Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Int Microbiol ; 27(1): 127-142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37222909

ABSTRACT

Digestive and respiratory tracts are inhabited by rich bacterial communities that can vary between their different segments. In comparison with other bird taxa with developed caeca, parrots that lack caeca have relatively lower variability in intestinal morphology. Here, based on 16S rRNA metabarcoding, we describe variation in microbiota across different parts of parrot digestive and respiratory tracts both at interspecies and intraspecies levels. In domesticated budgerigar (Melopsittacus undulatus), we describe the bacterial variation across eight selected sections of respiratory and digestive tracts, and three non-destructively collected sample types (faeces, and cloacal and oral swabs). Our results show important microbiota divergence between the upper and lower digestive tract, but similarities between respiratory tract and crop, and also between different intestinal segments. Faecal samples appear to provide a better proxy for intestinal microbiota composition than the cloacal swabs. Oral swabs had a similar bacterial composition as the crop and trachea. For a subset of tissues, we confirmed the same pattern also in six different parrot species. Finally, using the faeces and oral swabs in budgerigars, we revealed high oral, but low faecal microbiota stability during a 3-week period mimicking pre-experiment acclimation. Our findings provide a basis essential for microbiota-related experimental planning and result generalisation in non-poultry birds.


Subject(s)
Microbiota , Parrots , Animals , Parrots/genetics , RNA, Ribosomal, 16S/genetics , Respiratory System/microbiology , Bacteria/genetics
2.
Genetica ; 151(4-5): 281-292, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37612519

ABSTRACT

The scarlet macaw, Ara macao, is a neotropical parrot that contains two described subspecies with broadly discrete geographical distributions. One subspecies, A. m. macao, is found from South America north into southwestern Costa Rica, while the second subspecies, A. m. cyanoptera, is found from eastern Costa Rica north into central Mexico. Our previous research using mitochondrial data to examine phylogeographical divergence across the collective range of these two subspecies concluded that they represent distinct evolutionary entities, with minimal contemporary hybridization between them. Here we further examine phylogenetic relationships and patterns of genetic variation between these two subspecies using a dataset of genetic markers derived from their nuclear genomes. Our analyses show clear nuclear divergence between A. m. macao and A. m. cyanoptera in Central America. Collectively however, samples from this region appear genetically more similar to one another than they do to the examined South American (Brazilian) A. m. macao sample. This observation contradicts our previous assessments based on mitochondrial DNA analyses that A. m. macao in Central and South America represent a single phylogeographical group that is evolutionarily distinct from Central American A. m. cyanoptera. Nonetheless, in agreement with our previous findings, ongoing genetic exchange between the two subspecies appears limited. Rather, our analyses indicate that incomplete lineage sorting is the best supported explanation for cytonuclear discordance within these parrots. High-altitude regions in Central America may act as a reproductive barrier, limiting contemporary hybridization between A. m. macao and A. m. cyanoptera. The phylogeographic complexities of scarlet macaw taxa in this region highlight the need for additional evolutionary examinations of these populations.


Subject(s)
Parrots , Animals , Phylogeny , Macau , Parrots/genetics , Central America , Brazil
3.
J Virol ; 97(8): e0050923, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37578232

ABSTRACT

Viruses can utilize host splicing machinery to enable the expression of multiple genes from a limited-sized genome. Orthobornaviruses use alternative splicing to regulate the expression level of viral proteins and achieve efficient viral replication in the nucleus. Although more than 20 orthobornaviruses have been identified belonging to eight different viral species, virus-specific splicing has not been demonstrated. Here, we demonstrate that the glycoprotein (G) transcript of parrot bornavirus 4 (PaBV-4; species Orthobornavirus alphapsittaciforme), a highly virulent virus in psittacines, undergoes mRNA splicing and expresses a soluble isoform termed sGP. Interestingly, the splicing donor for sGP is not conserved in other orthobornaviruses, including those belonging to the same orthobornavirus species, suggesting that this splicing has evolved as a PaBV-4-specific event. We have also shown that exogenous expression of sGP does not affect PaBV-4 replication or de novo virion infectivity. In this study, to investigate the role of sGP in viral replication, we established a reverse genetics system for PaBV-4 by using avian cell lines and generated a recombinant virus lacking the spliced mRNA for sGP. Using the recombinant viruses, we show that the replication of the sGP-deficient virus is significantly slower than that of the wild-type virus and that the exogenous expression of sGP cannot restore its propagation efficiency. These results suggest that autologous or controlled expression of sGP by splicing may be important for PaBV-4 propagation. The reverse genetics system for avian bornaviruses developed here will be a powerful tool for understanding the replication strategies and pathogenesis of avian orthobornaviruses. IMPORTANCE Parrot bornavirus 4 (PaBV-4) is the dominant cause of proventricular dilatation disease, a severe gastrointestinal and central nervous system disease among avian bornaviruses. In this study, we discovered that PaBV-4 expresses a soluble isoform of glycoprotein (G), called sGP, through alternative splicing of the G mRNA, which is unique to this virus. To understand the role of sGP in viral replication, we generated recombinant PaBV-4 lacking the newly identified splicing donor site for sGP using a reverse genetics system and found that its propagation was significantly slower than that of the wild-type virus, suggesting that sGP plays an essential role in PaBV-4 infection. Our results provide important insights not only into the replication strategy but also into the pathogenesis of PaBV-4, which is the most prevalent bornavirus in captive psittacines worldwide.


Subject(s)
Bird Diseases , Bornaviridae , Mononegavirales Infections , Parrots , Animals , Bornaviridae/genetics , Glycoproteins/genetics , Mononegavirales Infections/pathology , Mononegavirales Infections/virology , Parrots/genetics , Protein Isoforms/genetics , Reverse Genetics , RNA, Messenger
4.
Syst Biol ; 72(1): 228-241, 2023 05 19.
Article in English | MEDLINE | ID: mdl-35916751

ABSTRACT

Gene tree discordance is expected in phylogenomic trees and biological processes are often invoked to explain it. However, heterogeneous levels of phylogenetic signal among individuals within data sets may cause artifactual sources of topological discordance. We examined how the information content in tips and subclades impacts topological discordance in the parrots (Order: Psittaciformes), a diverse and highly threatened clade of nearly 400 species. Using ultraconserved elements from 96% of the clade's species-level diversity, we estimated concatenated and species trees for 382 ingroup taxa. We found that discordance among tree topologies was most common at nodes dating between the late Miocene and Pliocene, and often at the taxonomic level of the genus. Accordingly, we used two metrics to characterize information content in tips and assess the degree to which conflict between trees was being driven by lower-quality samples. Most instances of topological conflict and nonmonophyletic genera in the species tree could be objectively identified using these metrics. For subclades still discordant after tip-based filtering, we used a machine learning approach to determine whether phylogenetic signal or noise was the more important predictor of metrics supporting the alternative topologies. We found that when signal favored one of the topologies, the noise was the most important variable in poorly performing models that favored the alternative topology. In sum, we show that artifactual sources of gene tree discordance, which are likely a common phenomenon in many data sets, can be distinguished from biological sources by quantifying the information content in each tip and modeling which factors support each topology. [Historical DNA; machine learning; museomics; Psittaciformes; species tree.].


Subject(s)
Parrots , Humans , Animals , Phylogeny , Parrots/genetics
5.
Proc Biol Sci ; 289(1988): 20221941, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36475439

ABSTRACT

In vertebrates, cannabinoids modulate neuroimmune interactions through two cannabinoid receptors (CNRs) conservatively expressed in the brain (CNR1, syn. CB1) and in the periphery (CNR2, syn. CB2). Our comparative genomic analysis indicates several evolutionary losses in the CNR2 gene that is involved in immune regulation. Notably, we show that the CNR2 gene pseudogenized in all parrots (Psittaciformes). This CNR2 gene loss occurred because of chromosomal rearrangements. Our positive selection analysis suggests the absence of any specific molecular adaptations in parrot CNR1 that would compensate for the CNR2 loss in the modulation of the neuroimmune interactions. Using transcriptomic data from the brains of birds with experimentally induced sterile inflammation we highlight possible functional effects of such a CNR2 gene loss. We compare the expression patterns of CNR and neuroinflammatory markers in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Unlike in passerines, stimulation with lipopolysaccharide resulted in neuroinflammation in the parrots linked with a significant upregulation of expression in proinflammatory cytokines (including interleukin 1 beta (IL1B) and 6 (IL6)) in the brain. Our results indicate the functional importance of the CNR2 gene loss for increased sensitivity to brain inflammation.


Subject(s)
Parrots , Animals , Parrots/genetics , Receptors, Cannabinoid
6.
Transbound Emerg Dis ; 69(6): e3469-e3478, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36316791

ABSTRACT

Beak and feather disease virus (BFDV) has been found in Oceania, Africa, Asia and Europe, but the virus has not yet been detected in India. Here we are reporting the detection of BFDV in exotic rainbow lorikeets (Trichoglossus haematodus) in India. In the phylogenetic analysis, India's witnessed BFDV complete genome, replication (Rep) and capsid (Cap) sequences were displayed close to previously reported T. haematodus infecting BFDV from Australia. Further, we observed that the Indian and exotic Psittaciformes except T. haematodus housed together with the BFDV infected rainbow lorikeets did not display clinical signs and were negative for 4-month genome detection. This observation raised the suspicion that BFDV could cause host-specific infections. In addition, our phylogenetic analysis using 361 BFDV complete genome sequences from various bird species revealed that they were mainly grouped according to the specific species. Likewise, similarity plot analysis shows that the BFDV complete genome sequences found in T. haematodus are significantly different in areas such as the origin of Rep, the intergenic region between the 3' ends of the Rep and capsid (Cap) genes, and the Cap gene, compared to the BFDVs found in other birds. Furthermore, the BFDV-host coevolution analysis clarifies that the TimeTree of the evolution of various Psittaciformes bird species is the coevolution of the BFDV complete genome/Rep gene/Rep protein/Cap gene/Cap protein sequences found in the respective bird species. To our best knowledge, it is essential to note that no research has yet provided conclusive scientific evidence or experimental evidence that BFDVs detected from Trichoglossus sp. can infect other bird species. Therefore, it can be expected that the BFDVs found in the exotic bird in India will not infect Indian Psittaciformes. However, we hope that large-scale surveillance of BFDV in Indian birds will help determine the BFDV genome present in Indian birds and take further action.


Subject(s)
Bird Diseases , Circoviridae Infections , Circovirus , Parrots , Animals , Phylogeny , Circovirus/genetics , Parrots/genetics , Genome , Capsid Proteins/genetics , Circoviridae Infections/epidemiology , Circoviridae Infections/veterinary , Circoviridae Infections/genetics , Bird Diseases/epidemiology
7.
Viruses ; 14(10)2022 10 01.
Article in English | MEDLINE | ID: mdl-36298736

ABSTRACT

Proventricular dilatation disease (PDD) caused by parrot bornavirus (PaBV) infection is an often-fatal disease known to infect Psittaciformes. The impact of age at the time of PaBV infection on organ lesions and tissue distribution of virus antigen and RNA remains largely unclear. For this purpose, tissue sections of 11 cockatiels intravenously infected with PaBV-4 as adults or juveniles, respectively, were examined via histology, immunohistochemistry applying a phosphoprotein (P) antibody directed against the bornaviral phosphoprotein and in situ hybridisation to detect viral RNA in tissues. In both groups of adult- and juvenile-infected cockatiels, widespread tissue distribution of bornaviral antigen and RNA as well as histologic inflammatory lesions were demonstrated. The latter appeared more severe in the central nervous system in adults and in the proventriculus of juveniles, respectively. During the study, central nervous symptoms and signs of gastrointestinal affection were only demonstrated in adult birds. Our findings indicate a great role of the age at the time of infection in the development of histopathological lesions and clinical signs, and thus provide a better understanding of the pathogenesis, possible virus transmission routes, and the development of carrier birds posing a risk to psittacine collections.


Subject(s)
Bird Diseases , Bornaviridae , Cockatoos , Mononegavirales Infections , Parrots , Animals , Cockatoos/genetics , Parrots/genetics , Mononegavirales Infections/veterinary , RNA, Viral/genetics , Tissue Distribution , Phosphoproteins
8.
Viruses ; 14(10)2022 10 04.
Article in English | MEDLINE | ID: mdl-36298742

ABSTRACT

While parrot bornaviruses are accepted as the cause of proventricular dilatation disease (PDD) in psittacine birds, the pathogenic role of bornaviruses in common canaries is still unclear. To answer the question of whether canary bornaviruses (species Orthobornavirus serini) are associated with a PDD-like disease in common canaries (Serinus canaria f. dom.), the clinical data of 201 canary bird patients tested for bornaviruses using RT-PCR assays, were analyzed for the presence of PDD-like gastrointestinal or central nervous system signs and for other viruses (mainly circovirus and polyomavirus), yeasts and trichomonads. Canary bornavirus RNA was detected in the clinical samples of 40 out of 201 canaries (19.9%) coming from 28 of 140 flocks (20%). All nucleotide sequences obtained could unequivocally be determined as canary bornavirus 1, 2, or 3 supporting the current taxonomy of the species Orthobornavirus serini. PDD-like signs were found associated with canary bornavirus detection, and to a lesser extent, with circoviruses detection, but not with the detection of polyomaviruses, yeasts or trichomonads. The data indicate that canary bornaviruses contribute to a PDD-like disease in naturally infected canaries, and suggest a promoting effect of circoviruses for the development of PDD-like signs.


Subject(s)
Bird Diseases , Bornaviridae , Circovirus , Mononegavirales Infections , Parrots , Polyomavirus , Animals , Humans , Bornaviridae/genetics , Canaries , Mononegavirales Infections/veterinary , Parrots/genetics , Circovirus/genetics , Polyomavirus/genetics , RNA
9.
Mov Disord ; 37(12): 2345-2354, 2022 12.
Article in English | MEDLINE | ID: mdl-36086934

ABSTRACT

BACKGROUND: Several genetic models that recapitulate neurodegenerative features of Parkinson's disease (PD) exist, which have been largely based on genes discovered in monogenic PD families. However, spontaneous genetic mutations have not been linked to the pathological hallmarks of PD in non-human vertebrates. OBJECTIVE: To describe the genetic and pathological findings of three Yellow-crowned parrot (Amazona ochrocepahala) siblings with a severe and rapidly progressive neurological phenotype. METHODS: The phenotype of the three parrots included severe ataxia, rigidity, and tremor, while their parents were phenotypically normal. Tests to identify avian viral infections and brain imaging studies were all negative. Due to their severe impairment, they were all euthanized at age 3 months and their brains underwent neuropathological examination and proteasome activity assays. Whole genome sequencing (WGS) was performed on the three affected parrots and their parents. RESULTS: The brains of affected parrots exhibited neuronal loss, spongiosis, and widespread Lewy body-like inclusions in many regions including the midbrain, basal ganglia, and neocortex. Proteasome activity was significantly reduced in these animals compared to a control (P < 0.05). WGS identified a single homozygous missense mutation (p.V559L) in a highly conserved amino acid within the pleckstrin homology (PH) domain of the calcium-dependent secretion activator 2 (CADPS2) gene. CONCLUSIONS: Our data suggest that a homozygous mutation in the CADPS2 gene causes a severe neurodegenerative phenotype with Lewy body-like pathology in parrots. Although CADPS2 variants have not been reported to cause PD, further investigation of the gene might provide important insights into the pathophysiology of Lewy body disorders. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Parrots , Animals , Lewy Bodies/pathology , Neurodegenerative Diseases/genetics , Parrots/genetics , Parrots/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Mutation/genetics , Carrier Proteins/genetics , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
10.
Viruses ; 14(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36146790

ABSTRACT

Parrot bornavirus (PaBV) might be transmitted vertically. Cockatiel embryonic brain cells and embryonated eggs of cockatiels (ECE) were infected with PaBV-2 and PaBV-4. In embryonic brain cells, PaBV-2 and PaBV-4 showed no differences in viral spread despite the slower growth of PaBV-2 compared with PaBV-4 in CEC-32 cells. ECE were inoculated with PaBV-4 and 13-14 dpi, organs were sampled for RT-PCR, immunohistochemistry/histology, and virus isolation. In 28.1% of the embryos PaBV-4-RNA and in 81.3% PaBV-4-antigen was detected in the brain. Virus isolation failed. Division of organ samples and uneven tissue distribution of the virus limited the results. Therefore, 25 ECE were inoculated with PaBV-4 (group 1) and 15 ECE with PaBV-2 (group 3) in the yolk sac, and 25 ECE were inoculated with PaBV-4 (group 2) and 15 eggs with PaBV-2 (group 4) in the chorioallantoic membrane to use the complete organs from each embryo for each examination method. PaBV-RNA was detected in the brain of 80% of the embryos in groups 1, 2, 3 and in 100% of the embryos in group 4. In 90% of the infected embryos of group 1, and 100% of group 2, 3 and 4, PaBV antigen was detected in the brain. PaBV antigen-positive brain cells were negative for anti-neuronal nuclear protein, anti-glial fibrillary acidic protein, and anti S-100 staining. Virus was not re-isolated. These results demonstrated a specific distribution pattern and spread of PaBV-4 and PaBV-2 in the brain when inoculated in ECE. These findings support a potential for vertical transmission.


Subject(s)
Bird Diseases , Bornaviridae , Cockatoos , Mononegavirales Infections , Parrots , Animals , Cockatoos/genetics , Mononegavirales Infections/veterinary , Nuclear Proteins , Parrots/genetics , RNA
11.
Mol Biol Rep ; 49(9): 9121-9127, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35941414

ABSTRACT

BACKGROUND: The genus Trichoglossus belongs to the family Psittacidae and includes fourteen species distributed worldwide. According to the International Union for Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species, most Trichoglossus species have shown a decreasing population trend recently. In particular, Trichoglossus forsteni is listed as "Endangered" in the IUCN Red List of Threatened Species. Moreover, Trichoglossus haematodus and Trichoglossus moluccanus are one of the most traded and illegally traded parrots. However, only a few genetic studies have been conducted regarding the conservation of this genus. METHODS AND RESULTS: In the present study, complete mitochondrial genomes of three species (T. forsteni, T. haematodus, and T. moluccanus) were sequenced and compared with Trichoglossus rubritorquis, species whose mitochondrial genome is already reported. Results indicate that the complete mitochondrial genomes of the three species were similar in length (17,906 bp for T. haematodus to 17,909 bp for T. forsteni). Furthermore, the organization and order of these three mitochondrial genomes were identical, including thirteen protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes, and two control regions (CRs) categorized into three domains containing nine conserved motifs. In addition, the genus Trichoglossus formed a well-supported monophyletic lineage. CONCLUSIONS: The results of this study may be useful for future genetic studies toward the conservation of the genus Trichoglossus.


Subject(s)
Genome, Mitochondrial , Parrots , Animals , Base Sequence , Endangered Species , Genome, Mitochondrial/genetics , Parrots/genetics , Phylogeny , RNA, Transfer/genetics
12.
Nat Commun ; 13(1): 944, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177601

ABSTRACT

The karyotype of most birds has remained considerably stable during more than 100 million years' evolution, except for some groups, such as parrots. The evolutionary processes and underlying genetic mechanism of chromosomal rearrangements in parrots, however, are poorly understood. Here, using chromosome-level assemblies of four parrot genomes, we uncover frequent chromosome fusions and fissions, with most of them occurring independently among lineages. The increased activities of chromosomal rearrangements in parrots are likely associated with parrot-specific loss of two genes, ALC1 and PARP3, that have known functions in the repair of double-strand breaks and maintenance of genome stability. We further find that the fusion of the ZW sex chromosomes and chromosome 11 has created a pair of neo-sex chromosomes in the ancestor of parrots, and the chromosome 25 has been further added to the sex chromosomes in monk parakeet. Together, the combination of our genomic and cytogenetic analyses characterizes the complex evolutionary history of chromosomal rearrangements and sex chromosomes in parrots.


Subject(s)
Evolution, Molecular , Parrots/genetics , Sex Chromosomes/genetics , Animals , Chromosome Painting , DNA Breaks, Double-Stranded , DNA Helicases/genetics , Female , Gene Rearrangement , Genomic Instability , Karyotype , Karyotyping , Phylogeny , Poly(ADP-ribose) Polymerases/genetics , Synteny
13.
Genes (Basel) ; 12(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34356113

ABSTRACT

Parrots are considered the third most popular pet species, after dogs and cats, in the United States of America. Popular birds include budgerigars, lovebirds and cockatiels and are known for their plumage and vocal learning abilities. Plumage colour variation remains the main driving force behind breeder selection. Despite the birds' popularity, only two molecular genetic tests-bird sexing and pathogen screening-are commercially available to breeders. For a limited number of species, parentage verification tests are available, but are mainly used in conservation and not for breeding purposes. No plumage colour genotyping test is available for any of the species. Due to the fact that there isn't any commercial plumage genotype screening or parentage verification tests available, breeders mate close relatives to ensure recessive colour alleles are passed to the next generation. This, in turn, leads to inbreeding depression and decreased fertility, lower hatchability and smaller clutch sizes, all important traits in commercial breeding systems. This review highlights the research carried out in the field of pet parrot genomics and points out the areas where future research can make a vital contribution to understanding how parrot breeding can be improved to breed healthy, genetically diverse birds.


Subject(s)
Genetic Testing/trends , Parrots/genetics , Alleles , Animals , Feathers/metabolism , Genetic Testing/methods , Genome/genetics , Genomics/methods , Genomics/trends , Inbreeding Depression/genetics , Pigmentation/genetics
14.
Viruses ; 13(7)2021 07 13.
Article in English | MEDLINE | ID: mdl-34372564

ABSTRACT

Avian bornaviruses were first described in 2008 as the causative agents of proventricular dilatation disease (PDD) in parrots and their relatives (Psittaciformes). To date, 15 genetically highly diverse avian bornaviruses covering at least five viral species have been discovered in different bird orders. Currently, the primary diagnostic tool is the detection of viral RNA by conventional or real-time RT-PCR (rRT-PCR). One of the drawbacks of this is the usage of either specific assays, allowing the detection of one particular virus, or of assays with a broad detection spectrum, which, however, do not allow for the simultaneous specification of the detected virus. To facilitate the simultaneous detection and specification of avian bornaviruses, a multiplex real-time RT-PCR assay was developed. Whole-genome sequences of various bornaviruses were aligned. Primers were designed to recognize conserved regions within the overlapping X/P gene and probes were selected to detect virus species-specific regions within the target region. The optimization of the assay resulted in the sensitive and specific detection of bornaviruses of Psittaciformes, Passeriformes, and aquatic birds. Finally, the new rRT-PCR was successfully employed to detect avian bornaviruses in field samples from various avian species. This assay will serve as powerful tool in epidemiological studies and will improve avian bornavirus detection.


Subject(s)
Bornaviridae/genetics , Bornaviridae/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Animals , Bird Diseases/virology , Birds/genetics , Birds/virology , DNA Primers/genetics , Genome, Viral , Mononegavirales Infections/veterinary , Parrots/genetics , Parrots/virology , Passeriformes/genetics , Passeriformes/virology , Phylogeny , RNA, Viral/genetics , Whole Genome Sequencing/methods
15.
Vet Res Commun ; 45(4): 329-333, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34278549

ABSTRACT

In captivity, cardiovascular diseases are common in grey parrots. The diagnosis of these diseases in living birds is difficult, and new diagnostic possibilities would be desirable. The heart is an important endocrine organ in which cardiomyocytes synthetise B-type natriuretic peptide (BNP) and release it into the bloodstream. This hormone has a significant role in cardiovascular and body fluid regulation. The blood concentration of BNP is used in human medicine and small animal medicine as a diagnostic tool in the identification of heart diseases and as a prognostic marker for the risk of mortality. The nucleotide and amino acid sequence of BNP was described in Congo (n = 4) and Timneh (n = 3) grey parrots by PCR after RNA isolation from the atria and ventricles. The results showed a high similarity between the nucleotide sequences of the grey parrots' BNP and the already known sequence of this hormone in chickens. The amino acid sequence of the mature peptide region is consistent in these three species. BNP plasma concentration could be a possible blood parameter for identifying clinically manifest cardiovascular diseases in grey parrots as it is in other species.


Subject(s)
Avian Proteins/genetics , Natriuretic Peptide, Brain/genetics , Parrots/genetics , Amino Acid Sequence , Animals , Avian Proteins/chemistry , Avian Proteins/metabolism , Base Sequence , Natriuretic Peptide, Brain/chemistry , Natriuretic Peptide, Brain/metabolism , Parrots/metabolism , Sequence Alignment
16.
Mol Biol Rep ; 48(7): 5787-5793, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34269970

ABSTRACT

BACKGROUD: Trichoglossus haematodus is the most popular parrots globally and one of the most bred species in Korea's zoos. However, despite its popularity, there are limited studies on the population genetics of this species. METHODS AND RESULTS: In this study, 10 polymorphic microsatellite markers were developed for T. haematodus. The number of alleles ranged from 6 to 9 (mean 7.9). Null alleles were present in two loci (TH-07 and TH-08). The observed heterozygosity ranged from 0.4444 to 1.0000 (mean 0.7000). One locus (TH-08) indicated a significant deviation from the Hardy-Weinberg equilibrium after Bonferroni correction (p < 0.005). The mean inbreeding coefficient (FIS) of the 10 loci was positive, suggesting that there is inbreeding in the population. Since the polymorphism information content (PIC) values were more than 0.7 in all loci, all markers developed in this study were classified as informative. The parentage exclusion probabilities considering all loci were higher than 0.99 in all three cases (P1, P2, and P3). The cross-species amplification of the 10 markers was tested in T. moluccanus, a close relative species of T. haematodus. These markers were also informative for T. moluccanus with PIC values higher than 0.7 in all loci. Additionally, the parentage exclusion probabilities (P1, P2 and P3) for T. moluccanus were above 0.99. However, due to the small number of T. haematodus and T. moluccanus investigated in this study, the 10 microsatellite markers should be analyzed with more individuals of these two species in future studies. CONCLUSIONS: The markers developed in this study might be helpful for investigations of genetic diversity and parentage analysis of T. haematodus and T. moluccanus.


Subject(s)
Genetics, Population , Microsatellite Repeats , Parrots/classification , Parrots/genetics , Polymorphism, Genetic , Animals , Crosses, Genetic , Genetic Loci , High-Throughput Nucleotide Sequencing
17.
Genes (Basel) ; 12(2)2021 01 31.
Article in English | MEDLINE | ID: mdl-33572592

ABSTRACT

Cacatua alba, Cacatua galerita, and Cacatua goffiniana are parrots of the family Cacatuidae. Wild populations of these species are declining with C. alba listed by the International Union for the Conservation of Nature and Natural Resources (IUCN) as Endangered. In this study, complete mitogenomes were sequenced for a comparative analysis among the Cacatua species, and a detailed analysis of the control region. Mitogenome lengths of C. alba,C. galerita, and C. goffiniana were 18,894, 18,900, and 19,084 bp, respectively. They included 13 protein coding genes, two ribosomal RNA genes, 24 transfer RNA genes, three degenerated genes, and two control regions. Ten conserved motifs were found in three domains within each of the two control regions. For an evolution of duplicated control regions of Cacatua, domain I and the 3' end of domain III experienced an independent evolution, while domain II and most of the regions of domain III was subjected to a concerted evolution. Based on a phylogenetic analysis of 37 mitochondrial genes, the genus Cacatua formed a well-supported, monophyletic, crown group within the Cacatuidae. Molecular dating results showed that Cacatua diverged from other genera of Cacatuinae in the middle of Miocene.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Parrots/genetics , Animals , Cockatoos/classification , Cockatoos/genetics , Genome, Mitochondrial/genetics , Parrots/classification , Phylogeny , RNA, Transfer/genetics
18.
Sci Rep ; 11(1): 1605, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452280

ABSTRACT

Natural history collections are often plagued by missing or inaccurate metadata for collection items, particularly for specimens that are difficult to verify or rare. Avian eggshell in particular can be challenging to identify due to extensive morphological ambiguity among taxa. Species identifications can be improved using DNA extracted from museum eggshell; however, the suitability of current methods for use on small museum eggshell specimens has not been rigorously tested, hindering uptake. In this study, we compare three sampling methodologies to genetically identify 45 data-poor eggshell specimens, including a putatively extinct bird's egg. Using an optimised drilling technique to retrieve eggshell powder, we demonstrate that sufficient DNA for molecular identification can be obtained from even the tiniest eggshells without significant alteration to the specimen's appearance or integrity. This method proved superior to swabbing the external surface or sampling the interior; however, we also show that these methods can be viable alternatives. We then applied our drilling method to confirm that a purported clutch of Paradise Parrot eggs collected 40 years after the species' accepted extinction date were falsely identified, laying to rest a 53-year-old ornithological controversy. Thus, even the smallest museum eggshells can offer new insights into old questions.


Subject(s)
Birds/genetics , DNA Barcoding, Taxonomic , Egg Shell/metabolism , Parrots/genetics , Animals , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Museums , Specimen Handling
19.
Sci Rep ; 11(1): 556, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436676

ABSTRACT

Behavioural and socio-cultural traits are recognized in the restriction of gene flow in species with high cognitive capacity and complex societies. This isolation by social barriers has been generally overlooked in threatened species by assuming disrupted gene flow due to population fragmentation and decline. We examine the genetic structure and ecology of the global population of the Critically Endangered red-fronted macaw (Ara rubrogenys), an endemic species to the inter-Andean valleys of Bolivia. We found a fine-scale genetic structuring in four genetic clusters. Genetic diversity was higher in wild compared to captive-bred macaws, but similar to that of captive wild-caught macaws. We found no clear evidence of severe genetic erosion in the population in recent decades, but it was patent in historic times, overlapping with drastic human habitat transformation and macaw persecution over millennia. We found no evidence of geographical and ecological barriers, owing to the high dispersal ability, nesting and foraging habits between genetic clusters. The lack of genetic intermixing despite long-distance foraging and seasonal movements suggests recruitment in natal colonies and other social factors reinforcing philopatry-related genetic structure. Conservation efforts should be specifically focussed on major threats in each genetic cluster as independent conservation units, and also considered in ex-situ management.


Subject(s)
Behavior, Animal/physiology , Cognition/physiology , Ecosystem , Endangered Species , Gene Flow , Genetic Structures , Geography , Parrots/genetics , Parrots/physiology , Social Behavior , Animal Migration/physiology , Animals , Bolivia , Conservation of Natural Resources , Genetic Variation , Genetics, Population , Multigene Family , Population Dynamics , Seasons
20.
Mol Biol Rep ; 47(10): 8279-8285, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32960414

ABSTRACT

A set of 16 microsatellite markers was characterized for Lear's macaw (Anodorhynchus leari) using DNA samples from captive individuals. Extending this molecular toolkit, including the use of samples from wild individuals, is expected to provide the required power of resolution for pedigree inference of both wild and captive individuals, and could support research on the genetic structure of wild populations. We characterize a set of 15 microsatellite markers optimized for the Lear's macaw, developed from a microsatellite-enriched library in a three-step procedure. Primer pairs were initially designed for 62 microsatellites with > 7 tandem repetitions. After amplification of DNA of five wild individuals from different localities, 22 loci seemed to be polymorphic and were further tested on 12 wild nestling samples. Fifteen unlinked loci showed unambiguous peaks and low to moderate polymorphism levels. The combination of the four most polymorphic markers allowed individual identification even of putative sibs.These markers complement previously described microsatellites developed for A. leari and constitute a fundamental genetic toolkit for the investigation of the genetics of both wild and captive populations, thus assisting integrated management plans for the conservation of this globally endangered species.


Subject(s)
Conservation of Natural Resources , Microsatellite Repeats , Parrots/genetics , Polymorphism, Genetic , Animals , Endangered Species
SELECTION OF CITATIONS
SEARCH DETAIL
...