Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 641
Filter
1.
Nature ; 629(8011): 384-392, 2024 May.
Article in English | MEDLINE | ID: mdl-38600385

ABSTRACT

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Subject(s)
Cell Lineage , GABAergic Neurons , Homeodomain Proteins , Mosaicism , Prosencephalon , Transcription Factors , Humans , Prosencephalon/cytology , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Lineage/genetics , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Neurons/cytology , Neurons/metabolism , Female , Hippocampus/cytology , Clone Cells/cytology , Clone Cells/metabolism , Single-Cell Analysis , Parietal Lobe/cytology , Alleles , Neocortex/cytology , Transcriptome
2.
Nature ; 627(8003): 367-373, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383788

ABSTRACT

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Subject(s)
Decision Making , Neural Pathways , Parietal Lobe , Synapses , Calcium/analysis , Calcium/metabolism , Decision Making/physiology , Interneurons/metabolism , Interneurons/ultrastructure , Learning/physiology , Microscopy, Electron , Neural Inhibition , Neural Pathways/physiology , Neural Pathways/ultrastructure , Parietal Lobe/cytology , Parietal Lobe/physiology , Parietal Lobe/ultrastructure , Pyramidal Cells/metabolism , Pyramidal Cells/ultrastructure , Synapses/metabolism , Synapses/ultrastructure , Virtual Reality , Models, Neurological
3.
Nature ; 620(7973): 366-373, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37468637

ABSTRACT

Neurons in the posterior parietal cortex contribute to the execution of goal-directed navigation1 and other decision-making tasks2-4. Although molecular studies have catalogued more than 50 cortical cell types5, it remains unclear what distinct functions they have in this area. Here we identified a molecularly defined subset of somatostatin (Sst) inhibitory neurons that, in the mouse posterior parietal cortex, carry a cell-type-specific error-correction signal for navigation. We obtained repeatable experimental access to these cells using an adeno-associated virus in which gene expression is driven by an enhancer that functions specifically in a subset of Sst cells6. We found that during goal-directed navigation in a virtual environment, this subset of Sst neurons activates in a synchronous pattern that is distinct from the activity of surrounding neurons, including other Sst neurons. Using in vivo two-photon photostimulation and ex vivo paired patch-clamp recordings, we show that nearby cells of this Sst subtype excite each other through gap junctions, revealing a self-excitation circuit motif that contributes to the synchronous activity of this cell type. These cells selectively activate as mice execute course corrections for deviations in their virtual heading during navigation towards a reward location, for both self-induced and experimentally induced deviations. We propose that this subtype of Sst neurons provides a self-reinforcing and cell-type-specific error-correction signal in the posterior parietal cortex that may help with the execution and learning of accurate goal-directed navigation trajectories.


Subject(s)
Neurons , Parietal Lobe , Animals , Mice , Learning , Neurons/metabolism , Parietal Lobe/cytology , Parietal Lobe/metabolism , Goals , Somatostatin/metabolism , Neural Inhibition , Spatial Navigation , Patch-Clamp Techniques , Gap Junctions/metabolism
4.
Nat Commun ; 13(1): 41, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017495

ABSTRACT

When processing current sensory inputs, animals refer to related past experiences. Current information is then incorporated into the related neural network to update previously stored memories. However, the neuronal mechanism underlying the impact of memories of prior experiences on current learning is not well understood. Here, we found that a cellular ensemble in the posterior parietal cortex (PPC) that is activated during past experience mediates an interaction between past and current information to update memory through a PPC-anterior cingulate cortex circuit in mice. Moreover, optogenetic silencing of the PPC ensemble immediately after retrieval dissociated the interaction without affecting individual memories stored in the hippocampus and amygdala. Thus, a specific subpopulation of PPC cells represents past information and instructs downstream brain regions to update previous memories.


Subject(s)
Brain/physiology , Memory/physiology , Parietal Lobe , Amygdala/physiology , Animals , Gyrus Cinguli , Hippocampus/physiology , Mice , Nerve Net/physiology , Neurons/physiology , Optogenetics/methods , Parietal Lobe/cytology , Parietal Lobe/physiology , Somatosensory Cortex/physiology
5.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361009

ABSTRACT

The parietal cortex of rodents participates in sensory and spatial processing, movement planning, and decision-making, but much less is known about its role in associative learning and memory formation. The present study aims to examine the involvement of the parietal association cortex (PtA) in associative fear memory acquisition and retrieval in mice. Using ex vivo c-Fos immunohistochemical mapping and in vivo Fos-EGFP two-photon imaging, we show that PtA neurons were specifically activated both during acquisition and retrieval of cued fear memory. Fos immunohistochemistry revealed specific activation of the PtA neurons during retrieval of the 1-day-old fear memory. In vivo two-photon Fos-EGFP imaging confirmed this result and in addition detected specific c-Fos responses of the PtA neurons during acquisition of cued fear memory. To allow a more detailed study of the long-term activity of such PtA engram neurons, we generated a Fos-Cre-GCaMP transgenic mouse line that employs the Targeted Recombination in Active Populations (TRAP) technique to detect calcium events specifically in cells that were Fos-active during conditioning. We show that gradual accumulation of GCaMP3 in the PtA neurons of Fos-Cre-GCaMP mice peaks at the 4th day after fear learning. We also describe calcium transients in the cell bodies and dendrites of the TRAPed neurons. This provides a proof-of-principle for TRAP-based calcium imaging of PtA functions during memory processes as well as in experimental models of fear- and anxiety-related psychiatric disorders and their specific therapies.


Subject(s)
Fear , Memory , Parietal Lobe/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Animals , Association Learning , Calcium Signaling , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Parietal Lobe/cytology , Parietal Lobe/physiology , Proto-Oncogene Proteins c-fos/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
6.
Nat Commun ; 12(1): 3261, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059682

ABSTRACT

A fundamental scientific question concerns the neural basis of perceptual consciousness and perceptual monitoring resulting from the processing of sensory events. Although recent studies identified neurons reflecting stimulus visibility, their functional role remains unknown. Here, we show that perceptual consciousness and monitoring involve evidence accumulation. We recorded single-neuron activity in a participant with a microelectrode in the posterior parietal cortex, while they detected vibrotactile stimuli around detection threshold and provided confidence estimates. We find that detected stimuli elicited neuronal responses resembling evidence accumulation during decision-making, irrespective of motor confounds or task demands. We generalize these findings in healthy volunteers using electroencephalography. Behavioral and neural responses are reproduced with a computational model considering a stimulus as detected if accumulated evidence reaches a bound, and confidence as the distance between maximal evidence and that bound. We conclude that gradual changes in neuronal dynamics during evidence accumulation relates to perceptual consciousness and perceptual monitoring in humans.


Subject(s)
Consciousness/physiology , Neurons/physiology , Parietal Lobe/physiology , Perception/physiology , Adult , Animals , Decision Making , Drug Resistant Epilepsy/therapy , Electrodes, Implanted , Electroencephalography , Healthy Volunteers , Humans , Microelectrodes , Parietal Lobe/cytology , Physical Stimulation/methods , Single-Cell Analysis , Young Adult
7.
Nature ; 592(7855): 601-605, 2021 04.
Article in English | MEDLINE | ID: mdl-33790467

ABSTRACT

Cognitive control guides behaviour by controlling what, when, and how information is represented in the brain1. For example, attention controls sensory processing; top-down signals from prefrontal and parietal cortex strengthen the representation of task-relevant stimuli2-4. A similar 'selection' mechanism is thought to control the representations held 'in mind'-in working memory5-10. Here we show that shared neural mechanisms underlie the selection of items from working memory and attention to sensory stimuli. We trained rhesus monkeys to switch between two tasks, either selecting one item from a set of items held in working memory or attending to one stimulus from a set of visual stimuli. Neural recordings showed that similar representations in prefrontal cortex encoded the control of both selection and attention, suggesting that prefrontal cortex acts as a domain-general controller. By contrast, both attention and selection were represented independently in parietal and visual cortex. Both selection and attention facilitated behaviour by enhancing and transforming the representation of the selected memory or attended stimulus. Specifically, during the selection task, memory items were initially represented in independent subspaces of neural activity in prefrontal cortex. Selecting an item caused its representation to transform from its own subspace to a new subspace used to guide behaviour. A similar transformation occurred for attention. Our results suggest that prefrontal cortex controls cognition by dynamically transforming representations to control what and when cognitive computations are engaged.


Subject(s)
Attention/physiology , Memory, Short-Term/physiology , Animals , Macaca mulatta/physiology , Male , Parietal Lobe/cytology , Parietal Lobe/physiology , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Visual Cortex/cytology , Visual Cortex/physiology
8.
Elife ; 102021 03 01.
Article in English | MEDLINE | ID: mdl-33647233

ABSTRACT

In the human posterior parietal cortex (PPC), single units encode high-dimensional information with partially mixed representations that enable small populations of neurons to encode many variables relevant to movement planning, execution, cognition, and perception. Here, we test whether a PPC neuronal population previously demonstrated to encode visual and motor information is similarly engaged in the somatosensory domain. We recorded neurons within the PPC of a human clinical trial participant during actual touch presentation and during a tactile imagery task. Neurons encoded actual touch at short latency with bilateral receptive fields, organized by body part, and covered all tested regions. The tactile imagery task evoked body part-specific responses that shared a neural substrate with actual touch. Our results are the first neuron-level evidence of touch encoding in human PPC and its cognitive engagement during a tactile imagery task, which may reflect semantic processing, attention, sensory anticipation, or imagined touch.


Subject(s)
Imagination/physiology , Parietal Lobe/physiology , Touch Perception/physiology , Cognition , Electrodes, Implanted , Female , Humans , Middle Aged , Neurons/physiology , Parietal Lobe/cytology , Quadriplegia
9.
J Comp Neurol ; 529(10): 2789-2812, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33550608

ABSTRACT

Previous studies in prosimian galagos (Otolemur garnetti) have demonstrated that posterior parietal cortex (PPC) is subdivided into several functionally distinct domains, each of which mediates a specific type of complex movements (e.g., reaching, grasping, hand-to-mouth) and has a different pattern of cortical connections. Here we identified a medially located domain in PPC where combined forelimb and hindlimb movements, as if climbing or running, were evoked by long-train intracortical microstimulation. We injected anatomical tracers in this climbing/running domain of PPC to reveal its cortical connections. Our results showed the PPC climbing domain had dense intrinsic connections within rostral PPC and reciprocal connections with forelimb and hindlimb region in primary motor cortex (M1) of the ipsilateral hemisphere. Fewer connections were with dorsal premotor cortex (PMd), supplementary motor (SMA), and cingulate motor (CMA) areas, as well as somatosensory cortex including areas 3a, 3b, and 1-2, secondary somatosensory (S2), parietal ventral (PV), and retroinsular (Ri) areas. The rostral portion of the climbing domain had more connections with primary somatosensory cortex than the caudal portion. Cortical projections were found in functionally matched domains in M1 and premotor cortex (PMC). Similar patterns of connections with fewer labeled neurons and terminals were seen in the contralateral hemisphere. These connection patterns are consistent with the proposed role of the climbing/running domain as part of a parietal-frontal network for combined use of the limbs in locomotion as in climbing and running. The cortical connections identify this action-specific domain in PPC as a more somatosensory driven domain.


Subject(s)
Galago/anatomy & histology , Galago/physiology , Motor Activity/physiology , Parietal Lobe/cytology , Parietal Lobe/physiology , Animals , Neural Pathways/cytology , Neural Pathways/physiology , Neuroanatomical Tract-Tracing Techniques , Neurons/cytology , Neurons/physiology
10.
Neuroimage ; 231: 117843, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33577936

ABSTRACT

The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses. We identified four areas on the IPL convexity arranged in a caudo-rostral sequence, as well as two areas in the parietal operculum, which we projected onto the Yerkes19 surface. We found rostral areas to have relatively smaller receptor fingerprints than the caudal ones, which is in an agreement with the functional gradient along the caudo-rostral axis described in previous studies. The hierarchical analysis segregated IPL areas into two clusters: the caudal one, contains areas involved in multisensory integration and visual-motor functions, and rostral cluster, encompasses areas active during motor planning and action-related functions. The results of the present study provide novel insights into clarifying the homologies between human and macaque IPL areas. The ensuing 3D map of the macaque IPL, and the receptor fingerprints are made publicly available to the neuroscientific community via the Human Brain Project and BALSA repositories for future cyto- and/or receptor architectonically driven analyses of functional imaging studies in non-human primates.


Subject(s)
Nerve Net/cytology , Nerve Net/physiology , Parietal Lobe/cytology , Parietal Lobe/physiology , Receptors, Neurotransmitter/physiology , Animals , Autoradiography/methods , Macaca fascicularis , Macaca mulatta , Male , Multivariate Analysis , Nerve Net/chemistry , Parietal Lobe/chemistry , Receptors, Neurotransmitter/analysis
11.
Cereb Cortex ; 31(1): 267-280, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32995831

ABSTRACT

Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A-hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.


Subject(s)
Decision Making/physiology , Depth Perception/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Transcranial Magnetic Stimulation , Action Potentials , Adult , Animals , Female , Humans , Macaca fascicularis , Male , Neurons/physiology , Parietal Lobe/cytology , Retina/physiology , Space Perception/physiology , Young Adult
12.
Proc Natl Acad Sci U S A ; 117(47): 29948-29958, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33177232

ABSTRACT

Sequential activity has been observed in multiple neuronal circuits across species, neural structures, and behaviors. It has been hypothesized that sequences could arise from learning processes. However, it is still unclear whether biologically plausible synaptic plasticity rules can organize neuronal activity to form sequences whose statistics match experimental observations. Here, we investigate temporally asymmetric Hebbian rules in sparsely connected recurrent rate networks and develop a theory of the transient sequential activity observed after learning. These rules transform a sequence of random input patterns into synaptic weight updates. After learning, recalled sequential activity is reflected in the transient correlation of network activity with each of the stored input patterns. Using mean-field theory, we derive a low-dimensional description of the network dynamics and compute the storage capacity of these networks. Multiple temporal characteristics of the recalled sequential activity are consistent with experimental observations. We find that the degree of sparseness of the recalled sequences can be controlled by nonlinearities in the learning rule. Furthermore, sequences maintain robust decoding, but display highly labile dynamics, when synaptic connectivity is continuously modified due to noise or storage of other patterns, similar to recent observations in hippocampus and parietal cortex. Finally, we demonstrate that our results also hold in recurrent networks of spiking neurons with separate excitatory and inhibitory populations.


Subject(s)
Computer Simulation , Learning/physiology , Models, Neurological , Nerve Net/physiology , Neuronal Plasticity/physiology , Animals , Hippocampus/cytology , Hippocampus/physiology , Mice , Neural Networks, Computer , Neurons/physiology , Parietal Lobe/cytology , Parietal Lobe/physiology
13.
Elife ; 92020 07 02.
Article in English | MEDLINE | ID: mdl-32613942

ABSTRACT

The intraparietal sulcus (IPS) is structurally and functionally heterogeneous. We performed a quantitative cyto-/myelo- and receptor architectonical analysis to provide a multimodal map of the macaque IPS. We identified 17 cortical areas, including novel areas PEipe, PEipi (external and internal subdivisions of PEip), and MIPd. Multivariate analyses of receptor densities resulted in a grouping of areas based on the degree of (dis)similarity of their receptor architecture: a cluster encompassing areas located in the posterior portion of the IPS and associated mainly with the processing of visual information, a cluster including areas found in the anterior portion of the IPS and involved in sensorimotor processing, and an 'intermediate' cluster of multimodal association areas. Thus, differences in cyto-/myelo- and receptor architecture segregate the cortical ribbon within the IPS, and receptor fingerprints provide novel insights into the relationship between the structural and functional segregation of this brain region in the macaque monkey.


Subject(s)
Brain Mapping , Parietal Lobe/anatomy & histology , Receptors, Cell Surface/metabolism , Animals , Macaca mulatta , Male , Parietal Lobe/cytology , Somatosensory Cortex/anatomy & histology
14.
J Neurosurg ; 134(3): 1334-1345, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32330886

ABSTRACT

OBJECTIVE: Although a growing body of data support the functional connectivity between the precuneus and the medial temporal lobe during states of resting consciousness as well as during a diverse array of higher-order functions, direct structural evidence on this subcortical circuitry is scarce. Here, the authors investigate the very existence, anatomical consistency, morphology, and spatial relationships of the cingulum bundle V (CB-V), a fiber tract that has been reported to reside close to the inferior arm of the cingulum (CingI). METHODS: Fifteen normal, formalin-fixed cerebral hemispheres from adults were treated with Klingler's method and subsequently investigated through the fiber microdissection technique in a medial to lateral direction. RESULTS: A distinct group of fibers is invariably identified in the subcortical territory of the posteromedial cortex, connecting the precuneus and the medial temporal lobe. This tract follows the trajectory of the parietooccipital sulcus in a close spatial relationship with the CingI and the sledge runner fasciculus. It extends inferiorly to the parahippocampal place area and retrosplenial complex area, followed by a lateral curve to terminate toward the fusiform face area (Brodmann area [BA] 37) and lateral piriform area (BA35). Taking into account the aforementioned subcortical architecture, the CB-V allegedly participates as a major subcortical stream within the default mode network, possibly subserving the transfer of multimodal cues relevant to visuospatial, facial, and mnemonic information to the precuneal hub. Although robust clinical evidence on the functional role of this stream is lacking, the modern neurosurgeon should be aware of this tract when manipulating cerebral areas en route to lesions residing in or around the ventricular trigone. CONCLUSIONS: Through the fiber microdissection technique, the authors were able to provide original, direct structural evidence on the existence, morphology, axonal connectivity, and correlative anatomy of what proved to be a discrete white matter pathway, previously described as the CB-V, connecting the precuneus and medial temporal lobe.


Subject(s)
Axons/physiology , Default Mode Network/physiology , Nerve Net/anatomy & histology , Nerve Net/physiology , Neural Pathways/anatomy & histology , Neural Pathways/physiology , White Matter/anatomy & histology , White Matter/physiology , Autopsy , Brain Mapping , Cadaver , Diffusion Tensor Imaging , Frontal Lobe/anatomy & histology , Frontal Lobe/cytology , Frontal Lobe/physiology , Humans , Microdissection , Nerve Fibers , Nerve Net/cytology , Neural Pathways/cytology , Parietal Lobe/anatomy & histology , Parietal Lobe/cytology , Parietal Lobe/physiology , Temporal Lobe/anatomy & histology , Temporal Lobe/cytology , Temporal Lobe/physiology , Tissue Fixation , White Matter/cytology
15.
J Comp Neurol ; 528(17): 3108-3122, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32080849

ABSTRACT

Goal-directed movements involve a series of neural computations that compare the sensory representations of goal location and effector position, and transform these into motor commands. Neurons in posterior parietal cortex (PPC) control several effectors (e.g., eye, hand, foot) and encode goal location in a variety of spatial coordinate systems, including those anchored to gaze direction, and to the positions of the head, shoulder, or hand. However, there is little evidence on whether reference frames depend also on the effector and/or type of motor response. We addressed this issue in macaque PPC area V6A, where previous reports using a fixate-to-reach in depth task, from different starting arm positions, indicated that most units use mixed body/hand-centered coordinates. Here, we applied singular value decomposition and gradient analyses to characterize the reference frames in V6A while the animals, instead of arm reaching, performed a nonspatial motor response (hand lift). We found that most neurons used mixed body/hand coordinates, instead of "pure" body-, or hand-centered coordinates. During the task progress the effect of hand position on activity became stronger compared to target location. Activity consistent with body-centered coding was present only in a subset of neurons active early in the task. Applying the same analyses to a population of V6A neurons recorded during the fixate-to-reach task yielded similar results. These findings suggest that V6A neurons use consistent reference frames between spatial and nonspatial motor responses, a functional property that may allow the integration of spatial awareness and movement control.


Subject(s)
Movement/physiology , Neurons/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Space Perception/physiology , Animals , Macaca fascicularis , Male , Parietal Lobe/cytology , Photic Stimulation/methods , Random Allocation
16.
Brain Struct Funct ; 225(2): 853-870, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32078035

ABSTRACT

We studied the thalamic afferents to cortical areas in the precuneus using injections of retrograde fluorescent neuronal tracers in four male macaques (Macaca fascicularis). Six injections were within the limits of cytoarchitectural area PGm, one in area 31 and one in area PEci. Precuneate areas shared strong input from the posterior thalamus (lateral posterior nucleus and pulvinar complex) and moderate input from the medial, lateral, and intralaminar thalamic regions. Area PGm received strong connections from the subdivisions of the pulvinar linked to association and visual function (the medial and lateral nuclei), whereas areas 31 and PEci received afferents from the oral division of the pulvinar. All three cytoarchitectural areas also received input from subdivisions of the lateral thalamus linked to motor function (ventral lateral and ventral anterior nuclei), with area PEci receiving additional input from a subdivision linked to somatosensory function (ventral posterior lateral nucleus). Finally, only PGm received substantial limbic association afferents, mainly via the lateral dorsal nucleus. These results indicate that area PGm integrates information from visual association, motor and limbic regions of the thalamus, in line with a hypothesized role in spatial cognition, including navigation. By comparison, dorsal precuneate areas (31 and PEci) are more involved in sensorimotor functions, being akin to adjacent areas of the dorsal parietal cortex.


Subject(s)
Neurons/cytology , Parietal Lobe/cytology , Thalamus/cytology , Afferent Pathways/cytology , Animals , Macaca fascicularis , Male , Neuroanatomical Tract-Tracing Techniques
17.
Sci Rep ; 10(1): 2206, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32042033

ABSTRACT

Traumatic brain injury (TBI) has been designated as a signature injury of modern military conflicts. Blast trauma, in particular, has come to make up a significant portion of the TBIs which are sustained in warzones. Though most TBIs are mild, even mild TBI can induce long term effects, including cognitive and memory deficits. In our study, we utilized a mouse model of mild blast-related TBI (bTBI) to investigate TBI-induced changes within the cortex and hippocampus. We performed rapid Golgi staining on the layer IV and V pyramidal neurons of the parietal cortex and the CA1 basilar tree of the hippocampus and quantified dendritic branching and distribution. We found decreased dendritic branching within both the cortex and hippocampus in injured mice. Within parietal cortex, this decreased branching was most evident within the middle region, while outer and inner regions resembled that of control mice. This study provides important knowledge in the study of how the shockwave associated with a blast explosion impacts different brain regions.


Subject(s)
Blast Injuries/pathology , Brain Concussion/pathology , CA1 Region, Hippocampal/pathology , Dendrites/pathology , Parietal Lobe/pathology , Animals , Armed Conflicts , Blast Injuries/etiology , Brain Concussion/etiology , CA1 Region, Hippocampal/cytology , Disease Models, Animal , Explosions , Golgi Apparatus/pathology , Humans , Male , Mice , Parietal Lobe/cytology , Pyramidal Cells/cytology , Pyramidal Cells/pathology
18.
Nat Commun ; 11(1): 471, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980655

ABSTRACT

Astrocytes may function as mediators of the impact of noradrenaline on neuronal function. Activation of glial α1-adrenergic receptors triggers rapid astrocytic Ca2+ elevation and facilitates synaptic plasticity, while activation of ß-adrenergic receptors elevates cAMP levels and modulates memory consolidation. However, the dynamics of these processes in behaving mice remain unexplored, as do the interactions between the distinct second messenger pathways. Here we simultaneously monitored astrocytic Ca2+ and cAMP and demonstrate that astrocytic second messengers are regulated in a temporally distinct manner. In behaving mice, we found that while an abrupt facial air puff triggered transient increases in noradrenaline release and large cytosolic astrocytic Ca2+ elevations, cAMP changes were not detectable. By contrast, repeated aversive stimuli that lead to prolonged periods of vigilance were accompanied by robust noradrenergic axonal activity and gradual sustained cAMP increases. Our findings suggest distinct astrocytic signaling pathways can integrate noradrenergic activity during vigilance states to mediate distinct functions supporting memory.


Subject(s)
Arousal/physiology , Astrocytes/physiology , Norepinephrine/physiology , Second Messenger Systems/physiology , Animals , Calcium Signaling/physiology , Conditioning, Classical/physiology , Cyclic AMP/metabolism , Fear/physiology , Fluorescent Dyes , Locus Coeruleus/cytology , Locus Coeruleus/physiology , Memory/physiology , Mice , Neuronal Plasticity/physiology , Parietal Lobe/cytology , Parietal Lobe/physiology , Receptors, Adrenergic/physiology
19.
Hippocampus ; 30(4): 332-353, 2020 04.
Article in English | MEDLINE | ID: mdl-31697002

ABSTRACT

A theory and model of spatial coordinate transforms in the dorsal visual system through the parietal cortex that enable an interface via posterior cingulate and related retrosplenial cortex to allocentric spatial representations in the primate hippocampus is described. First, a new approach to coordinate transform learning in the brain is proposed, in which the traditional gain modulation is complemented by temporal trace rule competitive network learning. It is shown in a computational model that the new approach works much more precisely than gain modulation alone, by enabling neurons to represent the different combinations of signal and gain modulator more accurately. This understanding may have application to many brain areas where coordinate transforms are learned. Second, a set of coordinate transforms is proposed for the dorsal visual system/parietal areas that enables a representation to be formed in allocentric spatial view coordinates. The input stimulus is merely a stimulus at a given position in retinal space, and the gain modulation signals needed are eye position, head direction, and place, all of which are present in the primate brain. Neurons that encode the bearing to a landmark are involved in the coordinate transforms. Part of the importance here is that the coordinates of the allocentric view produced in this model are the same as those of spatial view cells that respond to allocentric view recorded in the primate hippocampus and parahippocampal cortex. The result is that information from the dorsal visual system can be used to update the spatial input to the hippocampus in the appropriate allocentric coordinate frame, including providing for idiothetic update to allow for self-motion. It is further shown how hippocampal spatial view cells could be useful for the transform from hippocampal allocentric coordinates to egocentric coordinates useful for actions in space and for navigation.


Subject(s)
Hippocampus/physiology , Memory/physiology , Neural Networks, Computer , Parietal Lobe/physiology , Space Perception/physiology , Spatial Navigation/physiology , Animals , Egocentrism , Hippocampus/cytology , Humans , Parietal Lobe/cytology , Primates
20.
Brain Struct Funct ; 224(8): 2733-2756, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31392403

ABSTRACT

The macaque monkey superior parietal lobule (SPL) is part of a neuronal network involved in the integration of information from visual and somatosensory cortical areas for execution of reaching and grasping movements. We applied quantitative in vitro receptor autoradiography to analyse the distribution patterns of 15 different receptors for glutamate, GABA, acetylcholine, serotonin, dopamine, and adenosine in the SPL of three adult male Macaca fascicularis monkeys. For each area, mean (averaged over all cortical layers) receptor densities were visualized as a receptor fingerprint of that area. Multivariate analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their receptor organization. Differences in regional and laminar receptor distributions confirm the location and extent of areas V6, V6Av, V6Ad, PEc, PEci, and PGm as found in cytoarchitectonic and functional studies, but also enable the definition of three subdivisions within area PE. Receptor densities are higher in supra- than in infragranular layers, with the exception of kainate, M2, and adenosine receptors. Glutamate and GABAergic receptors are the most expressed in all areas analysed. Hierarchical cluster analyses demonstrate that SPL areas are organized in two groups, an organization that corresponds to the visual or sensory-motor characteristics of those areas. Finally, based on present results and in the framework of our current understanding of the structural and functional organization of the primate SPL, we propose a novel pattern of homologies between human and macaque SPL areas.


Subject(s)
Neurons/cytology , Neurons/metabolism , Parietal Lobe/cytology , Parietal Lobe/metabolism , Receptors, Neurotransmitter/metabolism , Animals , Autoradiography , Macaca fascicularis , Male , Receptors, Cholinergic/metabolism , Receptors, Dopamine/metabolism , Receptors, GABA/metabolism , Receptors, Glutamate/metabolism , Receptors, Purinergic P1/metabolism , Receptors, Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...