Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.563
Filter
1.
Sci Rep ; 14(1): 10719, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729975

ABSTRACT

The shielding parameters can vary depending on the geometrical structure of the linear accelerators (LINAC), treatment techniques, and beam energies. Recently, the introduction of O-ring type linear accelerators is increasing. The objective of this study is to evaluate the shielding parameters of new type of linac using a dedicated program developed by us named ORSE (O-ring type Radiation therapy equipment Shielding Evaluation). The shielding evaluation was conducted for a total of four treatment rooms including Elekta Unity, Varian Halcyon, and Accuray Tomotherapy. The developed program possesses the capability to calculate transmitted dose, maximum treatable patient capacity, and shielding wall thickness based on patient data. The doses were measured for five days using glass dosimeters to compare with the results of program. The IMRT factors and use factors obtained from patient data showed differences of up to 65.0% and 33.8%, respectively, compared to safety management report. The shielding evaluation conducted in each treatment room showed that the transmitted dose at every location was below 1% of the dose limit. The results of program and measurements showed a maximum difference of 0.003 mSv/week in transmitted dose. The ORSE program allows for the shielding evaluation results to the clinical environment of each institution based on patient data.


Subject(s)
Particle Accelerators , Radiation Protection , Particle Accelerators/instrumentation , Radiation Protection/instrumentation , Radiation Protection/methods , Humans , Radiotherapy, Intensity-Modulated/methods , Radiation Dosage
2.
Sci Rep ; 14(1): 11120, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750131

ABSTRACT

Very High Energy Electron (VHEE) beams are a promising alternative to conventional radiotherapy due to their highly penetrating nature and their applicability as a modality for FLASH (ultra-high dose-rate) radiotherapy. The dose distributions due to VHEE need to be optimised; one option is through the use of quadrupole magnets to focus the beam, reducing the dose to healthy tissue and allowing for targeted dose delivery at conventional or FLASH dose-rates. This paper presents an in depth exploration of the focusing achievable at the current CLEAR (CERN Linear Electron Accelerator for Research) facility, for beam energies >200 MeV. A shorter, more optimal quadrupole setup was also investigated using the TOPAS code in Monte Carlo simulations, with dimensions and beam parameters more appropriate to a clinical situation. This work provides insight into how a focused VHEE radiotherapy beam delivery system might be achieved.


Subject(s)
Electrons , Monte Carlo Method , Radiotherapy Dosage , Humans , Particle Accelerators/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy/methods , Radiotherapy, High-Energy/methods , Radiotherapy, High-Energy/instrumentation
3.
Sci Data ; 11(1): 487, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734679

ABSTRACT

Radiation therapy (RT) is a crucial treatment for head and neck squamous cell carcinoma (HNSCC); however, it can have adverse effects on patients' long-term function and quality of life. Biomarkers that can predict tumor response to RT are being explored to personalize treatment and improve outcomes. While tissue and blood biomarkers have limitations, imaging biomarkers derived from magnetic resonance imaging (MRI) offer detailed information. The integration of MRI and a linear accelerator in the MR-Linac system allows for MR-guided radiation therapy (MRgRT), offering precise visualization and treatment delivery. This data descriptor offers a valuable repository for weekly intra-treatment diffusion-weighted imaging (DWI) data obtained from head and neck cancer patients. By analyzing the sequential DWI changes and their correlation with treatment response, as well as oncological and survival outcomes, the study provides valuable insights into the clinical implications of DWI in HNSCC.


Subject(s)
Diffusion Magnetic Resonance Imaging , Head and Neck Neoplasms , Humans , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Radiotherapy, Image-Guided , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Particle Accelerators
4.
Sci Rep ; 14(1): 11253, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755333

ABSTRACT

Accelerator-based boron neutron capture therapy (BNCT) systems employing a solid-state lithium target indicated the reduction of neutron flux over the lifetime of a target, and its reduction could represent the neutron flux model. This study proposes a novel compensatory approach for delivering the required neutron fluence and validates its clinical applicability. The proposed approach relies on the neutron flux model and the cumulative sum of real-time measurements of proton charges. The accuracy of delivering the required neutron fluence for BNCT using the proposed approach was examined in five Li targets. With the proposed approach, the required neutron fluence could be delivered within 3.0%, and within 1.0% in most cases. However, those without using the proposed approach exceeded 3.0% in some cases. The proposed approach can consider the neutron flux reduction adequately and decrease the effect of uncertainty in neutron measurements. Therefore, the proposed approach can improve the accuracy of delivering the required fluence for BNCT even if a neutron flux reduction is expected during treatment and over the lifetime of the Li target. Additionally, by adequately revising the approach, it may apply to other type of BNCT systems employing a Li target, furthering research in this direction.


Subject(s)
Boron Neutron Capture Therapy , Lithium , Neutrons , Boron Neutron Capture Therapy/methods , Lithium/chemistry , Humans , Particle Accelerators , Radiotherapy Dosage
5.
Opt Lett ; 49(9): 2425-2428, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691735

ABSTRACT

Cherenkov imaging is an ideal tool for real-time in vivo verification of a radiation therapy dose. Given that radiation is pulsed from a medical linear accelerator (LINAC) together with weak Cherenkov emissions, time-gated high-sensitivity imaging is required for robust measurements. Instead of using an expensive camera system with limited efficiency of detection in each pixel, a single-pixel imaging (SPI) approach that maintains promising sensitivity over the entire spectral band could be used to provide a low-cost and viable alternative. A prototype SPI system was developed and demonstrated here in Cherenkov imaging of LINAC dose delivery to a water tank. Validation experiments were performed using four regular fields and an intensity-modulated radiotherapy (IMRT) delivery plan. The Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to pPDDs simulated by the treatment planning system (TPS), with an overall average error of 0.48, 0.42, 0.65, and 1.08% for the 3, 5, 7, and 9 cm square beams, respectively. The composite image of the IMRT plan achieved a 85.9% pass rate using 3%/3 mm gamma index criteria, in comparing Cherenkov intensity and TPS dose. This study validates the feasibility of applying SPI to the Cherenkov imaging of radiotherapy dose for the first time to our knowledge.


Subject(s)
Particle Accelerators , Time Factors , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
6.
Sci Rep ; 14(1): 10957, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740830

ABSTRACT

Very high energy electrons (VHEE) are a potential candidate for radiotherapy applications. This includes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivity of VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used to perform successful in vitro radiobiological studies. The ARES (accelerator research experiment at SINBAD) facility at DESY, Hamburg, Germany was used to deliver 154 MeV electrons to both prostate (PC3) and lung (A549) cancer cells in suspension. Dose was delivered to samples with repeatability and uniformity, quantified with Gafchromic film. Cell survival in response to VHEE was measured using the clonogenic assay to determine the biological effectiveness of VHEE in cancer cells for the first time using this method. Equivalent experiments were performed using 300 kVp X-rays, to enable VHEE irradiated cells to be compared with conventional photons. VHEE irradiated cancer cell survival was fitted to the linear quadratic (LQ) model (R2 = 0.96-0.97). The damage from VHEE and X-ray irradiated cells at doses between 1.41 and 6.33 Gy are comparable, suggesting similar relative biological effectiveness (RBE) between the two modalities. This suggests VHEE is as damaging as photon radiotherapy and therefore could be used to successfully damage cancer cells during radiotherapy. The RBE of VHEE was quantified as the relative doses required for 50% (D0.5) and 10% (D0.1) cell survival. Using these values, VHEE RBE was measured as 0.93 (D0.5) and 0.99 (D0.1) for A549 and 0.74 (D0.5) and 0.93 (D0.1) for PC3 cell lines respectively. For the first time, this study has shown that 154 MeV electrons can be used to effectively kill lung and prostate cancer cells, suggesting that VHEE would be a viable radiotherapy modality. Several studies have shown that VHEE has characteristics that would offer significant improvements over conventional photon radiotherapy for example, electrons are relatively easy to steer and can be used to deliver dose rapidly and with high efficiency. Studies have shown improved dose distribution with VHEE in treatment plans, in comparison to VMAT, indicating that VHEE can offer improved and safer treatment plans with reduced side effects. The biological response of cancer cells to VHEE has not been sufficiently studied as of yet, however this initial study provides some initial insights into cell damage. VHEE offers significant benefits over photon radiotherapy and therefore more studies are required to fully understand the biological effectiveness of VHEE.


Subject(s)
Cell Survival , Lung Neoplasms , Prostatic Neoplasms , Relative Biological Effectiveness , Humans , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Male , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Cell Survival/radiation effects , Electrons/therapeutic use , Particle Accelerators , PC-3 Cells , Cell Line, Tumor , A549 Cells
7.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 156-159, 2024 Mar 30.
Article in Chinese | MEDLINE | ID: mdl-38605614

ABSTRACT

Objective: The distribution of the photon energy spectrum in isocenter plane of the medical linear accelerator and the influence of secondary collimator on the photon energy spectrum are studied. Methods Use the BEAMnrc program to simulate the transmission of the 6 MeV electrons and photons in 5 cm×5 cm,10 cm×10 cm,15 cm×15 cm and 20 cm×20 cm fields in treatment head of the medical linear accelerator, where a phase space file was set up at the isocenter plane to record the particle information passing through this plane. The BEAMdp program is used to analyze the phase space file, in order to obtain the distribution of the photon energy spectrum in isocenter plane and the influence of secondary collimator on the photon energy spectrum. Results: By analyzing the photon energy spectrum of a medical linear accelerator with a nominal energy of 6 MV, it is found that the secondary collimator has little effect on the photon energy spectrum; different fields have different photon energy spectrum distributions; the photon energy spectrum in different central regions of the same field have the same normalized distribution. Conclusion: In the dose calculation of radiation therapy, the influence of photon energy spectrum should be carefully considered.


Subject(s)
Photons , Radiotherapy Planning, Computer-Assisted , Monte Carlo Method , Photons/therapeutic use , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage
8.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 212-216, 2024 Mar 30.
Article in Chinese | MEDLINE | ID: mdl-38605624

ABSTRACT

The medical electron linear accelerator(LINAC) has the characteristics of complex system structure, many core components and high precision control requirements, which puts forward higher requirements for product quality control and regulation. This study puts forward the main points of field inspection through the analysis of the technical characteristics and production risk of LINAC, combined with the requirements of the good manufacturing practice of medical devices. It has certain reference significance for quality management personnel and field inspectors.


Subject(s)
Electrons , Particle Accelerators
9.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 184-191, 2024 Mar 30.
Article in Chinese | MEDLINE | ID: mdl-38605619

ABSTRACT

More than 70% of tumor patients require radiotherapy. Medical electron linear accelerators are important high-end radiotherapy equipment for tumor radiotherapy. With the application of artificial intelligence technology in medical electron linear accelerator, radiotherapy has evolved from ordinary radiotherapy to today's intelligent radiotherapy. This study introduces the development history, working principles and system composition of medical electron linear accelerators. It outlines the key technologies for improving the performance of medical linear electron accelerators, including beam control, multi-leaf collimator, guiding technology and dose evaluation. It also looks forward to the development trend of major radiotherapy technologies, such as biological guided radiotherapy, FLASH radiotherapy and intelligent radiotherapy, which provides references for the development of medical electron linear accelerators.


Subject(s)
Electrons , Neoplasms , Humans , Artificial Intelligence , Particle Accelerators , Radiotherapy Dosage
10.
PLoS One ; 19(4): e0301435, 2024.
Article in English | MEDLINE | ID: mdl-38635642

ABSTRACT

In radiotherapy, when photon energy exceeding 8 MV is utilized, photoneutrons can activate the components within the gantry of the linear accelerator (linac). At the end of the linac's lifecycle, radiation workers are tasked with its dismantling and disposal, potentially exposing them to unintentional radiation. This study aims to identify and measure the radioisotopes generated by this activation through spectroscopy, and to evaluate the effective dose rate. We selected nine medical linacs, considering various factors such as manufacturer (Siemens, Varian, and Elekta), model, energy, period of operation, and workload. We identified the radionuclides in the linac head by employing an in situ high-purity germanium (HPGe) detector. Spectroscopy and dose-rate measurements were conducted post-shutdown. We also measured the dose rates at the beam-exit window following irradiation with 10 MV and 15 MV photon beams. As a result of the spectroscopy, we identified approximately 20 nuclides including those with half-lives of 100 days or longer, such as 54Mn, 60Co, 65Zn, 122Sb, and 198Au. The dose rate measurements after 10 MV irradiation decreased to the background level in 10 min. By contrast, on 15 MV irradiation, the dose rate was 628 nSv/h after 10 min and decreased to 268 nSv/h after 1.5 hours. It was confirmed that the difference in the level of radiation and the type of nuclide depends on the period of use, energy, and workload. However, the type of nuclide does not differ significantly between the linacs. It is necessary to propose appropriate guidelines for the safety of workers, and disposal/move-install should be planned while taking into consideration the equipment's energy usage rate.


Subject(s)
Manganese , Radioisotopes , Humans , Radiotherapy Dosage , Particle Accelerators , Photons , Spectrum Analysis
11.
Phys Med Biol ; 69(11)2024 May 14.
Article in English | MEDLINE | ID: mdl-38657630

ABSTRACT

Objective. We provide optimal particle split numbers for speeding up TOPAS Monte Carlo simulations of linear accelerator (linac) treatment heads while maintaining accuracy. In addition, we provide a new TOPAS physics module for simulating photoneutron production and transport.Approach.TOPAS simulation of a Siemens Oncor linac was used to determine the optimal number of splits for directional bremsstrahlung splitting as a function of the field size for 6 MV and 18 MV x-ray beams. The linac simulation was validated against published data of lateral dose profiles and percentage depth-dose curves (PDD) for the largest square field (40 cm side). In separate simulations, neutron particle split and the custom TOPAS physics module was used to generate and transport photoneutrons, called 'TsPhotoNeutron'. Verification of accuracy was performed by comparing simulations with published measurements of: (1) neutron yields as a function of beam energy for thick targets of Al, Cu, Ta, W, Pb and concrete; and (2) photoneutron energy spectrum at 40 cm laterally from the isocenter of the Oncor linac from an 18 MV beam with closed jaws and MLC.Main results.The optimal number of splits obtained for directional bremsstrahlung splitting enhanced the computational efficiency by two orders of magnitude. The efficiency decreased with increasing beam energy and field size. Calculated lateral profiles in the central region agreed within 1 mm/2% from measured data, PDD curves within 1 mm/1%. For the TOPAS physics module, at a split number of 146, the efficiency of computing photoneutron yields was enhanced by a factor of 27.6, whereas it improved the accuracy over existing Geant4 physics modules.Significance.This work provides simulation parameters and a new TOPAS physics module to improve the efficiency and accuracy of TOPAS simulations that involve photonuclear processes occurring in high-Zmaterials found in linac components, patient devices, and treatment rooms, as well as to explore new therapeutic modalities such as very-high energy electron therapy.


Subject(s)
Monte Carlo Method , Neutrons , Particle Accelerators , Photons , Photons/therapeutic use , Time Factors , Radiotherapy Dosage , Reproducibility of Results , Computer Simulation , Humans , Radiotherapy/methods
12.
J Appl Clin Med Phys ; 25(5): e14343, 2024 May.
Article in English | MEDLINE | ID: mdl-38569013

ABSTRACT

PURPOSE: Single-isocenter multi-target intracranial stereotactic radiotherapy (SIMT) is an effective treatment for brain metastases with complex treatment plans and delivery optimization necessitating rigorous quality assurance. This work aims to assess five methods for quality assurance of SIMT treatment plans in terms of their suitability and sensitivity to delivery errors. METHODS: Sun Nuclear ArcCHECK and SRS MapCHECK, GafChromic EBT Radiochromic Film, machine log files, and Varian Portal Dosimetry were all used to measure 15 variations of a single SIMT plan. Variations of the original plan were created with Python. They comprised various degrees of systematic MLC offsets per leaf up to 2 mm, random per-leaf variations with differing minimum and maximum magnitudes, simulated collimator, and dose miscalibrations (MU scaling). The erroneous plans were re-imported into Eclipse and plan-quality degradation was assessed by comparing each plan variation to the original clinical plan in terms of the percentage of clinical goals passing relative to the original plan. Each erroneous plan could be then ranked by the plan-quality degradation percentage following recalculation in the TPS so that the effects of each variation could be correlated with γ pass rates and detector suitability. RESULTS & CONCLUSIONS: It was found that 2%/1 mm is a good starting point for the ArcCHECK, Portal Dosimetry, and the SRS MapCHECK methods, respectively, and provides clinically relevant error detection sensitivity. Looser dose criteria of 5%/1 mm or 5%/1.5 mm are suitable for film dosimetry and log-file-based methods. The statistical methods explored can be expanded to other areas of patient-specific QA and detector assessment.


Subject(s)
Brain Neoplasms , Quality Assurance, Health Care , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/radiotherapy , Radiosurgery/methods , Radiosurgery/instrumentation , Quality Assurance, Health Care/standards , Radiotherapy, Intensity-Modulated/methods , Particle Accelerators/instrumentation , Radiometry/methods , Radiometry/instrumentation , Algorithms
13.
J Appl Clin Med Phys ; 25(5): e14337, 2024 May.
Article in English | MEDLINE | ID: mdl-38576183

ABSTRACT

PURPOSE: The quality of on-board imaging systems, including cone-beam computed tomography (CBCT), plays a vital role in image-guided radiation therapy (IGRT) and adaptive radiotherapy. Recently, there has been an upgrade of the CBCT systems fused in the O-ring linear accelerators called HyperSight, featuring a high imaging performance. As the characterization of a new imaging system is essential, we evaluated the image quality of the HyperSight system by comparing it with Halcyon 3.0 CBCT and providing benchmark data for routine imaging quality assurance. METHODS: The HyperSight features ultra-fast scan time, a larger kilovoltage (kV) detector, a more substantial kV tube, and an advanced reconstruction algorithm. Imaging protocols in the two modes of operation, treatment mode with IGRT and the CBCT for planning (CBCTp) mode were evaluated and compared with Halcyon 3.0 CBCT. Image quality metrics, including spatial resolution, contrast resolution, uniformity, noise, computed tomography (CT) number linearity, and calibration error, were assessed using a Catphan and an electron density phantom and analyzed with TotalQA software. RESULTS: HyperSight demonstrated substantial improvements in contrast-to-noise ratio and noise in both IGRT and CBCTp modes compared to Halcyon 3.0 CBCT. CT number calibration error of HyperSight CBCTp mode (1.06%) closely matches that of a full CT scanner (0.72%), making it suitable for adaptive planning. In addition, the advanced hardware of HyperSight, such as ultra-fast scan time (5.9 s) or 2.5 times larger heat unit capacity, enhanced the clinical efficiency in our experience. CONCLUSIONS: HyperSight represented a significant advancement in CBCT imaging. With its image quality, CT number accuracy, and ultra-fast scans, HyperSight has a potential to transform patient care and treatment outcomes. The enhanced scan speed and image quality of HyperSight are expected to significantly improve the quality and efficiency of treatment, particularly benefiting patients.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Cone-Beam Computed Tomography/methods , Particle Accelerators/instrumentation , Humans , Radiotherapy Planning, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Quality Assurance, Health Care/standards , Radiographic Image Interpretation, Computer-Assisted/methods
14.
J Appl Clin Med Phys ; 25(5): e14357, 2024 May.
Article in English | MEDLINE | ID: mdl-38620027

ABSTRACT

PURPOSE: To investigate and characterize the performance of a novel orthogonal dual-layer alpha multileaf collimator (αMLC) mounted on the LinaTech VenusX linac. METHODS: We evaluated leaf positioning accuracy and reproducibility using an electronic portal imaging device through the picket fence test. The average, interleaf, intraleaf, and leaf tip transmissions of the single and dual layers were measured using an ionization chamber. Square and rhombus fields were used to evaluate the leaf penumbra of αMLC. To investigate the advantages of the orthogonal dual-layer multileaf collimator (MLC) in field shaping, right triangular and circular pattern fields were formed using both the dual layers and single layers of the αMLC. RESULTS: The average maximum positioning deviations of the upper and lower αMLC over 1 year were 0.76 ± 0.09 mm and 0.62 ± 0.07 mm, respectively. The average transmissions were 1.87%, 1.83%, and 0.03% for the upper-, lower- and dual-layer αMLC, respectively. The maximum interleaf transmissions of the lower- and dual-layer were 2.43% and 0.17%, respectively. The leaf tip transmissions were 9.34% and 0.25%, respectively. The penumbra of the square field was 6.2 mm in the X direction and 8.0 mm in the Y direction. The average penumbras of the rhombus fields with side lengths of 5 and 10 cm were 3.6 and 4.9 mm, respectively. For the right triangular and circular fields, the fields shaped by the dual-layer leaves were much closer to the set field than those shaped by single-layer leaves. The dose undulation amplitude of the 50% isodose lines and leaf stepping angle change of the dual-layer leaves were smaller than those of the single-layer leaves. CONCLUSIONS: The αMLC benefits from its orthogonal dual-layer design. Leaf transmission, dose undulations at the field edge, and MLC field dependence of the leaf stepping angle of the dual-layer αMLC were remarkably reduced.


Subject(s)
Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Particle Accelerators/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Neoplasms/radiotherapy , Phantoms, Imaging
15.
J Appl Clin Med Phys ; 25(5): e14366, 2024 May.
Article in English | MEDLINE | ID: mdl-38669190

ABSTRACT

PURPOSE: Skin collimation is a useful tool in electron beam therapy (EBT) to decrease the penumbra at the field edge and minimize dose to nearby superficial organs at risk (OARs), but manually fabricating these collimation devices in the clinic to conform to the patient's anatomy can be a difficult and time intensive process. This work compares two types of patient-specific skin collimation (in-house 3D printed and vendor-provided machined brass) using clinically relevant metrics. METHODS: Attenuation measurements were performed to determine the thickness of each material needed to adequately shield both 6 and 9 MeV electron beams. Relative and absolute dose planes at various depths were measured using radiochromic film to compare the surface dose, flatness, and penumbra of the different skin collimation materials. RESULTS: Clinically acceptable thicknesses of each material were determined for both 6 and 9 MeV electron beams. Field width, flatness, and penumbra results between the two systems were very similar and significantly improved compared to measurements performed with no surface collimation. CONCLUSION: Both skin collimation methods investigated in this work generate sharp penumbras at the field edge and can minimize dose to superficial OARs compared to treatment fields with no surface collimation. The benefits of skin collimation are greatest for lower energy electron beams, and the benefits decrease as the measurement depth increases. Using bolus with skin collimation is recommended to avoid surface dose enhancement seen with collimators placed on the skin surface. Ultimately, the appropriate choice of material will depend on the desire to create these devices in-house or outsource the fabrication to a vendor.


Subject(s)
Electrons , Organs at Risk , Printing, Three-Dimensional , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Skin , Humans , Electrons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk/radiation effects , Skin/radiation effects , Phantoms, Imaging , Neoplasms/radiotherapy , Particle Accelerators/instrumentation
16.
Sci Rep ; 14(1): 9557, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664481

ABSTRACT

Breakthrough multi-response miniature dosimetry/spectrometry of electroneutrons (EN) was made on surface and in-depths of whole-body polyethylene phantom under 10 cm × 10 cm electron beam of 20 MV Varian Clinac 2100C electron medical accelerator commonly applied for prostate treatment. While dosimetry/spectrometry of photoneutrons (PN) has been well characterized for decades, those of ENs lagged behind due to very low EN reaction cross section and lack of sensitive neutron dosimeters/spectrometers meeting neutron dosimetry requirements. Recently, Sohrabi "miniature neutron dosimeter/spectrometer" and "Stripe polycarbonate dosimeter" have broken this barrier and determined seven EN ambient dose equivalent (ENDE) (µSv.Gy-1) responses from electron beam and from albedo ENs including beam thermal (21 ± 2.63), albedo thermal (43 ± 3.70), total thermal (64 ± 6.33), total epithermal (32 ± 3.90), total fast (112.00), total thermal + epithermal (l96 ± 10), and total thermal + epithermal + fast (208 ± 10.23) ENs. Having seven ENDE responses of this study and seven PNDE responses of previous study with the same accelerator obtained at identical conditions by the same principle author provided the opportunity to compare the two sets of responses. The PNDE (µSv.Gy-1) responses have comparatively higher values and 22.60 times at isocenter which provide for the first time breakthrough ENDE responses not yet reported in any studies before worldwide.


Subject(s)
Particle Accelerators , Radiometry , Particle Accelerators/instrumentation , Radiometry/instrumentation , Radiometry/methods , Neutrons , Humans , Electrons , Phantoms, Imaging
17.
Phys Med Biol ; 69(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38640916

ABSTRACT

Objective.Beam current transformers (BCT) are promising detectors for real-time beam monitoring in ultra-high dose rate (UHDR) electron radiotherapy. However, previous studies have reported a significant sensitivity of the BCT signal to changes in source-to-surface distance (SSD), field size, and phantom material which have until now been attributed to the fluctuating levels of electrons backscattered within the BCT. The purpose of this study is to evaluate this hypothesis, with the goal of understanding and mitigating the variations in BCT signal due to changes in irradiation conditions.Approach.Monte Carlo simulations and experimental measurements were conducted with a UHDR-capable intra-operative electron linear accelerator to analyze the impact of backscattered electrons on BCT signal. The potential influence of charge accumulation in media as a mechanism affecting BCT signal perturbation was further investigated by examining the effects of phantom conductivity and electrical grounding. Finally, the effectiveness of Faraday shielding to mitigate BCT signal variations is evaluated.Main Results.Monte Carlo simulations indicated that the fraction of electrons backscattered in water and on the collimator plastic at 6 and 9 MeV is lower than 1%, suggesting that backscattered electrons alone cannot account for the observed BCT signal variations. However, our experimental measurements confirmed previous findings of BCT response variation up to 15% for different field diameters. A significant impact of phantom type on BCT response was also observed, with variations in BCT signal as high as 14.1% when comparing measurements in water and solid water. The introduction of a Faraday shield to our applicators effectively mitigated the dependencies of BCT signal on SSD, field size, and phantom material.Significance.Our results indicate that variations in BCT signal as a function of SSD, field size, and phantom material are likely driven by an electric field originating in dielectric materials exposed to the UHDR electron beam. Strategies such as Faraday shielding were shown to effectively prevent these electric fields from affecting BCT signal, enabling reliable BCT-based electron UHDR beam monitoring.


Subject(s)
Electrons , Monte Carlo Method , Phantoms, Imaging , Scattering, Radiation , Electrons/therapeutic use , Particle Accelerators , Radiation Dosage
19.
Clin Oncol (R Coll Radiol) ; 36(6): 390-398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570205

ABSTRACT

AIMS: Recently, dose delivery technology has rapidly evolved with flattening filter-free beams (FFF), and the biological effects of high dose rates are a matter of interest. We hypothesized that FFF beams at different dose rates obtained with modern linear accelerators have different effects on the TME. MATERIALS AND METHODS: The B16-F10 melanoma syngeneic tumor model was established, and mice were randomized to 2 different doses (2 Gy and 10 Gy) and 3 different dose rates (1 Gy/min, 6 Gy/min, and 14 Gy/min) along with the control group. Euthanasia was performed on the seventh day after RT, and intracardiac blood was collected for a comet assay. Tumors were harvested and examined histomorphologically and immunohistochemically. Statistical analyses were performed using SPSS software version 23 (SPSS Inc., Chicago, IL, USA). RESULTS: The daily growth rate was uniform, and no difference was observed between tumor volumes across all three dose rates for each dose. Deoxyribonucleic acid (DNA) damage in blood mononuclear cells was not affected by dose or dose rate. In the TME histomorphological examination, the number of mitosis is less in the 10 Gy arm, whereas the pleomorphism score was greater. Nevertheless, varying dose rates had no effect on the number of mitosis or the pleomorphism score. The severity of the inflammation, cell densities in the TME, and expression of immunohistochemical markers were comparable across all doses and dose rates. CONCLUSION: In our study involving the B16-F10 syngeneic tumor model, varying dose rates obtained with FFF beams had no effect on tumor volume, blood mononuclear cell DNA damage, or TME parameters. However, in order to fully understand the biological impacts of novel techniques, our study should be validated with alternative preclinical setups.


Subject(s)
Tumor Microenvironment , Animals , Tumor Microenvironment/radiation effects , Mice , Radiotherapy Dosage , Melanoma, Experimental/radiotherapy , Melanoma, Experimental/pathology , Mice, Inbred C57BL , DNA Damage/radiation effects , Dose-Response Relationship, Radiation , Particle Accelerators/instrumentation
20.
J Cancer Res Ther ; 20(1): 224-231, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38554325

ABSTRACT

PURPOSE: The purpose of this study is to evaluate the dosimetric and treatment delivery characteristics of volumetric modulated arc therapy technique (VMAT)-based craniospinal axis irradiation (CSI) between ring gantry Halcyon (HAL) and C-arm based Novalis Tx (NTx) linear accelerator. Set-up margin and treatment delivery time for both machines were also taken into account. MATERIALS AND METHODS: Fifteen patients, 4 females and 11 males treated between March 2019 and February 2022 within the age group 4-56 years simulated in the supine position and were planned for multiple isocentre VMAT technique in ring gantry Halcyon and C-Arm Novalis linear accelerator for 6FFF and 6 MV flatten beam energy. The number of isocenters was the same in both the machines, usually three for adult adolescent age group patients and two for pediatric patients. Total on-couch time and the patient positional shift were captured for each isocenter during each session of treatment. Margins were calculated using Herk's formula of margin = 2.5Σ +0.7σ. Dosimetry, on-couch time, and set-up margin were compared between two competing arms. RESULTS: Ninety-five percent of PTV coverage (P = 0.333), volume receiving 107% (P = 0.676), total MU (P = 0.818) in both the arms were comparable and statically insignificant. Low-dose spillage such as D20% (P = 0.212) and D50% (P = 0.008) was lesser in HAL comparable to NTx. CI and HI were statically insignificant. Out of 26 organs at risk (OAR), only 3 organs showed a statically significant dose difference. The mean and maximum setup margin in any linear direction was 0.45 and 0.53 cm for HAL and 0.37 and 0.56 cm for NTx and, variation was statistically insignificant (0.23 < P < 0.47). On-couch time was 4.0 ± 5.5 min lesser for HAL and the difference in on-couch time between the two arms was statistically different. CONCLUSION: Even though the majority of the delivery parameters such as gantry speed, dose rate, beam characteristic (flatten or unflatten), MLC width, and speed between the ring gantry HAL and C-arm NTx linear accelerators were distinctly different, they offered no or minimal difference in the dose distribution and in the setup margin. HAL gives a faster treatment time delivery, which could be crucial for some selective cases such as patients receiving treatment under general anesthesia.


Subject(s)
Craniospinal Irradiation , Radiotherapy, Intensity-Modulated , Male , Adult , Female , Humans , Child , Adolescent , Child, Preschool , Young Adult , Middle Aged , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Particle Accelerators
SELECTION OF CITATIONS
SEARCH DETAIL
...