Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Immunology ; 171(3): 413-427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38150744

ABSTRACT

Toll-like receptors (TLRs) play an important role in inducing innate and acquired immune responses against infection. However, the effect of Toll-like receptor 7 (TLR7) on follicular helper T (Tfh) cells in mice infected with Plasmodium is still not clear. The results showed that the splenic CD4+ CXCR5+ PD-1+ Tfh cells were accumulated after Plasmodium yoelii NSM infection, the content of splenic Tfh cells was correlated to parasitemia and/or the red blood cells (RBCs) counts in the blood. Moreover, the expression of TLR7 was found higher than TLR2, TLR3 and TLR4 in splenic Tfh cells of the WT mice. TLR7 agonist R848 and the lysate of red blood cells of infected mice (iRBCs) could induce the activation and differentiation of splenic Tfh cells. Knockout of TLR7 leads to a decrease in the proportion of Tfh cells, down-regulated expression of functional molecules CD40L, IFN-γ, IL-21 and IL-10 in Tfh cells; decreased the proportion of plasma cells and antibody production and reduces the expression of STAT3 and Ikzf2 in Tfh cells. Administration of R848 could inhibit parasitemia, enhance splenic Tfh cell activation and increase STAT3 and Ikzf2 expression in Tfh cells. In summary, this study shows that TLR7 could regulate the function of Tfh cells, affecting the immune response in the spleen of Plasmodium yoelii NSM-infected mice.


Subject(s)
Malaria , Plasmodium yoelii , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Parasitemia/metabolism , Plasmodium yoelii/metabolism , T Follicular Helper Cells/metabolism , T-Lymphocytes, Helper-Inducer , Toll-Like Receptor 7/metabolism
2.
PLoS One ; 17(7): e0271527, 2022.
Article in English | MEDLINE | ID: mdl-35839244

ABSTRACT

Decreased platelet count is an early phenomenon in asexual Plasmodium falciparum parasitemia, but its association with acute or long-term functional changes in platelets and coagulation is unknown. Moreover, the impact of gametocytemia on platelets and coagulation remains unclear. We investigated the changes in platelet number and function during early asexual parasitemia, gametocytemia and convalescence in 16 individuals participating in a controlled human malaria infection study, and studied its relationship with changes in total and active von Willebrand factor levels (VWF) and the coagulation system. Platelet activation and reactivity were determined by flow cytometry, and the coagulation system was assessed using different representative assays including antigen assays, activity assays and global functional assays. Platelet count was decreased during asexual blood stage infection but normalized during gametocytemia. Platelet P-selectin expression was slightly increased during asexual parasitemia, gametocytemia and at day 64. In contrast, platelet reactivity to different agonists remained unchanged, except a marked decrease in reactivity to low dose collagen-related peptide-XL. Thrombin generation and antigen assays did not show a clear activation of the coagulation during asexual parasitemia, whereas total and active VWF levels were markedly increased. During gametocytemia and on day 64, the endogenous thrombin potential, thrombin peak and velocity index were increased and prothrombin conversion and plasma prothrombin levels were decreased. We conclude that the decreased platelet count during asexual parasitemia is associated with increased active VWF levels (i.e. endothelial activation), but not platelet hyperreactivity or hypercoagulability, and that the increased platelet clearance in asexual parasitemia could cause spontaneous VWF-platelet complexes formation.


Subject(s)
Hemostasis , Malaria , Parasitemia , Blood Platelets/metabolism , Hemostasis/physiology , Humans , Malaria/complications , Malaria/metabolism , Parasitemia/complications , Parasitemia/metabolism , Prothrombin/metabolism , Thrombin/metabolism , von Willebrand Factor/metabolism
3.
Front Immunol ; 12: 712034, 2021.
Article in English | MEDLINE | ID: mdl-34804007

ABSTRACT

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a neglected tropical disease and a health problem in Latin America. Etiological treatment has limited effectiveness in chronic CD; thus, new therapeutic strategies are required. The practice of physical exercises has been widely advocated to improve the quality of life of CD patients. The most frequent clinical CD manifestation is the chronic indeterminate form (CIF), and the effect of physical exercises on disease progression remains unknown. Here, in a CIF model, we aimed to evaluate the effect of physical exercises on cardiac histological, parasitological, mitochondrial, and oxidative metabolism, electro and echocardiographic profiles, and immunological features. To establish a CIF model, BALB/c and C57BL/6 mice were infected with 100 and 500 trypomastigotes of the Y T. cruzi strain. At 120 days postinfection (dpi), all mouse groups showed normal PR and corrected QT intervals and QRS complexes. Compared to BALB/c mice, C57BL/6 mice showed a lower parasitemia peak, mortality rate, and less intense myocarditis. Thus, C57BL/6 mice infected with 500 parasites were used for subsequent analyses. At 120 dpi, a decrease in cardiac mitochondrial oxygen consumption and an increase in reactive oxygen species (ROS) were detected. When we increased the number of analyzed mice, a reduced heart rate and slightly prolonged corrected QT intervals were detected, at 120 and 150 dpi, which were then normalized at 180 dpi, thus characterizing the CIF. Y-infected mice were subjected to an exercise program on a treadmill for 4 weeks (from 150 to 180 dpi), five times per week in a 30-60-min daily training session. At 180 dpi, no alterations were detected in cardiac mitochondrial and oxidative metabolism, which were not affected by physical exercises, although ROS production increased. At 120 and 180 dpi, comparing infected and non-infected mice, no differences were observed in the levels of plasma cytokines, indicating that a crucial biomarker of the systemic inflammatory profile was absent and not affected by exercise. Compared with sedentary mice, trained Y-infected mice showed similar parasite loads and inflammatory cells but reduced cardiac fibrosis. Therefore, our data show that physical exercises promote beneficial changes that may prevent CD progression.


Subject(s)
Chagas Cardiomyopathy/prevention & control , Chagas Disease/parasitology , Parasitemia/prevention & control , Physical Conditioning, Animal/physiology , Trypanosoma cruzi , Animals , Chagas Cardiomyopathy/pathology , Chagas Disease/metabolism , Chagas Disease/pathology , Chronic Disease , Cytokines/metabolism , Disease Models, Animal , Female , Fibrosis , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Parasite Load , Parasitemia/metabolism , Parasitemia/pathology , Reactive Oxygen Species/metabolism
4.
PLoS Pathog ; 16(8): e1008230, 2020 08.
Article in English | MEDLINE | ID: mdl-32797076

ABSTRACT

Neutrophil extracellular traps (NETs) evolved as a unique effector mechanism contributing to resistance against infection that can also promote tissue damage in inflammatory conditions. Malaria infection can trigger NET release, but the mechanisms and consequences of NET formation in this context remain poorly characterized. Here we show that patients suffering from severe malaria had increased amounts of circulating DNA and increased neutrophil elastase (NE) levels in plasma. We used cultured erythrocytes and isolated human neutrophils to show that Plasmodium-infected red blood cells release macrophage migration inhibitory factor (MIF), which in turn caused NET formation by neutrophils in a mechanism dependent on the C-X-C chemokine receptor type 4 (CXCR4). NET production was dependent on histone citrullination by peptidyl arginine deiminase-4 (PAD4) and independent of reactive oxygen species (ROS), myeloperoxidase (MPO) or NE. In vitro, NETs functioned to restrain parasite dissemination in a mechanism dependent on MPO and NE activities. Finally, C57/B6 mice infected with P. berghei ANKA, a well-established model of cerebral malaria, presented high amounts of circulating DNA, while treatment with DNAse increased parasitemia and accelerated mortality, indicating a role for NETs in resistance against Plasmodium infection.


Subject(s)
Erythrocytes/immunology , Extracellular Traps/immunology , Macrophage Migration-Inhibitory Factors/metabolism , Malaria/immunology , Neutrophils/immunology , Plasmodium/immunology , Receptors, CXCR4/metabolism , Animals , Erythrocytes/metabolism , Erythrocytes/parasitology , Extracellular Traps/metabolism , Extracellular Traps/parasitology , Humans , Malaria/metabolism , Malaria/parasitology , Malaria/pathology , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Neutrophils/parasitology , Parasitemia/immunology , Parasitemia/metabolism , Parasitemia/parasitology , Parasitemia/pathology
5.
Life Sci ; 258: 118137, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32712299

ABSTRACT

AIMS: Chagas disease is a neglected tropical disease. The ability of Trypanosoma cruzi to survive within phagocytes is likely a critical factor for T. cruzi dissemination in the host. For control of the parasite load and host survival, macrophage action is required. Concanavalin-A (Con-A) presents properties that modulate immune functions and protect hosts from several experimental infectious diseases. Here, we evaluated the effects of Con-A on peritoneal macrophages as well as on the course of experimental infection by T. cruzi. MAIN METHODS: BALB/c mice, a susceptible model for T. cruzi infection, were treated with Con-A via the intraperitoneal route and 3 days later infected with T. cruzi. We quantified parasitemia, cytokines and nitric oxide (NO). Peritoneal exudate and macrophages were collected for macrophage phenotyping and cell viability, NO and cytokine detection, as well as for T. cruzi internalization and release index determination. KEY FINDINGS: Con-A treatment induced IL-17a and NO production by cells from the peritoneal cavity, and M1 marker expression predominated on peritoneal macrophages. These cells are also more prone to producing TNF-α, IL-6 and NO when infected by T. cruzi and show high trypanocidal capacity. Due to a hostile peritoneal microenvironment caused by Con-A, which induces macrophage cNOS and iNOS expression, infected BALB/c mice showed reduced parasitemia and an increased survival rate. SIGNIFICANCE: We conclude that Con-A can induce peritoneal M1 macrophage polarization to increase trypanocidal activity, resulting in ameliorated systemic infection in a susceptible experimental model.


Subject(s)
Cell Polarity , Chagas Disease/pathology , Concanavalin A/pharmacology , Interleukin-17/metabolism , Macrophages, Peritoneal/pathology , Macrophages, Peritoneal/parasitology , Nitric Oxide/metabolism , Trypanosoma cruzi/physiology , Animals , Cell Polarity/drug effects , Chagas Disease/metabolism , Female , Macrophages, Peritoneal/drug effects , Mice, Inbred BALB C , Nitric Oxide Synthase Type II/metabolism , Parasitemia/metabolism , Parasitemia/pathology , Trypanosoma cruzi/drug effects
6.
Amino Acids ; 52(5): 693-710, 2020 May.
Article in English | MEDLINE | ID: mdl-32367435

ABSTRACT

In this study, a determination of Troponin I and creatine kinase activity in whole-blood samples in a cohort of 100 small infants in the age of 2-5 years from Uganda with complicated Plasmodium falciparum malaria suggests the prevalence of cardiac symptoms in comparison to non-infected, healthy patients. Troponin I and creatine kinase activity increased during infection. Different reports showed that complicated malaria coincides with hypoxia in children. The obtained clinical data prompted us to further elucidate the underlying regulatory mechanisms of cardiac involvement in human cardiac ventricular myocytes. Complicated malaria is the most common clinical presentation and might induce cardiac impairment by hypoxia. Eukaryotic initiation factor 5A (eIF-5A) is involved in hypoxia induced factor (HIF-1α) expression. EIF-5A is a protein posttranslationally modified by hypusination involving catalysis of the two enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase. Treatment of human cardiomyocytes with GC7, an inhibitor of DHS, catalyzing the first step in hypusine biosynthesis led to a decrease in proinflammatory and proapoptotic myocardial caspase-1 activity in comparison to untreated cardiomyocytes. This effect was even more pronounced after co-administration of GC7 and GPI from P. falciparum simulating the pathology of severe malaria. Moreover, in comparison to untreated and GC7-treated cardiomyocytes, co-administration of GC7 and GPI significantly decreased the release of cytochrome C and lactate from damaged mitochondria. In sum, coadministration of GC7 prevented cardiac damage driven by hypoxia in vitro. Our approach demonstrates the potential of the pharmacological inhibitor GC7 to ameliorate apoptosis in cardiomyocytes in an in vitro model simulating severe malaria. This regulatory mechanism is based on blocking EIF-5A hypusination.


Subject(s)
Apoptosis , Malaria/pathology , Myocytes, Cardiac/pathology , Parasitemia/pathology , Peptide Initiation Factors/metabolism , Plasmodium berghei/isolation & purification , RNA-Binding Proteins/metabolism , Animals , Child, Preschool , Female , Humans , Infant , Malaria/metabolism , Malaria/parasitology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/parasitology , Parasitemia/metabolism , Parasitemia/parasitology , Peptide Initiation Factors/genetics , RNA-Binding Proteins/genetics , Eukaryotic Translation Initiation Factor 5A
7.
Malar J ; 19(1): 94, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32103749

ABSTRACT

BACKGROUND: Human blood cells (erythrocytes) serve as hosts for the malaria parasite Plasmodium falciparum during its 48-h intraerythrocytic developmental cycle (IDC). Established in vitro protocols allow for the study of host-parasite interactions during this phase and, in particular, high-resolution metabolomics can provide a window into host-parasite interactions that support parasite development. METHODS: Uninfected and parasite-infected erythrocyte cultures were maintained at 2% haematocrit for the duration of the IDC, while parasitaemia was maintained at 7% in the infected cultures. The parasite-infected cultures were synchronized to obtain stage-dependent information of parasite development during the IDC. Samples were collected in quadruplicate at six time points from the uninfected and parasite-infected cultures and global metabolomics was used to analyse cell fractions of these cultures. RESULTS: In uninfected and parasite-infected cultures during the IDC, 501 intracellular metabolites, including 223 lipid metabolites, were successfully quantified. Of these, 19 distinct metabolites were present only in the parasite-infected culture, 10 of which increased to twofold in abundance during the IDC. This work quantified approximately five times the metabolites measured in previous studies of similar research scope, which allowed for more detailed analyses. Enrichment in lipid metabolism pathways exhibited a time-dependent association with different classes of lipids during the IDC. Specifically, enrichment occurred in sphingolipids at the earlier stages, and subsequently in lysophospholipid and phospholipid metabolites at the intermediate and end stages of the IDC, respectively. In addition, there was an accumulation of 18-, 20-, and 22-carbon polyunsaturated fatty acids, which produce eicosanoids and promote gametocytogenesis in infected erythrocyte cultures. CONCLUSIONS: The current study revealed a number of heretofore unidentified metabolic components of the host-parasite system, which the parasite may exploit in a time-dependent manner to grow over the course of its development in the blood stage. Notably, the analyses identified components, such as precursors of immunomodulatory molecules, stage-dependent lipid dynamics, and metabolites, unique to parasite-infected cultures. These conclusions are reinforced by the metabolic alterations that were characterized during the IDC, which were in close agreement with those known from previous studies of blood-stage infection.


Subject(s)
Erythrocytes/metabolism , Malaria, Falciparum/metabolism , Parasitemia/metabolism , Plasmodium falciparum/growth & development , Erythrocytes/parasitology , Malaria, Falciparum/parasitology , Parasitemia/parasitology
8.
J Infect Dis ; 221(7): 1098-1106, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31701142

ABSTRACT

BACKGROUND: Malaria presents with unspecific clinical symptoms that frequently overlap with other infectious diseases and is also a risk factor for coinfections, such as non-Typhi Salmonella. Malaria rapid diagnostic tests are sensitive but unable to distinguish between an acute infection requiring treatment and asymptomatic malaria with a concomitant infection. We set out to test whether cytokine profiles could predict disease status and allow the differentiation between malaria and a bacterial bloodstream infection. METHODS: We created a classification model based on cytokine concentration levels of pediatric inpatients with either Plasmodium falciparum malaria or a bacterial bloodstream infection using the Luminex platform. Candidate markers were preselected using classification and regression trees, and the predictive strength was calculated through random forest modeling. RESULTS: Analyses revealed that a combination of 7-15 cytokines exhibited a median disease prediction accuracy of 88% (95th percentile interval, 73%-100%). Haptoglobin, soluble Fas-Ligand, and complement component C2 were the strongest single markers with median prediction accuracies of 82% (with 95th percentile intervals of 71%-94%, 62%-94%, and 62%-94%, respectively). CONCLUSIONS: Cytokine profiles possess good median disease prediction accuracy and offer new possibilities for the development of innovative point-of-care tests to guide treatment decisions in malaria-endemic regions.


Subject(s)
Bacteremia/diagnosis , Cytokines/blood , Malaria, Falciparum/diagnosis , Parasitemia/diagnosis , Bacteremia/epidemiology , Bacteremia/metabolism , Biomarkers/blood , Case-Control Studies , Child, Preschool , Diagnosis, Differential , Female , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/metabolism , Male , Parasitemia/epidemiology , Parasitemia/metabolism
9.
Int Immunopharmacol ; 77: 105961, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31685438

ABSTRACT

We investigated the immunomodulatory, antiparasitic and cardioprotective effects of a sesquiterpene lactone (SL) administered alone or combined with benznidazole (Bz), in a murine model of Chagas' disease by in vitro and in vivo assays. Antiparasitic and cytotoxic potential of tagitinin C (SL) and Bz were tested in vitro against T. cruzi epimastigotes and cardiomyocytes. Swiss mice challenged with T. cruzi were also treated for 20 days with tagitinin C (10 mg/kg) alone and combined with Bz (100 mg/kg). Tagitinin C exhibited a higher antiparasitic (IC50: 1.15 µM) and cytotoxic (CC50 at 6.54 µM) potential than Bz (IC50: 35.81 µM and CC50: 713.5 µM, respectively). When combined, these drugs presented an addictive interaction, determining complete suppression of parasitemia and parasitological cure in all infected mice (100%) compared to those receiving Bz alone (70%). Anti-T. cruzi immunoglobulin G, and pro-inflammatory cytokines IFN-γ and TNF-α levels were reduced in animals treated with tagitinin C combined with Bz, while IL-10 production was unaffected. Heart inflammation was undetectable in 90% of the animals receiving this combination, while only 50% of the animals receiving Bz alone showed no evidence of myocarditis. Together, our findings indicated that the combination of tagitinin C and Bz exerts potent antiparasitic, immunomodulatory and cardioprotective effects. Due to the remarkable suppression of parasitemia and high parasitological cure, this combination was superior to Bz monotherapy, indicating a high potential for the treatment of Chagas's disease.


Subject(s)
Antiparasitic Agents/pharmacology , Cardiotonic Agents/pharmacokinetics , Immunologic Factors/pharmacology , Lactones/pharmacology , Sesquiterpenes/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cardiotonic Agents/pharmacology , Cell Line , Chagas Disease/drug therapy , Chagas Disease/metabolism , Chagas Disease/parasitology , Cytokines/metabolism , Female , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/parasitology , Mice , Myocarditis/metabolism , Myocarditis/parasitology , Nitroimidazoles/pharmacology , Parasitemia/drug therapy , Parasitemia/metabolism , Parasitemia/parasitology , Rats , Tumor Necrosis Factor-alpha/metabolism
10.
Article in English | MEDLINE | ID: mdl-31685476

ABSTRACT

Artefenomel and DSM265 are two new compounds that have been shown to be well tolerated and effective when administered as monotherapy malaria treatment. This study aimed to determine the safety, pharmacokinetics, and pharmacodynamics of artefenomel and DSM265 administered in combination to healthy subjects in a volunteer infection study using the Plasmodium falciparum-induced blood-stage malaria model. Thirteen subjects were inoculated with parasite-infected erythrocytes on day 0 and received a single oral dose of artefenomel and DSM265 on day 7. Cohort 1 (n = 8) received 200 mg artefenomel plus 100 mg DSM265, and cohort 2 (n = 5) received 200 mg artefenomel plus 50 mg DSM265. Blood samples were collected to measure parasitemia, gametocytemia, and artefenomel-DSM265 plasma concentrations. There were no treatment-related adverse events. The pharmacokinetic profiles of artefenomel and DSM265 were similar to those of the compounds when administered as monotherapy, suggesting no pharmacokinetic interactions. A reduction in parasitemia occurred in all subjects following treatment (log10 parasite reduction ratios over 48 h [PRR48] of 2.80 for cohort 1 and 2.71 for cohort 2; parasite clearance half-lives of 5.17 h for cohort 1 and 5.33 h for cohort 2). Recrudescence occurred in 5/8 subjects in cohort 1 between days 19 and 28 and in 5/5 subjects in cohort 2 between days 15 and 22. Low-level gametocytemia (1 to 330 female gametocytes/ml) was detected in all subjects from day 14. The results of this single-dosing combination study support the further clinical development of the use of artefenomel and DSM265 in combination as a treatment for falciparum malaria. (This study has been registered at ClinicalTrials.gov under identifier NCT02389348.).


Subject(s)
Adamantane/analogs & derivatives , Antimalarials/administration & dosage , Malaria, Falciparum/drug therapy , Parasitemia/drug therapy , Peroxides/administration & dosage , Pyrimidines/administration & dosage , Triazoles/administration & dosage , Adamantane/administration & dosage , Adamantane/pharmacokinetics , Administration, Oral , Adult , Antimalarials/pharmacokinetics , Drug Combinations , Female , Healthy Volunteers , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Male , Middle Aged , Parasitemia/metabolism , Parasitemia/parasitology , Peroxides/pharmacokinetics , Plasmodium falciparum/drug effects , Pyrimidines/pharmacokinetics , Triazoles/pharmacokinetics , Young Adult
11.
Front Immunol ; 10: 1345, 2019.
Article in English | MEDLINE | ID: mdl-31316497

ABSTRACT

T cells play significant roles during Plasmodium falciparum infections. Their regulation of the immune response in symptomatic children with malaria has been deemed necessary to prevent immune associated pathology. In this study, we phenotypically characterized the expression of T cell inhibitory(PD-1, CTLA-4) and senescent markers (CD28(-), CD57) from children with symptomatic malaria, asymptomatic malaria and healthy controls using flow cytometry. We observed increased expression of T cell exhaustion and senescence markers in the symptomatic children compared to the asymptomatic and healthy controls. T cell senescence markers were more highly expressed on CD8 T cells than on CD4 T cells. Asymptomatically infected children had comparable levels of these markers with healthy controls except for CD8+ PD-1+ T cells which were significantly elevated in the asymptomatic children. Also, using multivariate regression analysis, CTLA-4 was the only marker that could predict parasitaemia level. The results suggest that the upregulation of immune exhaustion and senescence markers during symptomatic malaria may affect the effector function of T cells leading to inefficient clearance of parasites, hence the inability to develop sterile immunity to malaria.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cellular Senescence/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Asymptomatic Infections , CD28 Antigens/genetics , CD28 Antigens/immunology , CD28 Antigens/metabolism , CD57 Antigens/genetics , CD57 Antigens/immunology , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/parasitology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , CTLA-4 Antigen/metabolism , Cells, Cultured , Cellular Senescence/genetics , Child , Child, Preschool , Female , Gene Expression Profiling/methods , Humans , Immunophenotyping , Malaria, Falciparum/parasitology , Male , Parasitemia/genetics , Parasitemia/immunology , Parasitemia/metabolism , Plasmodium falciparum/physiology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism
12.
BMC Infect Dis ; 19(1): 250, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30871496

ABSTRACT

BACKGROUND: The WHO recommends single low-dose primaquine (SLDPQ, 0.25 mg/kg body weight) in falciparum-infected patients to block malaria transmission and contribute to eliminating multidrug resistant Plasmodium falciparum from the Greater Mekong Sub region (GMS). However, the anxiety regarding PQ-induced acute haemolytic anaemia in glucose-6-phosphate dehydrogenase deficiency (G6PDd) has hindered its use. Therefore, we assessed the tolerability of SLDPQ in Cambodia to inform national policy. METHODS: This open randomised trial of dihydroartemisinin-piperaquine (DHAPP) + SLDPQ vs. DHAPP alone recruited Cambodians aged ≥1 year with acute uncomplicated P. falciparum. Randomisation was 4:1 DHAPP+SLDPQ: DHAPP for G6PDd patients and 1:1 for G6PDn patients, according to the results of the qualitative fluorescent spot test. Definitive G6PD status was determined by genotyping. Day (D) 7 haemoglobin (Hb) concentration was the primary outcome measure. RESULTS: One hundred nine patients (88 males, 21 females), aged 4-76 years (median 23) were enrolled; 12 were G6PDd Viangchan (9 hemizygous males, 3 heterozygous females). Mean nadir Hb occurred on D7 [11.6 (range 6.4 ─ 15.6) g/dL] and was significantly lower (p = 0.040) in G6PDd (n = 9) vs. G6PDn (n = 46) DHAPP+SLDPQ recipients: 10.9 vs. 12.05 g/dL, Δ = -1.15 (95% CI: -2.24 ─ -0.05) g/dL. Three G6PDn patients had D7 Hb concentrations < 8 g/dL; D7-D0 Hbs were 6.4 ─ 6.9, 7.4 ─ 7.4, and 7.5 ─ 8.2 g/dL. For all patients, mean (range) D7-D0 Hb decline was -1.45 (-4.8 ─ 2.4) g/dL, associated significantly with higher D0 Hb, higher D0 parasitaemia, and receiving DHAPP; G6PDd was not a factor. No patient required a blood transfusion. CONCLUSIONS: DHAPP+SLDPQ was associated with modest Hb declines in G6PD Viangchan, a moderately severe variant. Our data augment growing evidence that SLDPQ in SE Asia is well tolerated and appears safe in G6PDd patients. Cambodia is now deploying SLDPQ and this should encourage other GMS countries to follow suit. TRIAL REGISTRATION: The clinicaltrials.gov reference number is NCT02434952 .


Subject(s)
Antimalarials/administration & dosage , Glucose-6-Phosphate/deficiency , Malaria, Falciparum/drug therapy , Primaquine/administration & dosage , Adolescent , Adult , Aged , Artemisinins/administration & dosage , Cambodia , Child , Child, Preschool , Female , Glucosephosphate Dehydrogenase Deficiency , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Male , Middle Aged , Parasitemia/drug therapy , Parasitemia/metabolism , Parasitemia/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/physiology , Young Adult
13.
Free Radic Biol Med ; 131: 59-71, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30472364

ABSTRACT

Uracil-DNA glycosylase (UNG) initiates the base excision repair pathway by excising uracil from DNA. We have previously shown that Trypanosoma brucei cells defective in UNG exhibit reduced infectivity thus demonstrating the relevance of this glycosylase for survival within the mammalian host. In the early steps of the immune response, nitric oxide (NO) is released by phagocytes, which in combination with oxygen radicals produce reactive nitrogen species (RNS). These species can react with DNA generating strand breaks and base modifications including deaminations. Since deaminated cytosines are the main substrate for UNG, we hypothesized that the glycosylase might confer protection towards nitrosative stress. Our work establishes the occurrence of genotoxic damage in Trypanosoma brucei upon exposure to NO in vitro and shows that deficient base excision repair results in increased levels of damage in DNA and a hypermutator phenotype. We also evaluate the incidence of DNA damage during infection in vivo and show that parasites recovered from mice exhibit higher levels of DNA strand breaks, base deamination and repair foci compared to cells cultured in vitro. Notably, the absence of UNG leads to reduced infectivity and enhanced DNA damage also in animal infections. By analysing mRNA and protein levels, we found that surviving UNG-KO trypanosomes highly express tryparedoxin peroxidase involved in trypanothione/tryparedoxin metabolism. These observations suggest that the immune response developed by the host enhances the activation of genes required to counteract oxidative stress and emphasize the importance of DNA repair pathways in the protection to genotoxic and oxidative stress in trypanosomes.


Subject(s)
DNA Repair , DNA, Protozoan/genetics , Nitric Oxide/pharmacology , Protozoan Proteins/genetics , Trypanosoma brucei brucei/genetics , Uracil-DNA Glycosidase/genetics , Animals , DNA Damage , DNA, Protozoan/immunology , Female , Gene Expression , Genotype , Glutathione/analogs & derivatives , Glutathione/metabolism , Host-Parasite Interactions , Macrophages/immunology , Macrophages/parasitology , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitrosative Stress/genetics , Parasitemia/immunology , Parasitemia/metabolism , Parasitemia/parasitology , Peroxidases/genetics , Peroxidases/metabolism , Phenotype , Protozoan Proteins/metabolism , Spermidine/analogs & derivatives , Spermidine/metabolism , Thioredoxins/metabolism , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/pathogenicity , Trypanosomiasis/immunology , Trypanosomiasis/metabolism , Trypanosomiasis/parasitology , Uracil-DNA Glycosidase/deficiency
14.
PLoS One ; 13(8): e0201693, 2018.
Article in English | MEDLINE | ID: mdl-30080904

ABSTRACT

BACKGROUND: Malaria remains a leading cause of childhood mortality in sub-Saharan Africa. Identifying patients who are at risk for severe manifestations at presentation still remains challenging. This study examines whether a semi-quantitative test on C-Reactive Protein (CRP) could be useful for rapidly predicting the presence or absence of malarial parasitemia in febrile children. METHOD: Data were collected from children with fever or a history of fever at the Agogo Presbyterian Hospital in the Ashanti Region of Ghana. Haematological measurements, microscopic detection of plasmodium species and semi-quantitative CRP measurements with a membrane-based immunoassay for whole blood were performed. CRP was classified as positive when the measured level was ≥ 10 mg/l. RESULTS: During 548 visits, thick blood film results could be obtained from 541 patients, 270 (49.3%) yielded parasitemia with Plasmodium spp. Whereas malaria parasites were detected in only a few patients (7.1%) with normal CRP levels (< 10mg/l), more than a half of patients with an increased CRP concentration (≥ 10 mg/l) were parasite positive (OR 14.5 [CI 4.4-47.6], p<0.001). Patients with increased CRP levels had more than an eight-fold likelihood for parasitemia after correction for other parameters (adjusted OR 8.7 [CI 2.5-30.5], p<0.001). Sensitivity, specificity as well as positive predictive and negative predictive values of CRP for malaria were 99.3% (CI 96.2%-100%), 9.2% (CI 6.4%-12.8%), 31.7% (CI 27.4%-36.1%) and 97.0% (CI 84.2%-99.9%), respectively. CONCLUSION: The semi-quantitative method of measuring CRP is cheap, rapid and easy to perform but not useful in predicting parasitemia and malaria. However, due to its high negative predictive value, it could have a role in identifying those patients unlikely to be presenting with clinical malaria.


Subject(s)
C-Reactive Protein/metabolism , Malaria/diagnosis , Malaria/metabolism , Parasitemia/diagnosis , Parasitemia/metabolism , Adolescent , Africa South of the Sahara/epidemiology , Child , Child, Preschool , Endemic Diseases , Female , Fever/complications , Humans , Infant , Malaria/complications , Malaria/epidemiology , Male , Parasitemia/complications , Parasitemia/epidemiology , Predictive Value of Tests , Prognosis
15.
Article in English | MEDLINE | ID: mdl-29967019

ABSTRACT

Many previous in vitro and in vivo preclinical malaria drug studies have relied on low-parasite-number drug inhibition numerically compared to the untreated controls. In contrast, human malaria drug studies measure the high-parasite-density killing near 100 million/ml. Here we compared the in vivo single-dose pharmacodynamic properties of artesunate and the 4-aminoquinolines pyronaridine, chloroquine, and amodiaquine in a Plasmodium berghei ANKA-green fluorescent protein GFP-luciferase-based murine malaria blood-stage model. Pyronaridine exhibited dose-dependent killing, achieving parasite reductions near 5 to 6 logs at 48 h, with complete cure at 10 mg/kg of body weight compared to artesunate, which exhibited a 48-h dose-dependent killing with a 2-log drop at the noncurative 250-mg/kg dose. Chloroquine, which was noncurative, and amodiaquine, which was partially curative, had nearly the same initial dose-independent killing, with a lag phase of minimal parasite reduction at all doses between 6 and 24 h, followed by a 2.5-log reduction at 48 h. In experiments with drug-treated, washed infected blood transfer to naive mice, chloroquine and amodiaquine showed fewer viable parasites at the 24-h transfer than at the 8-h transfer, measured by a prolonged return to parasitemia, despite a similar parasite log reduction at these time points, in contrast to the correlation of the parasite log reduction to viable parasites with artesunate and pyronaridine. Artesunate in combination with pyronaridine exhibited an initial parasite reduction similar to that achieved with pyronaridine, while with chloroquine or amodiaquine, the reduction was similar to that achieved with artesunate. Single-oral-dose pyronaridine was much more potent in vivo than artesunate, chloroquine, and amodiaquine during the initial decline in parasites and cure.


Subject(s)
Amodiaquine/pharmacology , Artesunate/pharmacology , Chloroquine/pharmacology , Luciferases/metabolism , Naphthyridines/pharmacology , Plasmodium berghei/drug effects , Plasmodium berghei/metabolism , Animals , Antimalarials/pharmacology , Female , Malaria/drug therapy , Malaria/metabolism , Mice , Mice, Inbred BALB C , Parasitemia/drug therapy , Parasitemia/metabolism
16.
Sci Rep ; 7(1): 13835, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29062028

ABSTRACT

Malaria is a global disease associated with considerable mortality and morbidity. An appropriately balanced immune response is crucial in determining the outcome of malarial infection. The glucocorticoid (GC) metabolising enzyme, 11ß-hydroxysteroid dehydrogenase-1 (11ß-HSD1) converts intrinsically inert GCs into active GCs. 11ß-HSD1 shapes endogenous GC action and is immunomodulatory. We investigated the role of 11ß-HSD1 in two mouse models of malaria. 11ß-HSD1 deficiency did not affect survival after malaria infection, but it increased disease severity and parasitemia in mice infected with Plasmodium chabaudi AS. In contrast, 11ß-HSD1 deficiency rather decreased parasitemia in mice infected with the reticulocyte-restricted parasite Plasmodium berghei NK65 1556Cl1. Malaria-induced antibody production and pathology were unaltered by 11ß-HSD1 deficiency though plasma levels of IL-4, IL-6 and TNF-α were slightly affected by 11ß-HSD1 deficiency, dependent on the infecting parasite. These data suggest that 11ß-HSD1 is not crucial for survival of experimental malaria, but alters its progression in a parasite strain-specific manner.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/deficiency , Malaria/metabolism , Parasitemia/metabolism , Plasmodium chabaudi/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Female , Malaria/genetics , Male , Mice , Mice, Mutant Strains , Parasitemia/genetics , Species Specificity
17.
Sci Rep ; 7(1): 11487, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28904345

ABSTRACT

Vδ2+ γδ T cells are semi-innate T cells that expand markedly following P. falciparum (Pf) infection in naïve adults, but are lost and become dysfunctional among children repeatedly exposed to malaria. The role of these cells in mediating clinical immunity (i.e. protection against symptoms) to malaria remains unclear. We measured Vδ2+ T cell absolute counts at acute and convalescent malaria timepoints (n = 43), and Vδ2+ counts, cellular phenotype, and cytokine production following in vitro stimulation at asymptomatic visits (n = 377), among children aged 6 months to 10 years living in Uganda. Increasing age was associated with diminished in vivo expansion following malaria, and lower Vδ2 absolute counts overall, among children living in a high transmission setting. Microscopic parasitemia and expression of the immunoregulatory markers Tim-3 and CD57 were associated with diminished Vδ2+ T cell pro-inflammatory cytokine production. Higher Vδ2 pro-inflammatory cytokine production was associated with protection from subsequent Pf infection, but also with an increased odds of symptoms once infected. Vδ2+ T cells may play a role in preventing malaria infection in children living in endemic settings; progressive loss and dysfunction of these cells may represent a disease tolerance mechanism that contributes to the development of clinical immunity to malaria.


Subject(s)
Malaria/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Age Factors , Biomarkers , Child , Child, Preschool , Cytokines/biosynthesis , Humans , Lymphocyte Count , Malaria/diagnosis , Malaria/metabolism , Malaria/parasitology , Parasitemia/immunology , Parasitemia/metabolism , Parasitemia/parasitology , Plasmodium falciparum/immunology
18.
Nature ; 547(7662): 213-216, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28678779

ABSTRACT

The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.


Subject(s)
Gene Expression Regulation , Malaria/parasitology , Parasites/metabolism , Parasites/pathogenicity , Phosphotransferases/metabolism , Plasmodium/metabolism , Plasmodium/pathogenicity , Animals , Caloric Restriction , Energy Metabolism/drug effects , Energy Metabolism/genetics , Gene Expression Regulation/drug effects , Genetic Complementation Test , Glucose/metabolism , Glucose/pharmacology , Male , Mice , Mice, Inbred C57BL , Parasitemia/blood , Parasitemia/genetics , Parasitemia/metabolism , Parasitemia/parasitology , Parasites/genetics , Parasites/growth & development , Phosphotransferases/deficiency , Phosphotransferases/genetics , Plasmodium/genetics , Plasmodium/growth & development , Rats , Transcriptome/drug effects , Virulence/drug effects
19.
PLoS One ; 12(4): e0175702, 2017.
Article in English | MEDLINE | ID: mdl-28422980

ABSTRACT

Multiple mechanisms such as genetic and epigenetic variations within a key gene may play a role in malarial susceptibility and response to anti-malarial drugs in the population. ABCB1 is one of the well-studied membrane transporter genes that code for the P-glycoprotein (an efflux protein) and whose effect on malaria disease predisposition and susceptibility to drugs remains to be understood. We studied the association of single nucleotide variations in human ABCB1 that influences its function in subjects with uncomplicated and complicated malaria caused by Plasmodium falciparum (Pf). Global DNA methylation and ABCB1 DNA promoter methylation levels were performed along with transcriptional response and protein expression in subjects with malaria and healthy controls. The rs2032582 locus was significantly associated with complicated and combined malaria groups when compared to controls (p < 0.05). Significant DNA methylation difference was noticed between case and control (p < 0.05). In addition, global DNA methylation levels of the host DNA were inversely proportional to parasitemia in individuals with Pf infection. Our study also revealed the correlation between ABCB1 DNA promoter methylation with rs1128503 and rs2032582 polymorphisms in malaria and was related to increased expression of ABCB1 protein levels in complicated malaria group (p < 0.05) when compared to uncomplicated malaria and control groups. The study provides evidence for multiple mechanisms that may regulate the role of host ABCB1 function to mediate aetiology of malaria susceptibility, prognosis and drug response. These may have clinical implications and therapeutic application for various malarial conditions.


Subject(s)
Epigenesis, Genetic , Genetic Predisposition to Disease , Malaria, Falciparum/genetics , Parasitemia/genetics , Promoter Regions, Genetic , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Adolescent , Adult , Case-Control Studies , DNA Methylation , Female , Genetic Loci , Host-Parasite Interactions , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Male , Middle Aged , Parasitemia/metabolism , Parasitemia/parasitology , Parasitemia/pathology , Plasmodium falciparum/pathogenicity , Plasmodium falciparum/physiology , Polymorphism, Single Nucleotide , Severity of Illness Index
20.
Article in English | MEDLINE | ID: mdl-27993857

ABSTRACT

Current treatments for chronic Chagas cardiomyopathy, a disease with high mortality rates and caused by the protozoan Trypanosoma cruzi, are unsatisfactory. Myocardial inflammation, including endothelial activation, is responsible for the structural and functional damage seen in the chronic phase. The clinical efficacy of benznidazole could be improved by decreasing chronic inflammation. Statins, which have anti-inflammatory properties, may improve the action of benznidazole. Here, the action of simvastatin in a murine model of chronic Chagas cardiomyopathy and the link with the production of the proresolving eicosanoid 15-epi-lipoxin A4, produced by 5-lipoxygenase, are evaluated. Simvastatin decreased the expression of the adhesion molecules E-selectin, intracellular adhesion molecule type 1 (ICAM-1), and vascular cell adhesion molecule type 1 (VCAM-1) in T. cruzi-infected mice. However, when this drug was administered to 5-lipoxygenase-deficient mice, the anti-inflammatory effect was not observed unless exogenous 15-epi-lipoxin A4 was administered. Thus, in chronic Chagas disease, 5-epi-lipoxin A4 induced by simvastatin treatment could improve the pathophysiological condition of patients by increasing the trypanocidal action of benznidazole.


Subject(s)
Anticholesteremic Agents/pharmacology , Chagas Cardiomyopathy/drug therapy , Nitroimidazoles/pharmacology , Parasitemia/drug therapy , Simvastatin/pharmacology , Trypanocidal Agents/pharmacology , Animals , Arachidonate 5-Lipoxygenase/deficiency , Arachidonate 5-Lipoxygenase/genetics , Chagas Cardiomyopathy/metabolism , Chagas Cardiomyopathy/mortality , Chagas Cardiomyopathy/parasitology , Chronic Disease , Disease Models, Animal , Drug Therapy, Combination , E-Selectin/genetics , E-Selectin/metabolism , Endothelium/drug effects , Endothelium/metabolism , Endothelium/parasitology , Gene Expression Regulation , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Lipoxins/antagonists & inhibitors , Lipoxins/metabolism , Lipoxins/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Parasitemia/metabolism , Parasitemia/mortality , Parasitemia/parasitology , Survival Analysis , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/pathogenicity , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...