Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.962
Filter
1.
Mem Inst Oswaldo Cruz ; 119: e230223, 2024.
Article in English | MEDLINE | ID: mdl-38716979

ABSTRACT

BACKGROUND: Conventional microscopic counting is a widely utilised method for evaluating the trypanocidal effects of drugs on intracellular amastigotes. This is a low-cost approach, but it is time-consuming and reliant on the expertise of the microscopist. So, there is a pressing need for developing technologies to enhance the efficiency of low-cost anti-Trypanosoma cruzi drug screening. OBJECTIVES: In our laboratory, we aimed to expedite the screening of anti-T. cruzi drugs by implementing a fluorescent method that correlates emitted fluorescence from green fluorescent protein (GFP)-expressing T. cruzi (Tc-GFP) with cellular viability. METHODS: Epimastigotes (Y strain) were transfected with the pROCKGFPNeo plasmid, resulting in robust and sustained GFP expression across epimastigotes, trypomastigotes, and intracellular amastigotes. Tc-GFP epimastigotes and intracellular amastigotes were exposed to a serial dilution of benznidazole (Bz). Cell viability was assessed through a combination of microscopic counting, MTT, and fluorimetry. FINDINGS: The fluorescence data indicated an underestimation of the activity of Bz against epimastigotes (IC50 75 µM x 14 µM). Conversely, for intracellular GFP-amastigotes, both fluorimetry and microscopy yielded identical IC50 values. Factors influencing the fluorimetry approach are discussed. MAIN CONCLUSIONS: Our proposed fluorometric assessment is effective and can serve as a viable substitute for the time-consuming microscopic counting of intracellular amastigotes.


Subject(s)
Green Fluorescent Proteins , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Green Fluorescent Proteins/genetics , Trypanocidal Agents/pharmacology , Nitroimidazoles/pharmacology , Parasitic Sensitivity Tests , Animals , Inhibitory Concentration 50 , Drug Evaluation, Preclinical , Cell Survival/drug effects
2.
Pak J Pharm Sci ; 37(1(Special)): 173-184, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747267

ABSTRACT

Hydrazones 1-6, azo-pyrazoles 7-9 and azo-pyrimidines 10-15 are compounds that exhibit antibacterial activity. The mode of action and structures of these derivatives have been previously confirmed as antibacterial. In this investigation, biological screening and molecular docking studies were performed for derivatives 1-15, with compounds 2, 7, 8, 14 and 15 yielding the best energy scores (from -20.7986 to -10.5302 kcal/mol). Drug-likeness and in silico ADME prediction for the most potent derivatives, 2, 7, 8, 14 and 15, were predicted (from 84.46 to 96.85%). The latter compounds showed good recorded physicochemical properties and pharmacokinetics. Compound 8 demonstrated the strongest inhibition, which was similar to the positive control (eflornithine) against Trypanosoma brucei brucei (WT), with an EC50 of 25.12 and 22.52µM, respectively. Moreover, compound 14 exhibited the best activity against Leishmania mexicana promastigotes and Leishmania major promastigotes (EC50 =46.85; 40.78µM, respectively).


Subject(s)
Molecular Docking Simulation , Pyrazoles , Pyrimidines , Trypanocidal Agents , Trypanosoma brucei brucei , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Trypanosoma brucei brucei/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Leishmania mexicana/drug effects , Leishmania major/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Computer Simulation , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis , Structure-Activity Relationship , Parasitic Sensitivity Tests
3.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Article in English | MEDLINE | ID: mdl-38747836

ABSTRACT

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Subject(s)
Drug Design , Hydrazines , Leishmania , Naphthoquinones , Trypanocidal Agents , Trypanosoma cruzi , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/chemical synthesis , Trypanosoma cruzi/drug effects , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Leishmania/drug effects , Hydrazines/chemistry , Hydrazines/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Parasitic Sensitivity Tests , Inhibitory Concentration 50 , Structure-Activity Relationship , Cysteine Endopeptidases
4.
Front Cell Infect Microbiol ; 14: 1396786, 2024.
Article in English | MEDLINE | ID: mdl-38746786

ABSTRACT

Antimalarial resistance to the first-line partner drug piperaquine (PPQ) threatens the effectiveness of artemisinin-based combination therapy. In vitro piperaquine resistance is characterized by incomplete growth inhibition, i.e. increased parasite growth at higher drug concentrations. However, the 50% inhibitory concentrations (IC50) remain relatively stable across parasite lines. Measuring parasite viability of a drug-resistant Cambodian Plasmodium falciparum isolate in a parasite reduction ratio (PRR) assay helped to better understand the resistance phenotype towards PPQ. In this parasite isolate, incomplete growth inhibition translated to only a 2.5-fold increase in IC50 but a dramatic decrease of parasite killing in the PRR assay. Hence, this pilot study reveals the potential of in vitro parasite viability assays as an important, additional tool when it comes to guiding decision-making in preclinical drug development and post approval. To the best of our knowledge, this is the first time that a compound was tested against a drug-resistant parasite in the in vitro PRR assay.


Subject(s)
Antimalarials , Drug Resistance , Inhibitory Concentration 50 , Malaria, Falciparum , Plasmodium falciparum , Quinolines , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Quinolines/pharmacology , Antimalarials/pharmacology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Parasitic Sensitivity Tests , Pilot Projects , Artemisinins/pharmacology
5.
Chem Pharm Bull (Tokyo) ; 72(4): 389-392, 2024.
Article in English | MEDLINE | ID: mdl-38644164

ABSTRACT

Chagas disease, a neglected tropical disease caused by the protozoan Trypanosoma cruzi poses a significant health challenge in rural areas of Latin America. The current pharmacological options exhibit notable side effects, demand prolonged administration, and display limited efficacy. Consequently, there is an urgent need to develop drugs that are safe and clinically effective. Previously, we identified a quinone compound (designated as compound 2) with potent antiprotozoal activity, based on the chemical structure of komaroviquinone, a natural product renowned for its antitrypanosomal effects. However, compound 2 was demonstrated considerably unstable to light. In this study, we elucidated the structure of the light-induced degradation products of compound 2 and probed the correlation between the quinone ring's substituents and its susceptibility to light. Our findings led to the discovery of quinones with significantly enhanced light stability, some of which exhibiting antitrypanosomal activity. The most promising compound was evaluated for drug efficacy in a mouse model of Chagas disease, revealing where a notable reduction in blood parasitemia.


Subject(s)
Chagas Disease , Quinones , Trypanocidal Agents , Trypanosoma cruzi , Chagas Disease/drug therapy , Animals , Trypanosoma cruzi/drug effects , Mice , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Quinones/chemistry , Quinones/pharmacology , Parasitic Sensitivity Tests , Molecular Structure , Light , Disease Models, Animal , Structure-Activity Relationship
6.
Eur J Med Chem ; 271: 116429, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38663284

ABSTRACT

Amodiaquine (AQ) is a potent antimalarial drug used in combination with artesunate as part of artemisinin-based combination therapies (ACTs) for malarial treatment. Due to the rising emergence of resistant malaria parasites, some of which have been reported for ACT, the usefulness of AQ as an efficacious therapeutic drug is threatened. Employing the organometallic hybridisation approach, which has been shown to restore the antimalarial activity of chloroquine in the form of an organometallic hybrid clinical candidate ferroquine (FQ), the present study utilises this strategy to modulate the biological performance of AQ by incorporating ferrocene. Presently, we have conceptualised ferrocenyl AQ derivatives and have developed facile, practical routes for their synthesis. A tailored library of AQ derivatives was assembled and their antimalarial activity evaluated against chemosensitive (NF54) and multidrug-resistant (K1) strains of the malaria parasite, Plasmodium falciparum. The compounds generally showed enhanced or comparable activities to those of the reference clinical drugs chloroquine and AQ, against both strains, with higher selectivity for the sensitive phenotype, mostly in the double-digit nanomolar IC50 range. Moreover, representative compounds from this series show the potential to block malaria transmission by inhibiting the growth of stage II/III and V gametocytes in vitro. Preliminary mechanistic insights also revealed hemozoin inhibition as a potential mode of action.


Subject(s)
Amodiaquine , Antimalarials , Ferrous Compounds , Metallocenes , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Plasmodium falciparum/drug effects , Metallocenes/chemistry , Metallocenes/pharmacology , Amodiaquine/pharmacology , Amodiaquine/chemistry , Structure-Activity Relationship , Molecular Structure , Humans , Parasitic Sensitivity Tests , Dose-Response Relationship, Drug
7.
Eur J Med Chem ; 271: 116396, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38643671

ABSTRACT

Neglected tropical diseases (NTDs) comprise diverse infections with more incidence in tropical/sub-tropical areas. In spite of preventive and therapeutic achievements, NTDs are yet serious threats to the public health. Epidemiological reports of world health organization (WHO) indicate that more than 1.5 billion people are afflicted with at least one NTD type. Among NTDs, leishmaniasis, chagas disease (CD) and human African trypanosomiasis (HAT) result in substantial morbidity and death, particularly within impoverished countries. The statistical facts call for robust efforts to manage the NTDs. Currently, most of the anti-NTD drugs are engaged with drug resistance, lack of efficient vaccines, limited spectrum of pharmacological effect and adverse reactions. To circumvent the issue, numerous scientific efforts have been directed to the synthesis and pharmacological development of chemical compounds as anti-infectious agents. A survey of the anti-NTD agents reveals that the majority of them possess privileged nitrogen, sulfur and oxygen-based heterocyclic structures. In this review, recent achievements in anti-infective small molecules against parasitic NTDs are described, particularly from the SAR (Structure activity relationship) perspective. We also explore current advocating strategies to extend the scope of anti-NTD agents.


Subject(s)
Neglected Diseases , Neglected Diseases/drug therapy , Humans , Structure-Activity Relationship , Molecular Structure , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Chagas Disease/drug therapy , Leishmaniasis/drug therapy , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Parasitic Sensitivity Tests , Tropical Medicine
8.
Bioorg Chem ; 147: 107408, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678776

ABSTRACT

This study aimed to assess the antiprotozoal efficacy of dicentrine, an aporphine alkaloid isolated from Ocotea puberula, against amastigote forms of Leishmania (L.) infantum. Our findings reveal that dicentrine demonstrated a notable EC50 value of 10.3 µM, comparable to the positive control miltefosine (EC50 of 10.4 µM), while maintaining moderate toxicity to macrophages (CC50 of 51.9 µM). Utilizing an in silico methodology, dicentrine exhibited commendable adherence to various parameters, encompassing lipophilicity, water solubility, molecule size, polarity, and flexibility. Subsequently, we conducted additional investigations to unravel the mechanism of action, employing Langmuir monolayers as models for protozoan cell membranes. Tensiometry analyses unveiled that dicentrine disrupts the thermodynamic and mechanical properties of the monolayer by expanding it to higher areas and increasing the fluidity of the film. The molecular disorder was further corroborated through dilatational rheology and infrared spectroscopy. These results contribute insights into the role of dicentrine as a potential antiprotozoal drug in its interactions with cellular membranes. Beyond elucidating the mechanism of action at the plasma membrane's external surface, our study sheds light on drug-lipid interface interactions, offering implications for drug delivery and other pharmaceutical applications.


Subject(s)
Antiprotozoal Agents , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Structure-Activity Relationship , Cell Membrane/drug effects , Aporphines/pharmacology , Aporphines/chemistry , Dose-Response Relationship, Drug , Lauraceae/chemistry , Molecular Structure , Leishmania infantum/drug effects , Parasitic Sensitivity Tests , Animals
9.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587391

ABSTRACT

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Subject(s)
Aminoquinolines , Antimalarials , Doxycycline , Piperazines , Plasmodium cynomolgi , Plasmodium vivax , Doxycycline/pharmacology , Antimalarials/pharmacology , Aminoquinolines/pharmacology , Plasmodium vivax/drug effects , Plasmodium cynomolgi/drug effects , Chloroquine/pharmacology , Animals , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Quinolines/pharmacology , Inhibitory Concentration 50 , Humans , Parasitic Sensitivity Tests
10.
Bioorg Med Chem ; 105: 117734, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38677112

ABSTRACT

Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the ß-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.


Subject(s)
Antimalarials , Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Harmine , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Harmine/pharmacology , Harmine/chemistry , Harmine/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Plasmodium falciparum/drug effects , Molecular Structure , Drug Discovery , Dose-Response Relationship, Drug , Cell Line, Tumor , Parasitic Sensitivity Tests
11.
Bioorg Med Chem ; 105: 117736, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38677111

ABSTRACT

Leishmaniasis and Chagas disease are neglected tropical diseases caused by Trypanosomatidae parasites. Given the numerous limitations associated with current treatments, such as extended treatment duration, variable efficacy, and severe side effects, there is an urgent imperative to explore novel therapeutic options. This study details the early stages of hit-to-lead optimization for a benzenesulfonyl derivative, denoted as initial hit, against Trypanossoma cruzi (T. cruzi), Leishmania infantum (L. infantum) and Leishmania braziliensis (L. braziliensis). We investigated structure - activity relationships using a series of 26 newly designed derivatives, ultimately yielding potential lead candidates with potent low-micromolar and sub-micromolar activities against T. cruzi and Leishmania spp, respectively, and low in vitro cytotoxicity against mammalian cells. These discoveries emphasize the significant promise of this chemical class in the fight against Chagas disease and leishmaniasis.


Subject(s)
Drug Design , Leishmania infantum , Parasitic Sensitivity Tests , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Leishmania infantum/drug effects , Structure-Activity Relationship , Molecular Structure , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Dose-Response Relationship, Drug , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Humans , Animals , Sulfones/pharmacology , Sulfones/chemical synthesis , Sulfones/chemistry
12.
Chem Biodivers ; 21(5): e202400491, 2024 May.
Article in English | MEDLINE | ID: mdl-38470945

ABSTRACT

We have evaluated eight p-coumaric acid prenylated derivatives in vitro for their antileishmanial activity against Leishmania amazonensis promastigotes and their antischistosomal activity against Schistosoma mansoni adult worms. Compound 7 ((E)-3,4-diprenyl-4-isoprenyloxycinnamic alcohol) was the most active against L. amazonensis (IC50=45.92 µM) and S. mansoni (IC50=64.25 µM). Data indicated that the number of prenyl groups, the presence of hydroxyl at C9, and a single bond between C7 and C8 are important structural features for the antileishmanial activity of p-coumaric acid prenylated derivatives.


Subject(s)
Antiprotozoal Agents , Coumaric Acids , Leishmania , Parasitic Sensitivity Tests , Schistosoma mansoni , Animals , Schistosoma mansoni/drug effects , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Leishmania/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Structure-Activity Relationship , Prenylation , Propionates/pharmacology , Propionates/chemistry , Molecular Structure , Schistosomicides/pharmacology , Schistosomicides/chemistry , Schistosomicides/chemical synthesis , Dose-Response Relationship, Drug
13.
Chem Biodivers ; 21(5): e202400547, 2024 May.
Article in English | MEDLINE | ID: mdl-38507773

ABSTRACT

The hexane extract from twigs of Piper truncatum Vell (Piperaceae) displayed activity against Trypanosoma cruzi and was subjected to chromatographic steps to afford six dibenzylbutyrolactolic lignans, being four knowns: cubebin (1), (-)-9α-O-methylcubebin (2), (+)-9ß-O-methylcubebinin (3) and 3,4-dimethoxy-3,4-demethylenedioxycubebin (4) as well as two new, named truncatin A (5) and B (6). Initially, in vitro activity against trypomastigotes was evaluated and compounds 1, 4 and 6 exhibited EC50 values of 41.6, 21.0 and 39.6 µM, respectively. However, when tested against amastigotes, the relevant clinical form in the chronic phase of Chagas disease, compounds 1-6 displayed activities with EC50 values ranging from 1.6 to 13.7 µM. In addition, the mammalian cytotoxicity of compounds 1-6 was evaluated against murine fibroblasts (NCTC). Compounds 2, 3 and 4 exhibited reduced toxicity against NCTC cells (CC50>200 µM), resulting in SI values of>21.9,>14.5 and>121.9, respectively. Compound 4 showed the highest potency with an SI value twice superior to that determined by the standard drug benznidazole (SI>54.6) against the intracellular amastigotes. These data suggest that lignan 4 can be considered a possible scaffold for designing a new drug candidate for Chagas disease.


Subject(s)
Lignans , Piper , Trypanocidal Agents , Trypanosoma cruzi , Lignans/pharmacology , Lignans/chemistry , Lignans/isolation & purification , Piper/chemistry , Animals , Trypanosoma cruzi/drug effects , Mice , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Structure-Activity Relationship , Parasitic Sensitivity Tests , Fibroblasts/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Cell Survival/drug effects
14.
Acta Trop ; 254: 107190, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508372

ABSTRACT

Pentavalent antimonials are the mainstay treatment against different clinical forms of leishmaniasis. The emergence of resistant isolates in endemic areas has led to treatment failure. Unraveling the underlying resistance mechanism would assist in improving the treatment strategies against resistant isolates. This study aimed to investigate the RNA expression level of glutathione synthetase (GS), Spermidine synthetase (SpS), trypanothione synthetase (TryS) genes involved in trypanothione synthesis, and thiol-dependent reductase (TDR) implicated in drug reduction, in antimony-sensitive and -resistant Leishmania tropica isolates. We investigated 11 antimony-resistant and 11 antimony-sensitive L. tropica clinical isolates from ACL patients. Drug sensitivity of amastigotes was determined in mouse macrophage cell line J774A.1. The RNA expression level in the promastigote forms was analyzed by quantitative real-time PCR. The results revealed a significant increase in the average expression of GS, SpS, and TrpS genes by 2.19, 1.56, and 2.33-fold in resistant isolates compared to sensitive ones. The average expression of TDR was 1.24-fold higher in resistant isolates, which was insignificant. The highest correlation coefficient between inhibitory concentration (IC50) values and gene expression belonged to the TryS, GS, SpS, and TDR genes. Moreover, the intracellular thiol content was increased 2.17-fold in resistant isolates compared to sensitive ones and positively correlated with IC50 values. Our findings suggest that overexpression of trypanothione biosynthesis genes and increased thiol content might play a key role in the antimony resistance of L. tropica clinical isolates. In addition, the diversity of gene expression in the trypanothione system and thiol content among L. tropica clinical isolates highlighted the phenotypic heterogeneity of antimony resistance among the parasite population.


Subject(s)
Antimony , Antiprotozoal Agents , Drug Resistance , Glutathione , Glutathione/analogs & derivatives , Leishmania tropica , Spermidine/analogs & derivatives , Leishmania tropica/genetics , Leishmania tropica/drug effects , Drug Resistance/genetics , Animals , Antimony/pharmacology , Humans , Antiprotozoal Agents/pharmacology , Mice , Glutathione/metabolism , Cell Line , Macrophages/parasitology , Inhibitory Concentration 50 , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/drug therapy , Female , Adult , Parasitic Sensitivity Tests , Male , Real-Time Polymerase Chain Reaction
15.
ChemMedChem ; 19(9): e202300667, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38326914

ABSTRACT

Nagana and Human African Trypanosomiasis (HAT), caused by (sub)species of Trypanosoma, are diseases that impede human and animal health, and economic growth in Africa. The few drugs available have drawbacks including suboptimal efficacy, adverse effects, drug resistance, and difficult routes of administration. New drugs are needed. A series of 20 novel quinolone compounds with affordable synthetic routes was made and evaluated in vitro against Trypanosoma brucei and HEK293 cells. Of the 20 compounds, 12 had sub-micromolar potencies against the parasite (EC50 values=0.051-0.57 µM), and most were non-toxic to HEK293 cells (CC50 values>5 µM). Two of the most potent compounds presented sub-micromolar activities against other trypanosome (sub)species (T. cruzi and T. b. rhodesiense). Although aqueous solubility is poor, both compounds possess good logD values (2-3), and either robust or poor microsomal stability profiles. These varying attributes will be addressed in future reports.


Subject(s)
Parasitic Sensitivity Tests , Quinolones , Trypanocidal Agents , Trypanosoma brucei brucei , Humans , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , HEK293 Cells , Trypanosoma brucei brucei/drug effects , Structure-Activity Relationship , Quinolones/chemistry , Quinolones/pharmacology , Quinolones/chemical synthesis , Molecular Structure , Hydrazines/chemistry , Hydrazines/pharmacology , Hydrazines/chemical synthesis , Trypanosoma cruzi/drug effects , Dose-Response Relationship, Drug
16.
Chemistry ; 30(3): e202303316, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37926692

ABSTRACT

Balgacyclamide A-C are a family of cyanobactin natural products isolated from freshwater cyanobacteria Microcystis aeruginosa. These macrocyclic peptides are characterized by their oxazoline-thiazole core, their 7 or 8 stereocenters, and their antiparasitic activities. Balgacyclamide B is known for its activity towards Plasmodium falciparum chloroquine-resistant strain K1, Trypanosoma brucei rhodesiense, and Leishmania donovani. In this report, the first total synthesis of Balgacyclamide B is described in a 17-steps pathway and a 2 % overall yield. The synthetic pathway toward balgacyclamide B can be adapted for the future syntheses of balgacyclamide A and C. In addition, a brief history background of oxazolines syntheses is shown to emphasize the importance of the cyclization conditions used to interconvert or retain configuration of ß-hydroxy amides via dehydrative cyclization.


Subject(s)
Antiparasitic Agents , Leishmania donovani , Peptides, Cyclic , Parasitic Sensitivity Tests , Trypanosoma brucei rhodesiense , Plasmodium falciparum
17.
Acta Pharm ; 73(4): 537-558, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38147482

ABSTRACT

Here we present the synthesis and evaluation of the biological activity of new hybrid compounds, ureido-type (UT) harmiquins, based on chloroquine (CQ) or mefloquine (MQ) scaffolds and ß-carboline alkaloid harmine against cancer cell lines and Plasmodium falciparum. The hybrids were prepared from the corresponding amines by 1,1'-carbonyldiimidazole (CDI)-mediated synthesis. In vitro evaluation of the biological activity of the title compounds revealed two hit compounds. Testing of the antiproliferative activity of the new UT harmiquins, and previously prepared triazole-(TT) and amide-type (AT) CQ-based harmiquins, against a panel of human cell lines, revealed TT harmiquine 16 as the most promising compound, as it showed pronounced and selective activity against the tumor cell line HepG2 (IC 50 = 5.48 ± 3.35 µmol L-1). Screening of the antiplasmodial activities of UT harmiquins against erythrocytic stages of the Plasmodium life cycle identified CQ-based UT harmiquine 12 as a novel antiplasmodial hit because it displayed low IC 50 values in the submicromolar range against CQ-sensitive and resistant strains (IC 50 0.06 ± 0.01, and 0.19 ± 0.02 µmol L-1, respectively), and exhibited high selectivity against Plasmodium, compared to mammalian cells (SI = 92).


Subject(s)
Antimalarials , Chloroquine , Mefloquine , Humans , Antimalarials/pharmacology , Cell Line, Tumor , Chloroquine/pharmacology , Mefloquine/pharmacology , Parasitic Sensitivity Tests
18.
J Pharmacol Toxicol Methods ; 124: 107472, 2023.
Article in English | MEDLINE | ID: mdl-37778462

ABSTRACT

Several assay methods are in use for monitoring the drug sensitivity of malaria parasites and screening new antimalarial drugs. Plasmodium lactate dehydrogenase (pLDH) and SYBR Green I in vitro assays were used to evaluate the drug efficacy of Chloroquine, Artemisinin and Azadirachta indica silver nano particles against Plasmodium falciparum 3D7 strain. The half-maximal inhibitory concentration (IC50) of each compound was estimated with non-linear regression model - dose-response analysis. The consistency between two methods was analysed with Cohen's kappa coefficient, interclass correlation and Bland-Altman plots. No statistical difference was found between IC50 values determined by both assays (p = 0.714). The proportion of resistant isolates to chloroquine according to SYBR green I (43.48%) and pLDH (34.78%) assays were similar (z = 0.302; p = 0.762) with significant concordant between methods (k = 0.819, p < 0.001). The results of pLDH Qualisa assay was comparable with classic SYBR green I assay and can be potentially useful in antimalarial drug efficacy surveillance.


Subject(s)
Antimalarials , Antimalarials/pharmacology , Plasmodium falciparum , L-Lactate Dehydrogenase , Parasitic Sensitivity Tests/methods , Chloroquine/pharmacology
19.
Biomed Pharmacother ; 164: 114879, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37210899

ABSTRACT

Leishmaniasis and Chagas disease, two of the most prevalent neglected tropical diseases, are a world health problem. The harsh reality of these infective diseases is the absence of effective and safe therapies. In this framework, natural products play an important role in overcoming the current need to development new antiparasitic agents. The present study reports the synthesis, antikinetoplastid screening, mechanism study of fourteen withaferin A derivatives (2-15). Nine of them (2-6, 8-10 and 12) showed a potent dose-dependent inhibitory effect on the proliferation of Leishmania amazonensis and L. donovani promastigotes and Trypanosoma cruzi epimastigotes with IC50 values ranging from 0.19 to 24.01 µM. Outstandingly, the fully acetylated derivative 10 (4,27-diacetylwithaferin A) was the most potent compound showing IC50 values of 0.36, 2.82 and 0.19 µM against L. amazonensis, L. donovani and T. cruzi, respectively. Furthermore, analogue 10 exhibited approximately 18 and 36-fold greater antikinetoplastid activity, on L. amazonensis and T. cruzi, than the reference drugs. The activity was accompanied by significantly lower cytotoxicity on the murine macrophage cell line. Moreover, compounds 2, 3, 5-7, 9 and 10 showed more potent activity than the reference drug against the intracellular amastigotes forms of L. amazonensis and T.cruzi, with a good selectivity index on a mammalian cell line. In addition, withaferin A analogues 3, 5-7, 9 and 10 induce programmed cell death through a process of apoptosis-like and autophagy. These results strengthen the anti-parasitic potential of withaferin A-related steroids against neglected tropical diseases caused by Leishmania spp. and T. cruzi parasites.


Subject(s)
Antiprotozoal Agents , Chagas Disease , Leishmania , Animals , Mice , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Parasitic Sensitivity Tests , Chagas Disease/drug therapy , Apoptosis , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...