Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Microb Pathog ; 196: 106987, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39374885

ABSTRACT

Gallibacterium anatis is a member of the Pasteurellaceae family and is an opportunistic pathogen that causes gallibacteriosis in chickens. Stress plays a relevant role in promoting the development of pathogenicity in G. anatis. Epinephrine (E) and norepinephrine (NE) are relevant to stress; however, their effects on G. anatis have not been elucidated. In this work, we evaluated the effects of E and NE on the growth, biofilm formation, expression of adhesins, and proteases of two G. anatis strains, namely, the hemolytic 12656-12 and the nonhemolytic F149T biovars. E (10 µM/mL) and NE (30 and 50 µM/mL) increased the growth of G. anatis 12656-12 by 20 % and 25 %, respectively. E did not affect the growth of F149T, whereas 40 µM/mL NE decreased bacterial growth by 25 %. E and NE at a dose of 30-50 µM/mL upregulated five fibrinogen adhesins in the 12565-12 strain, whereas no effect was observed in the F149T strain. NE increased proteolytic activity in both strains, whereas E diminished proteolytic activity in the 12656-12 strain. E and NE reduced biofilm formation (30 %) and increased Congo red binding (15 %) in both strains. QseBC is the E and NE two-component detection system most common in bacteria. The qseC gene, which is the E and NE receptor in bacteria, was identified in the genomic DNA of the 12565-12 and F149TG. anatis strains via PCR amplification. Our results suggest that QseC can detect host changes in E and NE concentrations and that catecholamines can modulate the expression of several virulence factors in G. anatis.


Subject(s)
Biofilms , Chickens , Epinephrine , Gene Expression Regulation, Bacterial , Norepinephrine , Pasteurellaceae , Virulence Factors , Virulence Factors/genetics , Virulence Factors/metabolism , Norepinephrine/pharmacology , Norepinephrine/metabolism , Epinephrine/pharmacology , Biofilms/growth & development , Biofilms/drug effects , Pasteurellaceae/genetics , Pasteurellaceae/pathogenicity , Pasteurellaceae/drug effects , Pasteurellaceae/metabolism , Animals , Gene Expression Regulation, Bacterial/drug effects , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Poultry Diseases/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pasteurellaceae Infections/microbiology , Pasteurellaceae Infections/veterinary
2.
Avian Dis ; 65(1): 95-101, 2021 03.
Article in English | MEDLINE | ID: mdl-34339129

ABSTRACT

This is the first extensive report on the identification and characterization of Avibacterium paragallinarum (AVP) isolates obtained from outbreaks of infectious coryza (IC) in IC-vaccinated layer flocks from Sonora State in Mexico. Isolates obtained from IC outbreaks during the years 2007, 2014, 2015, 2017, and 2019 were identified by conventional PCR test and 16S rRNA gene analysis, serotyped by Page serotyping and genotyped by the recently described partial sequence analysis of the HPG2 region. Furthermore, antimicrobial susceptibility profiles were determined by a recently improved minimal inhibitory concentration (MIC) test. The conventional PCR test and the 16S rRNA analyses confirmed the isolates as AVP. Serotyping results showed the involvement of isolates belonging to serotypes A, B, and C in the IC outbreaks. Genotyping of the HPG2 region revealed the presence of sequence type (ST)1, ST4, and ST11, of which the latter has also been identified in Europe. The MIC susceptibility test showed that all tested isolates were susceptible for the majority of tested antimicrobials, including erythromycin and tetracycline, which are important antibiotics for the treatment of IC. The IC situation in Sonora State, Mexico, is complex because of the presence of serotypes A, B, and C. This finding emphasizes the importance of biosecurity in combination with the application of the most optimal vaccination programs in the control of IC in Sonora State, Mexico.


Nota de investigación­Análisis de secuencias de la región HPG2 y susceptibilidad antimicrobiana de aislamientos de Avibacterium paragallinarum obtenidos de brotes de coriza infecciosa en aves de postura comerciales en el estado de Sonora, México. Este es el primer informe extenso sobre la identificación y caracterización de aislamientos de Avibacterium paragallinarum (AVP) obtenidos de brotes de coriza infecciosa (IC) de parvadas de ponedoras vacunadas con coriza infecciosa en el estado de Sonora en México. Los aislamientos obtenidos de los brotes de coriza infecciosa durante los años 2007, 2014, 2015, 2017 y 2019 se identificaron mediante una prueba de PCR convencional y el análisis del gene de ARNr 16S, se serotipificaron mediante el método de Page y se genotipificaron mediante el análisis parcial de secuencias descrito recientemente de la región HPG2. Además, se determinaron los perfiles de susceptibilidad a los antimicrobianos mediante la prueba de concentración mínima inhibitoria (MIC) que ha sido mejorada recientemente. La prueba de PCR convencional y los análisis de secuencias del gene ARNr 16S confirmaron que los aislados eran A. paragallinarum. Los resultados de la serotipificación mostraron la participación de aislamientos pertenecientes a los serotipos A, B y C en los brotes de coriza infecciosa. La genotipificación de la región HPG2 reveló la presencia de secuencias del tipo (ST) 1, ST4 y ST11, de los cuales este último también ha sido identificada en Europa. La prueba de susceptibilidad por concentración mínima inhibitoria mostró que todos los aislados analizados eran susceptibles a la mayoría de los antimicrobianos analizados, incluida la eritromicina y la tetraciclina, que son antibióticos importantes para el tratamiento contra la coriza infecciosa. La situación de coriza infecciosa en el estado de Sonora, México, es compleja por la presencia de los serotipos A, B y C. Este hallazgo enfatiza la importancia de la bioseguridad en combinación con la aplicación de los programas de vacunación óptimos en el control de la coriza infecciosa en el estado de Sonora, México.


Subject(s)
Chickens , Drug Resistance, Bacterial , Pasteurellaceae Infections/veterinary , Pasteurellaceae/isolation & purification , Poultry Diseases , Viral Proteins/analysis , Animals , Female , Mexico , Microbial Sensitivity Tests/veterinary , Pasteurellaceae/drug effects , Pasteurellaceae/genetics , Pasteurellaceae Infections/diagnosis , Pasteurellaceae Infections/microbiology , Poultry Diseases/diagnosis , Poultry Diseases/microbiology
3.
Comp Immunol Microbiol Infect Dis ; 71: 101494, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32434101

ABSTRACT

The etiological agents involved in a bovine respiratory disease (BRD) outbreak were investigated in a dairy heifer calf rearing unit from southern Brazil. A battery of PCR assays was performed to detect the most common viruses and bacteria associated with BRD, such as bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine alphaherpesvirus 1 (BoHV-1), bovine coronavirus (BCoV), bovine parainfluenza virus 3 (BPIV-3), Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Bronchoalveolar lavage fluid (BALF) samples were taken from 21 heifer calves (symptomatic n = 15; asymptomatic n = 6) that, during the occurrence of the BDR outbreak, were aged between 6 and 90 days. At least one microorganism was detected in 85.7 % (18/21) of the BALF samples. Mixed infections were more frequent (72.2 %) than single infections (27.7 %). The interactions between viruses and bacteria were the most common in coinfections (55.5 %). The frequencies of BRD agents were 38.1 % for BRSV, 28.6 % for BVDV, 33.3 % for BCoV, 42.85 % for P. multocida, 33.3 % for M. bovis, and 19 % for H. somni. BoHV-1, BPIV-3, and M. haemolytica were not identified in any of the 21 BALF samples. Considering that BALF and not nasal swabs were analyzed, these results demonstrate the etiological multiplicity that may be involved in BRD outbreaks in dairy calves.


Subject(s)
Bronchoalveolar Lavage Fluid/microbiology , Cattle Diseases/microbiology , Disease Outbreaks/veterinary , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Animals , Brazil/epidemiology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/etiology , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , Dairying , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Molecular Diagnostic Techniques/veterinary , Mycoplasma bovis/genetics , Mycoplasma bovis/isolation & purification , Pasteurella multocida/genetics , Pasteurella multocida/isolation & purification , Pasteurellaceae/genetics , Pasteurellaceae/isolation & purification , Polymerase Chain Reaction , Respiratory Syncytial Virus, Bovine/genetics , Respiratory Syncytial Virus, Bovine/isolation & purification , Respiratory Tract Infections/etiology , Respiratory Tract Infections/veterinary
4.
Avian Pathol ; 42(6): 527-35, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24098932

ABSTRACT

Two separate bird trials were performed to establish a reliable route of infection for Gallibacterium anatis in chickens, comparing intranasal (i.n.) and intravenous (i.v.) applications. Additionally, three mutually divergent isolates from three geographical locations, as shown by MALDI-TOF-MS and partial rpoB gene sequence analysis, were compared. In the first trial, birds were infected with one of the selected isolates by the i.v. or i.n. route. Subsequently, birds were killed 3, 12 and 24 h post infection following i.v. infection while at 3, 7 and 10 days post infection (dpi) in the case of i.n. infection along with birds of the control group. As a result, i.n. infection showed prominent and consistent bacterial tissue distribution in different organs persisting until 10 dpi, which was a striking contrast to the i.v. infection route. Likewise, histopathology revealed mild to severe tracheal lesions following i.n. infection. The second trial was set up to confirm both the achieved results and the robustness of i.n. infection but with an extended observation period, until 28 dpi In agreement with the preceding trial, identical results for bacteriological and histopathological examinations were obtained with persistency of bacteria until 28 dpi Comparing the three different isolates from Mexico, China and Austria, the Mexican isolate showed a somewhat higher pathogenicity than the other strains. Consequently, pathogenesis of G. anatis strains was studied in chickens elucidating i.n. infection as the most reliable route characterized by a long-lasting bacteraemia, targeting the respiratory and reproductive tract.


Subject(s)
Chickens , Pasteurellaceae Infections/veterinary , Pasteurellaceae/pathogenicity , Poultry Diseases/microbiology , Reproductive Tract Infections/veterinary , Respiratory Tract Infections/veterinary , Administration, Intranasal , Administration, Intravenous , Animals , Austria , Bacterial Proteins/genetics , Base Sequence , China , DNA Primers/genetics , Mexico , Molecular Sequence Data , Pasteurellaceae/genetics , Sequence Analysis, DNA/veterinary , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary , Time Factors
5.
Vet Microbiol ; 149(3-4): 497-9, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21145184

ABSTRACT

The present investigation was undertaken to identify and characterize the tetracycline resistance determinant in 22 Gallibacterium anatis strains for which no determinant was identified using primers specific for tet(A, B, C, D, E, G, H, K, L, M, O). A recent study found tet(B) to be the most prevalent tetracycline resistance determinant in a larger collection of G. anatis field strains from Mexico and Denmark. However, in 41% of the tetracycline resistant strains no determinant could be assigned. Here we demonstrate that tet(31) is a common determinant in G. anatis originating from chickens from very different production systems and localities. In addition, tet(31) was identified in strains isolated over a 30-year period. This is the first report on tet(31) since its original identification in Aeromonas salmonicida.


Subject(s)
Pasteurellaceae/drug effects , Pasteurellaceae/genetics , Tetracycline Resistance/genetics , Animals , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Denmark , Genes, Bacterial , Mexico , Pasteurellaceae Infections/microbiology , Pasteurellaceae Infections/veterinary , Poultry Diseases/microbiology , Tetracycline/pharmacology
6.
Avian Pathol ; 38(3): 209-13, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19468937

ABSTRACT

When Avibacterium paragallinarum reference strain 0083 (serovar A) was grown in an iron-restricted culture medium, the expression of the 60, 68 and 93 kDa outer membrane proteins increased as compared with normal media. Sera of chickens experimentally infected with Av. paragallinarum recognized these iron-restriction induced proteins, suggesting their expression in vivo. The three outer membrane proteins were identified as transferrin receptor and iron transport proteins by mass spectroscopy and a search in sequence databases. As these proteins have been reported to be regulated by the Fur protein in many bacteria, we investigated, through molecular methods, the presence of the fur gene in Av. paragallinarum. A candidate fur gene of Av. paragallinarum was amplified by polymerase chain reaction using complementary primers to conserved regions of fur gene sequences from members of the Pasteurellaceae family. The nucleotide sequence of the cloned gene, from ATG to TAA stop codon, was 453 base pairs in length and the deduced amino acid sequence showed 94% identity with Fur sequences of Actinobacillus pleuropneumoniae and Haemophilus ducreyi. The Av. paragallinarum deduced Fur protein (17.8 kDa) amino acid sequence contains the N-terminal helix-turn-helix DNA-binding domain and the two iron-binding sites in the C-terminal end, typical of other described Fur proteins. The study of iron-restriction-induced proteins and the mechanism regulating their expression could lead to an understanding of the responses of Av. paragallinarum to survive in an iron-restricted environment on host mucosal surfaces.


Subject(s)
Bacterial Proteins/genetics , Pasteurellaceae/genetics , Receptors, Transferrin/metabolism , Repressor Proteins/genetics , Amino Acid Sequence , Bacterial Proteins/metabolism , Base Sequence , Blotting, Western , Cloning, Molecular , Computational Biology , DNA Primers/genetics , Electrophoresis, Polyacrylamide Gel , Iron/metabolism , Mass Spectrometry , Molecular Sequence Data , Receptors, Transferrin/genetics , Repressor Proteins/metabolism , Sequence Analysis, DNA , Sequence Homology
7.
Avian Dis ; 52(1): 54-8, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18459296

ABSTRACT

A molecular technique based on the restriction fragment length polymorphism of the 16S ribosomal genes amplified by a polymerase chain reaction (PCR), referred to as amplified 16S ribosomal DNA restriction analysis (ARDRA), was designed to identify 19 Avibacterium paragallinarum strains isolated from infraorbital sinus and nasal turbinate bone samples of broiler chickens, breeders, and laying hens from different regions of Peru. The 16S rDNA was amplified by PCR using a pair of bacterial universal primers and restriction analysis of 16S rDNA sequences was done to select endonucleases with the highest number of cutting points inside the 16S rDNA. The DNA patterns with DdeI and RsaI endonucleases were identical for the 19 A. paragallinarum strains, but differed from those obtained for Ornithobacterium rhinotracheale, a bacterium with a high genetic and phenotypic resemblance to A. paragallinarum, as well as from Escherichia coli, a bacterium associated with infectious coryza. The ARDRA method could prove to be valuable for molecular identification of A. paragallinarum, a microorganism implicated in respiratory diseases in commercial birds.


Subject(s)
DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Pasteurellaceae/classification , Pasteurellaceae/isolation & purification , RNA, Ribosomal, 16S/genetics , Animals , Chickens , DNA Restriction Enzymes , Female , Nucleic Acid Amplification Techniques/veterinary , Pasteurellaceae/genetics , Restriction Mapping/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL