reported in this plant for the first time. CONCLUSION: These results indicate that APLE possessed significant anti-malaria, immunomodulatory, erythropoietic and hematinic actions against malaria infection. APLE also has the ability to revoke deleterious physiological alteration produced by malaria and hence, promote clinical cure. These properties of APLE are due to its constituents especially, aporphine and oxoaporphine alkaloids.


Subject(s)
Annonaceae , Antimalarials/pharmacology , Malaria/drug therapy , Plant Extracts/pharmacology , Plant Leaves , Plasmodium berghei/drug effects , Anemia/blood , Anemia/drug therapy , Anemia/parasitology , Animals , Annonaceae/chemistry , Antimalarials/isolation & purification , Aporphines/pharmacology , Disease Models, Animal , Ethanol/chemistry , Female , Leukopenia/blood , Leukopenia/drug therapy , Leukopenia/parasitology , Malaria/blood , Malaria/parasitology , Mice, Inbred ICR , Parasite Load , Parasitemia/blood , Parasitemia/drug therapy , Parasitemia/parasitology , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plasmodium berghei/growth & development , Polycythemia/blood , Polycythemia/drug therapy , Polycythemia/parasitology , Solvents/chemistry , Thrombocytopenia/blood , Thrombocytopenia/drug therapy , Thrombocytopenia/parasitology
20.
Sci Rep ; 10(1): 16706, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028898

ABSTRACT

Plasmodium vivax is the most prevalent cause of malaria outside of Africa. P. vivax biology and pathogenesis are still poorly understood. The role of one highly occurring phenotype in particular where infected reticulocytes cytoadhere to noninfected normocytes, forming rosettes, remains unknown. Here, using a range of ex vivo approaches, we showed that P. vivax rosetting rates were enhanced by plasma of infected patients and that total immunoglobulin M levels correlated with rosetting frequency. Moreover, rosetting rates were also correlated with parasitemia, IL-6 and IL-10 levels in infected patients. Transcriptomic analysis of peripheral leukocytes from P. vivax-infected patients with low or moderated rosetting rates identified differentially expressed genes related to human host phagocytosis pathway. In addition, phagocytosis assay showed that rosetting parasites were less phagocyted. Collectively, these results showed that rosette formation plays a role in host immune response by hampering leukocyte phagocytosis. Thus, these findings suggest that rosetting could be an effective P. vivax immune evasion strategy.


Subject(s)
Malaria, Vivax/parasitology , Parasitemia/immunology , Phagocytosis/immunology , Plasmodium vivax/immunology , Rosette Formation , Humans , Immunoglobulin M/blood , Interleukin-10/blood , Interleukin-6/blood , Malaria, Vivax/blood , Malaria, Vivax/immunology , Parasitemia/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...