Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.372
Filter
1.
J Biol Chem ; 299(12): 105411, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918804

ABSTRACT

O-GlcNAc is a common modification found on nuclear and cytoplasmic proteins. Determining the catalytic mechanism of the enzyme O-GlcNAcase (OGA), which removes O-GlcNAc from proteins, enabled the creation of potent and selective inhibitors of this regulatory enzyme. Such inhibitors have served as important tools in helping to uncover the cellular and organismal physiological roles of this modification. In addition, OGA inhibitors have been important for defining the augmentation of O-GlcNAc as a promising disease-modifying approach to combat several neurodegenerative diseases including both Alzheimer's disease and Parkinson's disease. These studies have led to development and optimization of OGA inhibitors for clinical application. These compounds have been shown to be well tolerated in early clinical studies and are steadily advancing into the clinic. Despite these advances, the mechanisms by which O-GlcNAc protects against these various types of neurodegeneration are a topic of continuing interest since improved insight may enable the creation of more targeted strategies to modulate O-GlcNAc for therapeutic benefit. Relevant pathways on which O-GlcNAc has been found to exert beneficial effects include autophagy, necroptosis, and processing of the amyloid precursor protein. More recently, the development and application of chemical methods enabling the synthesis of homogenous proteins have clarified the biochemical effects of O-GlcNAc on protein aggregation and uncovered new roles for O-GlcNAc in heat shock response. Here, we discuss the features of O-GlcNAc in neurodegenerative diseases, the application of inhibitors to identify the roles of this modification, and the biochemical effects of O-GlcNAc on proteins and pathways associated with neurodegeneration.


Subject(s)
Alzheimer Disease , N-Acetylglucosaminyltransferases , Parkinson Disease , Humans , Acetylglucosamine/metabolism , Alzheimer Disease/enzymology , Amyloid beta-Protein Precursor/metabolism , beta-N-Acetylhexosaminidases/genetics , N-Acetylglucosaminyltransferases/antagonists & inhibitors , N-Acetylglucosaminyltransferases/metabolism , Parkinson Disease/enzymology , Protein Processing, Post-Translational , Enzyme Inhibitors/pharmacology
2.
J Mol Biol ; 435(12): 168023, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36828270

ABSTRACT

Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson's disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders.


Subject(s)
Glucosylceramidase , Parkinson Disease , Humans , alpha-Synuclein/genetics , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Lysosomes/enzymology , Mutation , Parkinson Disease/enzymology , Parkinson Disease/genetics
3.
Proc Natl Acad Sci U S A ; 119(29): e2200553119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858317

ABSTRACT

Loss of activity of the lysosomal glycosidase ß-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.


Subject(s)
Gaucher Disease , Glucosylceramidase , Parkinson Disease , Gaucher Disease/enzymology , Gaucher Disease/genetics , Glucosylceramidase/analysis , Glucosylceramidase/genetics , Humans , Lewy Bodies/enzymology , Lewy Body Disease/enzymology , Lysosomes/enzymology , Mutation , Parkinson Disease/enzymology , Parkinson Disease/genetics , Substrate Specificity , alpha-Synuclein/metabolism
4.
ACS Chem Neurosci ; 13(10): 1491-1504, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35533351

ABSTRACT

Hypertension is reported to cause major brain disorders including Parkinson's disease (PD), apart from cardiovascular and chronic kidney disorders. Considering this, for the first time, we explored the effect of modulation of the ACE2/Ang (1-7)/MasR axis using diminazene aceturate (DIZE), an ACE2 activator, in 6-hydroxydopamine (6-OHDA) induced PD model. We found that DIZE treatment improved neuromuscular coordination and locomotor deficits in the 6-OHDA induced PD rat model. Further, the DIZE-mediated activation of ACE2 led to increased tyrosine hydroxylase (TH) and dopamine transporters (DAT) expression in the rat brain, indicating the protection of dopaminergic (DAergic) neurons from 6-OHDA induced neurotoxicity. Moreover, 6-OHDA induced activation of glial cells (astrocytes and microglia) and release of neuroinflammatory mediators were attenuated by DIZE treatment in both in vitro as well as in vivo models of PD. DIZE exerted its effect by activating ACE2 that produced Ang (1-7), a neuroprotective peptide. Ang (1-7) conferred its neuroprotective effect upon binding with the G-protein-coupled MAS receptor that led to the upregulation of cell survival proteins while downregulating apoptotic proteins. Importantly, these findings were further validated by using A-779, a MasR antagonist. The result showed that treatment with A-779 reversed the antioxidative and anti-inflammatory effects of DIZE by decreasing glial activation and neuroinflammatory markers. Although the role of ACE2 in PD pathology needs to be additionally confirmed using transgenic models in either ACE2 overexpressing or knockout mice, still, our study demonstrates that enhancing ACE2 activity could be a novel approach for ameliorating PD pathology.


Subject(s)
Angiotensin-Converting Enzyme 2 , Diminazene/analogs & derivatives , Parkinson Disease , Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Diminazene/pharmacology , Mice , Models, Theoretical , Oxidopamine/toxicity , Parkinson Disease/drug therapy , Parkinson Disease/enzymology , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/metabolism , Proto-Oncogene Mas/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects
5.
Nat Metab ; 4(5): 589-607, 2022 05.
Article in English | MEDLINE | ID: mdl-35618940

ABSTRACT

Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-ß (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.


Subject(s)
Oxidoreductases , Parkinson Disease , Protein Deglycase DJ-1 , Pyruvates , T-Lymphocytes, Regulatory , Aging , Animals , Homeostasis , Mice , Oxidoreductases/metabolism , Parkinson Disease/enzymology , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Deglycase DJ-1/genetics , Pyruvates/metabolism , T-Lymphocytes, Regulatory/metabolism
9.
Protein Cell ; 13(1): 26-46, 2022 01.
Article in English | MEDLINE | ID: mdl-34800266

ABSTRACT

In vitro studies have established the prevalent theory that the mitochondrial kinase PINK1 protects neurodegeneration by removing damaged mitochondria in Parkinson's disease (PD). However, difficulty in detecting endogenous PINK1 protein in rodent brains and cell lines has prevented the rigorous investigation of the in vivo role of PINK1. Here we report that PINK1 kinase form is selectively expressed in the human and monkey brains. CRISPR/Cas9-mediated deficiency of PINK1 causes similar neurodegeneration in the brains of fetal and adult monkeys as well as cultured monkey neurons without affecting mitochondrial protein expression and morphology. Importantly, PINK1 mutations in the primate brain and human cells reduce protein phosphorylation that is important for neuronal function and survival. Our findings suggest that PINK1 kinase activity rather than its mitochondrial function is essential for the neuronal survival in the primate brains and that its kinase dysfunction could be involved in the pathogenesis of PD.


Subject(s)
Brain/enzymology , Homeostasis , Mitochondria/enzymology , Mutation , Parkinson Disease/enzymology , Protein Kinases/metabolism , Animals , Macaca mulatta , Mitochondria/genetics , Parkinson Disease/genetics , Protein Kinases/genetics
10.
J Neurosci ; 42(4): 702-716, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34876467

ABSTRACT

The Parkinson's disease (PD) risk gene GTP cyclohydrolase 1 (GCH1) catalyzes the rate-limiting step in tetrahydrobiopterin (BH4) synthesis, an essential cofactor in the synthesis of monoaminergic neurotransmitters. To investigate the mechanisms by which GCH1 deficiency may contribute to PD, we generated a loss of function zebrafish gch1 mutant (gch1-/-), using CRISPR/Cas technology. gch1-/- zebrafish develop marked monoaminergic neurotransmitter deficiencies by 5 d postfertilization (dpf), movement deficits by 8 dpf and lethality by 12 dpf. Tyrosine hydroxylase (Th) protein levels were markedly reduced without loss of ascending dopaminergic (DAergic) neurons. L-DOPA treatment of gch1-/- larvae improved survival without ameliorating the motor phenotype. RNAseq of gch1-/- larval brain tissue identified highly upregulated transcripts involved in innate immune response. Subsequent experiments provided morphologic and functional evidence of microglial activation in gch1-/- The results of our study suggest that GCH1 deficiency may unmask early, subclinical parkinsonism and only indirectly contribute to neuronal cell death via immune-mediated mechanisms. Our work highlights the importance of functional validation for genome-wide association studies (GWAS) risk factors and further emphasizes the important role of inflammation in the pathogenesis of PD.SIGNIFICANCE STATEMENT Genome-wide association studies have now identified at least 90 genetic risk factors for sporadic Parkinson's disease (PD). Zebrafish are an ideal tool to determine the mechanistic role of genome-wide association studies (GWAS) risk genes in a vertebrate animal model. The discovery of GTP cyclohydrolase 1 (GCH1) as a genetic risk factor for PD was counterintuitive, GCH1 is the rate-limiting enzyme in the synthesis of dopamine (DA), mutations had previously been described in the non-neurodegenerative movement disorder dopa-responsive dystonia (DRD). Rather than causing DAergic cell death (as previously hypothesized by others), we now demonstrate that GCH1 impairs tyrosine hydroxylase (Th) homeostasis and activates innate immune mechanisms in the brain and provide evidence of microglial activation and phagocytic activity.


Subject(s)
Brain/enzymology , GTP Cyclohydrolase/deficiency , Homeostasis/physiology , Immunity, Innate/physiology , Tyrosine 3-Monooxygenase/metabolism , Animals , Animals, Genetically Modified , Brain/immunology , Dopaminergic Neurons/enzymology , Dopaminergic Neurons/immunology , GTP Cyclohydrolase/genetics , Genetic Predisposition to Disease/genetics , Parkinson Disease/enzymology , Parkinson Disease/genetics , Parkinson Disease/immunology , Sequence Analysis, RNA/methods , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Tyrosine 3-Monooxygenase/genetics , Zebrafish
11.
Int J Mol Sci ; 22(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34884741

ABSTRACT

ATP, one of the signaling molecules most commonly secreted in the nervous system and capable of stimulating multiple pathways, binds to the ionotropic purinergic receptors, in particular, the P2X7 receptor (P2X7R) and stimulates neuronal cell death. Given this effect of purinergic receptors on the viability of dopaminergic neurons model cells and that Ras GTPases control Erk1/2-regulated mitogen-activated cell proliferation and survival, we have investigated the role of the small GTPases of the Ras superfamily, together with their regulatory and effector molecules as the potential molecular intermediates in the P2X7R-regulated cell death of SN4741 dopaminergic neurons model cells. Here, we demonstrate that the neuronal response to purinergic stimulation involves the Calmodulin/RasGRF1 activation of the small GTPase Ras and Erk1/2. We also demonstrate that tyrosine phosphatase PTPRß and other tyrosine phosphatases regulate the small GTPase activation pathway and neuronal viability. Our work expands the knowledge on the intracellular responses of dopaminergic cells by identifying new participating molecules and signaling pathways. In this sense, the study of the molecular circuitry of these neurons is key to understanding the functional effects of ATP, as well as considering the importance of these cells in Parkinson's Disease.


Subject(s)
Dopaminergic Neurons/enzymology , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Receptors, Purinergic P2X7/metabolism , Animals , Calcium Signaling , Cell Line , Cell Survival , Enzyme Activation , Mice , Parkinson Disease/enzymology , ras Proteins/metabolism , ras-GRF1/metabolism
12.
Int J Mol Sci ; 22(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34830081

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease characterised by both motor- and non-motor symptoms, including cognitive impairment. The aetiopathogenesis of PD, as well as its protective and susceptibility factors, are still elusive. Neuroprotective effects of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors-statins-via both cholesterol-dependent and independent mechanisms have been shown in animal and cell culture models. However, the available data provide conflicting results on the role of statin treatment in PD patients. Moreover, cholesterol is a vital component for brain functions and may be considered as protective against PD. We present possible statin effects on PD under the hypothesis that they may depend on the HMG-CoA reductase gene (HMGCR) variability, such as haplotype 7, which was shown to affect cholesterol synthesis and statin treatment outcome, diminishing possible neuroprotection associated with HMG-CoA reductase inhibitors administration. Statins are among the most prescribed groups of drugs. Thus, it seems important to review the available data in the context of their possible neuroprotective effects in PD, and the HMG-CoA reductase gene's genetic variability.


Subject(s)
Genetic Variation , Hydroxymethylglutaryl CoA Reductases , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Neuroprotective Agents/therapeutic use , Parkinson Disease , Humans , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/enzymology , Parkinson Disease/genetics
13.
Cells ; 10(11)2021 11 04.
Article in English | MEDLINE | ID: mdl-34831247

ABSTRACT

The progressive reduction of the dopaminergic neurons of the substantia nigra is the fundamental process underlying Parkinson's disease (PD), while the mechanism of susceptibility of this specific neuronal population is largely unclear. Disturbances in mitochondrial function have been recognized as one of the main pathways in sporadic PD since the finding of respiratory chain impairment in animal models of PD. Studies on genetic forms of PD have provided new insight on the role of mitochondrial bioenergetics, homeostasis, and autophagy. PINK1 (PTEN-induced putative kinase 1) gene mutations, although rare, are the second most common cause of recessively inherited early-onset PD, after Parkin gene mutations. Our knowledge of PINK1 and Parkin function has increased dramatically in the last years, with the discovery that a process called mitophagy, which plays a key role in the maintenance of mitochondrial health, is mediated by the PINK1/Parkin pathway. In vitro and in vivo models have been developed, supporting the role of PINK1 in synaptic transmission, particularly affecting dopaminergic neurons. It is of paramount importance to further define the role of PINK1 in mitophagy and mitochondrial homeostasis in PD pathogenesis in order to delineate novel therapeutic targets.


Subject(s)
Homeostasis , Mitochondria/metabolism , Parkinson Disease/enzymology , Protein Kinases/metabolism , Animals , Disease Models, Animal , Genetic Association Studies , Humans , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/therapy , Protein Kinases/chemistry , Protein Kinases/genetics
14.
Parkinsonism Relat Disord ; 91: 128-134, 2021 10.
Article in English | MEDLINE | ID: mdl-34607089

ABSTRACT

BACKGROUND: Impaired bioenergetics are partially involved in the pathogenesis of Parkinson's disease (PD). Phosphoglycerate kinase (PGK), an essential enzyme for glycolysis, has recently attracted attention due to its pathogenic role in PD and as a target for disease-modifying therapies. This study is aimed to evaluate the profiles of PGK activity in red blood cells (RBCs) of PD patients and controls. METHODS: Sixty-eight PD patients and thirty-four age-matched unrelated controls were enrolled. PGK activities of RBCs were measured by the established colorimetric assay and standardized by the same RBC samples. RESULTS: PGK activity of the PD group was significantly higher than that of the control group in participants aged sixty-five years or younger, whereas it was not significantly different between the two groups at any age. PGK activity was positively correlated with aging in the control group, but this was not noted in the PD group. On multivariable analysis by partial correlation in the PD group, PGK activity was negatively correlated with the specific binding ratio of dopamine transporter scintigraphy in the striatum. The levodopa-equivalent daily dose was not significantly correlated with the enzyme activity. CONCLUSION: The results support the following: 1) elevation of PGK activities in RBCs can be detected in relatively young PD patients and with normal aging; 2) the degree of striatonigral degeneration is associated with elevated PGK activities. These are important considerations when the PGK assay is applied as a diagnostic biomarker of PD and to therapeutically monitor PGK-enhancing treatments.


Subject(s)
Aging/blood , Erythrocytes/enzymology , Parkinson Disease/enzymology , Phosphoglycerate Kinase/blood , Aged , Aged, 80 and over , Case-Control Studies , Female , Glycolysis , Humans , Male , Middle Aged
15.
Cell Rep ; 37(3): 109864, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686322

ABSTRACT

Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.


Subject(s)
Brain/enzymology , COUP Transcription Factor I/metabolism , Dopaminergic Neurons/enzymology , Induced Pluripotent Stem Cells/enzymology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neural Stem Cells/enzymology , Neurogenesis , Parkinson Disease/enzymology , Animals , Brain/pathology , COUP Transcription Factor I/genetics , Cell Cycle , Cell Line , Cell Proliferation , Cell Survival , Dopaminergic Neurons/pathology , Female , Humans , Induced Pluripotent Stem Cells/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Mice, 129 Strain , Mice, Knockout , Mutation , Neural Stem Cells/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Phenotype , RNA-Seq , Signal Transduction , Single-Cell Analysis , Time Factors
16.
ACS Chem Biol ; 16(11): 2326-2338, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34496561

ABSTRACT

Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein with dual kinase and GTPase function that is commonly mutated in both familial and idiopathic Parkinson's Disease (PD). While dimerization of LRRK2 is commonly detected in PD models, it remains unclear whether inhibition of dimerization can regulate catalytic activity and pathogenesis. Here, we show constrained peptides that are cell-penetrant, bind LRRK2, and inhibit LRRK2 activation by downregulating dimerization. We further show that inhibited dimerization decreases kinase activity and inhibits ROS production and PD-linked apoptosis in primary cortical neurons. While many ATP-competitive LRRK2 inhibitors induce toxicity and mislocalization of the protein in cells, these constrained peptides were found to not affect LRRK2 localization. The ability of these peptides to inhibit pathogenic LRRK2 kinase activity suggests that disruption of dimerization may serve as a new allosteric strategy to downregulate PD-related signaling pathways.


Subject(s)
Enzyme Inhibitors/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Parkinson Disease/enzymology , Peptides/pharmacology , Allosteric Regulation , Amino Acid Sequence , Apoptosis/drug effects , Dimerization , Enzyme Activation , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neurons/drug effects , Parkinson Disease/pathology , Peptides/chemistry , Protein Binding , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
17.
Elife ; 102021 09 30.
Article in English | MEDLINE | ID: mdl-34590578

ABSTRACT

Astrocytes are essential cells of the central nervous system, characterized by dynamic relationships with neurons that range from functional metabolic interactions and regulation of neuronal firing activities, to the release of neurotrophic and neuroprotective factors. In Parkinson's disease (PD), dopaminergic neurons are progressively lost during the course of the disease, but the effects of PD on astrocytes and astrocyte-to-neuron communication remain largely unknown. This study focuses on the effects of the PD-related mutation LRRK2 G2019S in astrocytes generated from patient-derived induced pluripotent stem cells. We report the alteration of extracellular vesicle (EV) biogenesis in astrocytes and identify the abnormal accumulation of key PD-related proteins within multivesicular bodies (MVBs). We found that dopaminergic neurons internalize astrocyte-secreted EVs and that LRRK2 G2019S EVs are abnormally enriched in neurites and fail to provide full neurotrophic support to dopaminergic neurons. Thus, dysfunctional astrocyte-to-neuron communication via altered EV biological properties may participate in the progression of PD.


Subject(s)
Astrocytes/enzymology , Cell Communication , Dopaminergic Neurons/enzymology , Exosomes/enzymology , Induced Pluripotent Stem Cells/enzymology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neural Stem Cells/enzymology , Parkinson Disease/enzymology , Animals , Astrocytes/ultrastructure , Atrophy , Case-Control Studies , Cell Line , Dopaminergic Neurons/pathology , Endocytosis , Exosomes/genetics , Exosomes/ultrastructure , Humans , Induced Pluripotent Stem Cells/ultrastructure , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Neural Stem Cells/ultrastructure , Organelle Biogenesis , Parkinson Disease/genetics , Parkinson Disease/pathology
18.
Biosci Rep ; 41(9)2021 09 30.
Article in English | MEDLINE | ID: mdl-34397087

ABSTRACT

For decades, Parkinson's disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation , Neurons/enzymology , Parkinson Disease/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/enzymology , Caenorhabditis elegans Proteins/metabolism , Disease Models, Animal , Genetic Predisposition to Disease , Genome-Wide Association Study , Heredity , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Nerve Degeneration , Neurons/pathology , Parkinson Disease/enzymology , Parkinson Disease/pathology , Phenotype , Risk Factors
19.
Mol Neurobiol ; 58(11): 5986-6005, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34432266

ABSTRACT

Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years. Symptoms across neurodegenerative diseases are both debilitating and degenerative in nature and, concerningly, there are currently no disease-modifying therapies to prevent their progression. As such, it is important to identify potential new therapeutic targets. This review will outline the role of Fyn in normal/homeostatic processes, as well as degenerative/pathological mechanisms associated with neurodegenerative diseases, such as demyelination, pathological protein aggregation, neuroinflammation and cognitive dysfunction.


Subject(s)
Nerve Tissue Proteins/physiology , Neurodegenerative Diseases/enzymology , Proto-Oncogene Proteins c-fyn/physiology , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Benzamides/pharmacology , Benzamides/therapeutic use , Central Nervous System/enzymology , Dasatinib/pharmacology , Dasatinib/therapeutic use , Humans , Molecular Targeted Therapy , Multiple Sclerosis/drug therapy , Multiple Sclerosis/enzymology , Myelin Sheath/physiology , Nerve Tissue Proteins/drug effects , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology , Oligodendroglia/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/enzymology , Parkinson Disease/physiopathology , Piperidines/pharmacology , Piperidines/therapeutic use , PrPC Proteins/metabolism , Proto-Oncogene Proteins c-fyn/antagonists & inhibitors , Proto-Oncogene Proteins c-fyn/drug effects , Pyridines/pharmacology , Pyridines/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism , T-Cell Antigen Receptor Specificity , T-Lymphocyte Subsets/enzymology , T-Lymphocyte Subsets/immunology , Thiazoles/pharmacology , Thiazoles/therapeutic use , tau Proteins/metabolism
20.
Cells ; 10(6)2021 06 05.
Article in English | MEDLINE | ID: mdl-34198743

ABSTRACT

Mitochondrial dysfunction has a fundamental role in the development of idiopathic and familiar forms of Parkinson's disease (PD). The nuclear-encoded mitochondrial kinase PINK1, linked to familial PD, is responsible for diverse mechanisms of mitochondrial quality control, ATP production, mitochondrial-mediated apoptosis and neuroinflammation. The main pathological hallmark of PD is the loss of dopaminergic neurons. However, novel discoveries have brought forward the concept that a disruption in overall brain homeostasis may be the underlying cause of this neurodegeneration disease. To sustain this, astrocytes and microglia cells lacking PINK1 have revealed increased neuroinflammation and deficits in physiological roles, such as decreased wound healing capacity and ATP production, which clearly indicate involvement of these cells in the physiopathology of PD. PINK1 executes vital functions within mitochondrial regulation that have a detrimental impact on the development and progression of PD. Hence, in this review, we aim to broaden the horizon of PINK1-mediated phenotypes occurring in neurons, astrocytes and microglia and, ultimately, highlight the importance of the crosstalk between these neural cells that is crucial for brain homeostasis.


Subject(s)
Astrocytes/enzymology , Microglia/enzymology , Mitochondria/enzymology , Neurons/enzymology , Parkinson Disease/enzymology , Protein Kinases/metabolism , Animals , Astrocytes/pathology , Brain/enzymology , Brain/pathology , Humans , Microglia/pathology , Mitochondria/pathology , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...