Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
J Bone Miner Res ; 39(2): 161-176, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38477740

ABSTRACT

Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2. Histologic examination of joints in reporter mice having Dpp4-CreER and Prg4-CreER that label MPCs and SLFs, respectively, demonstrated that Dpp4+ MPCs reside in the synovial sublining layer and give rise to Prg4+ SLFs and Perilipin+ adipocytes during growth and OA progression. After OA injury, both MPCs and SLFs gave rise to MFs, which remained in the thickened synovium at later stages of OA. In culture, Dpp4+ MPCs possessed mesenchymal progenitor properties, such as proliferation and multilineage differentiation. In contrast, Prg4+ SLFs did not contribute to adipocytes in IFP and Prg4+ cells barely grew in vitro. Taken together, we demonstrate that the synovium and joint fat pad are one integrated functional tissue sharing common mesenchymal progenitors and undergoing coordinated changes during OA progression.


Both synovium and intra-articular adipose tissue (IAAT) in knee joint play a critical role in joint health and osteoarthritis (OA) progression. Recent single-cell RNA-sequencing studies have been performed on the mouse and human synovium. However, IAATs residing in close proximity to the synovium have not been studied yet. Our study reveals mesenchymal cell heterogeneity of synovium/infrapatellar fat pad (Syn/IFP) tissue and their OA responses. We identify Dpp4+ multipotent progenitors as a source that give rise to Prg4+ lining layer fibroblasts in the synovium, adipocytes in the IFP, and myofibroblasts in the OA Syn/IFP tissue. Our work demonstrates that Syn/IFP is a functionally connected tissue that shares common mesenchymal progenitors and undergoes coordinated OA changes. This novel insight advances our knowledge of previously understudied joint tissues and provides new directions for drug discovery to treat joint disorders.


Subject(s)
Adipose Tissue , Mesenchymal Stem Cells , Synovial Membrane , Animals , Synovial Membrane/pathology , Synovial Membrane/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Mice , Osteoarthritis/pathology , Osteoarthritis/metabolism , Patella/pathology , Patella/metabolism
2.
J Agric Food Chem ; 70(36): 11212-11223, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36040349

ABSTRACT

This study investigated the characterization of proteins from the Irish limpet (Patella vulgata) and assessed the in vitro biological activities of hydrolysates obtained following gastrointestinal digestion (INFOGEST) of a limpet protein concentrate (LPC). The physicochemical properties and the digestibility of the LPC were investigated, along with the angiotensin-converting enzyme (ACE) inhibition and antioxidant activities of the LPC-digested samples. All the digested samples examined outperformed the LPC in terms of activity. Peptides were identified using LC-MS/MS after digestion. A total of 38 and 19 peptides were identified in LPC-G and LPC-GI, respectively, using a database search and a de novo approach. Most of the identified peptides had hydrophobic amino acids, which may contribute to their antioxidant and ACE inhibitory activities. The findings of this study showed that LPC has high nutritional quality with good digestibility and could serve as a potential source of antioxidative and ACE inhibitory peptides following gastrointestinal digestion.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antioxidants , Angiotensin-Converting Enzyme Inhibitors/chemistry , Chromatography, Liquid , Digestion , Patella/metabolism , Peptides/chemistry , Tandem Mass Spectrometry
3.
BMC Med Imaging ; 21(1): 60, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33771130

ABSTRACT

BACKGROUND: This study attempted to compare the radiopharmaceutical uptake findings of planar bone scintigraphy (BS) and single photon emission computed tomography (SPECT)/computed tomography (CT) performed on knee joints. METHODS: We retrospectively included 104 patients who underwent bone SPECT/CT and BS 4 h after the intravenous administration of technetium-99m-hydroxymethylene diphosphonate (99mTc-HDP) for pain in the knee joint. The uptake degree of each of the knee regions (medial femoral, lateral femoral, medial tibial, lateral tibial, and patellar area) in planar images and SPECT/CT were evaluated by visual (grades 0 to 2) and quantitative analyses (uptake counts for planar image and standardized uptake values [SUVs] for SPECT/CT). RESULTS: The uptake grades assessed visually on the planar images differed significantly from the uptake grades on SPECT/CT images in all areas of the knee (all p < 0.001), and SPECT/CT imaging revealed a larger number of uptake lesions than those noted in planar imaging for each patient (3.3 ± 2.0 vs 2.4 ± 2.3, p < 0.0001). In all regions of the knee, all of the quantitative values, including uptake counts obtained from the planar image as well as the maximum SUV (SUVmax) and mean SUV (SUVmean) obtained from SPECT/CT, showed statistically higher values as their visual grades increased (all p < 0.001). However, when analyzed for each area, only the SUVmax showed a significant difference by grade in all knee regions. Quantitative uptake values obtained from planar images were moderately correlated with SUVs of SPECT/CT images (r = 0.58 for SUVmean and r = 0.53 for SUVmax, all p < 0.001) in the total knee regions. Looking at each area, there was a significant but low correlation between the uptake counts of the planar images and the SUVs on SPECT/CT in the right lateral tibial region (r = 0.45 for SUVmean, r = 0.31 for SUVmax, all p < 0.001). CONCLUSIONS: In assessing knee joints, the findings of planar images and SPECT/CT images differ both visually and quantitatively, and more lesions can be found in SPECT/CT than in the planar images. The SUVmax could be a reliable value to evaluate knee joint uptake activity.


Subject(s)
Arthralgia/diagnostic imaging , Bone and Bones/diagnostic imaging , Knee Joint/diagnostic imaging , Positron-Emission Tomography , Single Photon Emission Computed Tomography Computed Tomography , Arthralgia/metabolism , Bone and Bones/metabolism , Femur/diagnostic imaging , Femur/metabolism , Humans , Knee Joint/metabolism , Patella/diagnostic imaging , Patella/metabolism , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/pharmacokinetics , Retrospective Studies , Technetium Tc 99m Medronate/administration & dosage , Technetium Tc 99m Medronate/analogs & derivatives , Technetium Tc 99m Medronate/metabolism , Tibia/diagnostic imaging , Tibia/metabolism
4.
Osteoarthritis Cartilage ; 29(6): 849-858, 2021 06.
Article in English | MEDLINE | ID: mdl-33639259

ABSTRACT

OBJECTIVE: Molecular information derived from dynamic [18F]sodium fluoride ([18F]NaF) PET imaging holds promise as a quantitative marker of bone metabolism. The objective of this work was to evaluate physiological mechanisms of [18F]NaF uptake in subchondral bone of individuals with and without knee osteoarthritis (OA). METHODS: Eleven healthy volunteers and twenty OA subjects were included. Both knees of all subjects were scanned simultaneously using a 3T hybrid PET/MRI system. MRI MOAKS assessment was performed to score the presence and size of osteophytes, bone marrow lesions, and cartilage lesions. Subchondral bone kinetic parameters of bone perfusion (K1), tracer extraction fraction, and total tracer uptake into bone (Ki) were evaluated using the Hawkins 3-compartment model. Measures were compared between structurally normal-appearing bone regions and those with structural findings. RESULTS: Mean and maximum SUV and kinetic parameters Ki, K1, and extraction fraction were significantly different between Healthy subjects and subjects with OA. Between-group differences in metabolic parameters were observed both in regions where the OA group had degenerative changes as well as in regions that appeared structurally normal. CONCLUSIONS: Results suggest that bone metabolism is altered in OA subjects, including bone regions with and without structural findings, compared to healthy subjects. Kinetic parameters of [18F]NaF uptake in subchondral bone show potential to quantitatively evaluate the role of bone physiology in OA initiation and progression. Objective measures of bone metabolism from [18F]NaF PET imaging can complement assessments of structural abnormalities observed on MRI.


Subject(s)
Calcification, Physiologic , Contrast Media/pharmacokinetics , Fluorine Radioisotopes/pharmacokinetics , Magnetic Resonance Imaging , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/physiopathology , Patella/diagnostic imaging , Patella/metabolism , Positron-Emission Tomography , Sodium Fluoride/pharmacokinetics , Tibia/diagnostic imaging , Tibia/metabolism , Aged , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Positron-Emission Tomography/methods
5.
Cartilage ; 12(2): 192-210, 2021 04.
Article in English | MEDLINE | ID: mdl-30486653

ABSTRACT

OBJECTIVE: It was hypothesized that the respective protein profiles of bovine cartilage from sites of localized mild to moderate (GI to GII) degeneration versus adjacent sites of intact tissue would vary in accordance with the tissue microstructural changes associated with a pre-osteoarthritic state. METHODS: A total of 15 bovine patellae were obtained for this study. Paired samples of tissue were collected from the lateral region of each patella. If the patella contained a site of degeneration, a paired tissue set involved taking one sample each from the degenerated site and the intact tissue adjacent to it. Sufficient tissue was collected to facilitate 2 arms of investigation: microstructural imaging and proteome analysis. The microstructural analysis used a bespoke tissue preparation technique imaged with differential interference contrast optical microscopy to assess fibrillar scale destructuring and underlying bone spicule formation. An iTRAQ-based proteome analysis was performed using liquid chromatography-tandem mass spectrometry to identify the differential levels of proteins across the intact and degenerated cartilage and further, the results were validated with multiple reaction monitoring assay. RESULTS: In the healthy cartilage pairs, there was no significant variation in protein profiles between 2 adjacent sample sites. In pairs of tissue that contained a sample of GI/GII tissue, there were both significant microstructural changes as well as the difference in abundance levels of 24 proteins. CONCLUSIONS: From the known functions of the 24 proteins, found to be strongly aligned with the specific microstructural changes observed, a unique "proteins ensemble" involved in the initiation and progression of early cartilage degeneration is proposed.


Subject(s)
Cartilage, Articular/metabolism , Cartilage, Articular/ultrastructure , Osteoarthritis/metabolism , Osteoarthritis/pathology , Proteome/analysis , Animals , Cattle , Disease Models, Animal , Microscopy, Interference , Patella/metabolism , Patella/ultrastructure , Proteomics/methods
6.
J Expo Sci Environ Epidemiol ; 31(1): 108-116, 2021 02.
Article in English | MEDLINE | ID: mdl-31636367

ABSTRACT

BACKGROUND: Lead is a ubiquitous toxicant following three compartment kinetics with the longest half-life found in bones. Patella and tibia lead levels-validated measures of cumulative exposure-require specialized X-ray-fluorescence-spectroscopy available only in a few centers worldwide. We developed minimally invasive biomarkers reflecting individual cumulative lead exposure using blood DNA methylation profiles-obtainable via Illumina 450K or IlluminaEPIC bead-chip assays. METHODS: We developed and tested two methylation-based biomarkers from 348 Normative Aging Study (NAS) elderly men. We selected methylation sites with strong associations with bone lead levels via robust regressions analysis and constructed the biomarkers using elastic nets. Results were validated in a NAS subset, reporting specificity, and sensitivity. FINDINGS: Participants were 73 years old on average (standard deviation, SD = 6), with moderate lead levels of (mean ± SD patella: 27 ± 18 µg/g; tibia:21 ± 13 µg/g). Methylation-based biomarkers for lead in patella and tibia included 59 and 138 DNA methylation sites, respectively. Estimated lead levels were significantly correlated with actual measured values, (r = 0.62 patella, r = 0.59 tibia) and had low mean square error (MSE) (MSE = 0.68 patella, MSE = 0.53 tibia). Means and distributions of the estimated and actual lead levels were not significantly different across patella and tibia bones (p > 0.05). Methylation-based biomarkers discriminated participants highly exposed (>median) to lead with a specificity of 74 and 73% for patella and tibia lead levels, respectively, with 70% sensitivity. INTERPRETATION: DNA methylation-based lead biomarkers are novel tools that can be used to reconstruct decades' worth of individual cumulative lead exposure using only blood DNA methylation profiles and may help identify the consequences of cumulative exposure.


Subject(s)
DNA Methylation , Lead , Adult , Aged , Aging , Environmental Exposure/adverse effects , Humans , Lead/analysis , Male , Patella/chemistry , Patella/metabolism , Tibia/chemistry , Tibia/metabolism
7.
J Forensic Leg Med ; 75: 102049, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32861958

ABSTRACT

MicroRNAs (miRNAs) can be useful in forensic science because of their numerous characteristics, especially stability. Post-mortem interval (PMI) is crucial for death scene investigations. However, estimating PMI is challenging in cases involving significantly decomposed or destroyed bodies, such as those involving skeletonized remains. In this study, 71 bones (patella) were collected from the bodies during autopsies (PMI ranging from 1 day to 2 years). As the let-7e and miR-16 miRNAs were used as internal controls for the bone tissue in previous studies, these miRNAs were selected as targets to estimate PMI. The miRNA Ce_miR-39_1 was used as a spike-in internal control to normalize the target miRNA levels. Real-time quantitative reverse transcription polymerase chain reaction was performed to correlate the expression levels of let-7e and miR-16 with increasing PMI. A negative correlation was observed between miRNA expression and increasing PMI. The expression of both let-7e and miR-16 was observed to be significantly different between group A and the other PMI groups (group A < 1 month; 1 month < group B < 3 months; 3 months < group C < 6 months; group D > 6 months). In conclusion, these data suggest that the expression level of specific miRNAs (let-7e and miR-16) in the bone tissue could be used to estimate PMI. However, more studies using long-term PMI samples are required to further corroborate these findings.


Subject(s)
MicroRNAs/metabolism , Patella/metabolism , Postmortem Changes , Forensic Genetics/methods , Humans , RNA Stability , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
8.
Biomed Res Int ; 2020: 2316369, 2020.
Article in English | MEDLINE | ID: mdl-32724796

ABSTRACT

Osteoarthritis is a common joint disease affecting a large population especially the elderly where cartilage degeneration is one of its hallmark symptoms. There is a need to develop new devices and instruments for the early detection and treatment of cartilage degeneration. In this study, we describe the development of a miniaturized water-jet ultrasound indentation probe for this purpose. To evaluate the system, we applied it to characterize the degeneration of articular cartilage with the measurement of its morphologic, acoustic, and mechanical properties, using the enzymatic digestions of cartilage as a model of OA. Fifty cartilage samples were tested with 10 of them used for the reproducibility study and the other 40 for collagenase and trypsin digestions. Thickness, integrated reflection coefficient (IRC), effective stiffness, and energy dissipation ratio (EDR) were used to quantify the change of articular cartilage before and after degeneration. The measurement reproducibility as represented by the standardized coefficient of variation (SCV) was 2.6%, 10.2%, 11.5%, and 12.8% for thickness, IRC, stiffness, and EDR, respectively. A significant change of IRC, stiffness, and EDR was detected after degeneration by the designed probe (p < 0.05). There was also a significant difference of IRC, stiffness, and EDR between trypsin and collagenase digestions (p < 0.001). In conclusion, a miniaturized water-jet ultrasound indentation probe has been designed, which has been successfully used to detect and differentiate cartilage degeneration simulated by enzymatic digestions. This probe, with future development, can be potentially suitable for quantitative assessment of cartilage degeneration with an arthroscopic operation.


Subject(s)
Cartilage Diseases/pathology , Cartilage, Articular/diagnostic imaging , Osteoarthritis/diagnosis , Ultrasonography/methods , Water/chemistry , Animals , Arthroscopy/methods , Cartilage Diseases/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cattle , Collagenases/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Patella/diagnostic imaging , Patella/metabolism , Patella/pathology , Reproducibility of Results , Trypsin/metabolism
9.
Dev Dyn ; 249(6): 711-722, 2020 06.
Article in English | MEDLINE | ID: mdl-32022343

ABSTRACT

BACKGROUND: Cruciate ligament (CL) and patellar tendon (PT) are important elements of the knee joint, uniting femur, patella, and tibia into a single functional unit. So far, knowledge on the developmental mechanism of CL, PT, and patella falls far behind other skeletal tissues. RESULTS: Here, employing various lineage tracing strategies we investigate the cellular sources and dynamics that drive CL, PT, and patella formation during mouse embryonic development. We show that Gdf5 and Gli1 are generally expressed in the same cell population that only contributes to CL, but not PT or patella development. In addition, Col2 is expressed in two independent cell populations before and after joint cavitation, where the former contributes to the CL and the dorsal part of the PT and the latter contributes to the patella. Moreover, Prrx1 is always expressed in CL and PT progenitors, but not patella progenitors where it is switched off after joint cavitation. Finally, we reveal that patella development employs different cellular dynamics before and after joint cavitation. CONCLUSIONS: Our findings delineate the expression changes of several skeletogenesis-related genes before and after joint cavitation, and provide an indication on the cellular dynamics underlying ligament, tendon, and sesamoid bone formation during embryogenesis.


Subject(s)
Patella/cytology , Patella/metabolism , Posterior Cruciate Ligament/cytology , Posterior Cruciate Ligament/metabolism , Animals , Female , Knee Joint/cytology , Knee Joint/metabolism , Mice , Patellar Ligament/cytology , Patellar Ligament/metabolism , Pregnancy , Tendons/cytology , Tendons/metabolism , Transcription Factors/metabolism
10.
Sci Rep ; 10(1): 1870, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024873

ABSTRACT

Roughly 20% of Americans run annually, yet how this exercise influences knee cartilage health is poorly understood. To address this question, quantitative magnetic resonance imaging (MRI) can be used to infer the biochemical state of cartilage. Specifically, T1rho relaxation times are inversely related to the proteoglycan concentration in cartilage. In this study, T1rho MRI was performed on the dominant knee of eight asymptomatic, male runners before, immediately after, and 24 hours after running 3 and 10 miles. Overall, (mean ± SEM) patellar, tibial, and femoral cartilage T1rho relaxation times significantly decreased immediately after running 3 (65 ± 3 ms to 62 ± 3 ms; p = 0.04) and 10 (69 ± 4 ms to 62 ± 3 ms; p < 0.001) miles. No significant differences between pre-exercise and recovery T1rho values were observed for either distance (3 mile: p = 0.8; 10 mile: p = 0.08). Percent decreases in T1rho relaxation times were significantly larger following 10 mile runs as compared to 3 mile runs (11 ± 1% vs. 4 ± 1%; p = 0.02). This data suggests that alterations to the relative proteoglycan concentration of knee cartilage due to water flow are mitigated within 24 hours of running up to 10 miles. This information may inform safe exercise and recovery protocols in asymptomatic male runners by characterizing running-induced changes in knee cartilage composition.


Subject(s)
Cartilage, Articular/physiology , Knee Joint/physiology , Running/physiology , Adult , Cartilage, Articular/metabolism , Exercise/physiology , Humans , Knee Joint/metabolism , Magnetic Resonance Imaging/methods , Male , Patella/metabolism , Patella/physiology , Proteoglycans/metabolism , Tibia/metabolism , Tibia/physiology
11.
J Med Genet ; 57(3): 195-202, 2020 03.
Article in English | MEDLINE | ID: mdl-31784481

ABSTRACT

MATERIAL: Linked-read whole genome sequencing (WGS) presents a new opportunity for cost-efficient singleton sequencing in place of traditional trio-based designs while generating informative-phased variants, effective for recessive disorders when parental DNA is unavailable. METHODS: We have applied linked-read WGS to identify novel causes of Meier-Gorlin syndrome (MGORS), a condition recognised by short stature, microtia and patella hypo/aplasia. There are eight genes associated with MGORS to date, all encoding essential components involved in establishing and initiating DNA replication. RESULTS: Our successful phasing of linked-read data led to the identification of biallelic rare variants in four individuals (24% of our cohort) in DONSON, a recently established DNA replication fork surveillance factor. The variants include five novel missense and one deep intronic variant. All were demonstrated to be deleterious to function; the missense variants all disrupted the nuclear localisation of DONSON, while the intronic variant created a novel splice site that generated an out-of-frame transcript with no residual canonical transcript produced. CONCLUSION: Variants in DONSON have previously been associated with extreme microcephaly, short stature and limb anomalies and perinatal lethal microcephaly-micromelia syndrome. Our novel genetic findings extend the complicated spectrum of phenotypes associated with DONSON variants and promote novel hypotheses for the role of DONSON in DNA replication. While our findings reiterate that MGORS is a disorder of DNA replication, the pathophysiology is obviously complex. This successful identification of a novel disease gene for MGORS highlights the utility of linked-read WGS as a successful technology to be considered in the genetic studies of recessive conditions.


Subject(s)
Cell Cycle Proteins/genetics , Congenital Microtia/genetics , Genetic Predisposition to Disease , Growth Disorders/genetics , Micrognathism/genetics , Nuclear Proteins/genetics , Patella/abnormalities , Adult , Alleles , Base Sequence/genetics , Child , Congenital Microtia/physiopathology , DNA Replication/genetics , Female , Genome, Human/genetics , Growth Disorders/physiopathology , Humans , Male , Micrognathism/physiopathology , Patella/metabolism , Patella/physiopathology , Pregnancy
12.
Osteoarthritis Cartilage ; 28(3): 344-355, 2020 03.
Article in English | MEDLINE | ID: mdl-31326553

ABSTRACT

OBJECTIVE: Abnormal remodeling of subchondral bone (SB) induced by estrogen deficiency has been shown to be involved in osteoarthritis (OA). Raloxifene (RAL) is commonly used to treat postmenopausal osteoporosis (OP). However, little is known about its effects on OA combined with estrogen deficiency. This study was performed to evaluate the efficacy of RAL on patella baja-induced patellofemoral joint OA (PFJOA) in an ovariectomized rat model. DESIGN: Patellar ligament shortening (PLS) and ovariectomy (OVX) were performed simultaneously in 3-month-old female Sprague-Dawley rats, which were treated with RAL (10 mg/kg/day) or vehicle at 72 h postoperatively for 10 weeks. PFJOA was assessed by immunohistochemistry (IHC), real-time polymerase chain reaction (PCR), tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA), micro-computed tomography (µCT), histomorphology and behavioral analyses. RESULTS: X-ray examinations showed that patella baja was successfully established by PLS. Histomorphological analysis revealed that PFJOA was significantly exacerbated by OVX and markedly alleviated by RAL. Moreover, RAL improved cartilage metabolism by decreasing MMP-13, ADAMTS-4, and caspase-3 and increasing Col-II and aggrecan at both the protein and mRNA levels. Furthermore, RAL markedly improved bone mass and SB microarchitecture and reduced osteoclast numbers and the serum osteocalcin and CTX-I levels. Although RAL showed a trend toward reducing pain sensitivity based on mechanical allodynia testing, this result was not statistically significant. CONCLUSION: These findings demonstrate that RAL treatment retards PFJOA progression in an ovariectomized rat model, suggesting that it may be a potential candidate for amelioration of the progression of PFJOA accompanied by postmenopausal OP.


Subject(s)
Cartilage, Articular/drug effects , Osteoarthritis, Knee/diagnostic imaging , Patellofemoral Joint/drug effects , Raloxifene Hydrochloride/pharmacology , Selective Estrogen Receptor Modulators/pharmacology , ADAMTS4 Protein/drug effects , ADAMTS4 Protein/genetics , ADAMTS4 Protein/metabolism , Aggrecans/drug effects , Aggrecans/genetics , Aggrecans/metabolism , Animals , Bone Remodeling , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Caspase 3/drug effects , Caspase 3/genetics , Caspase 3/metabolism , Cell Count , Collagen Type I/blood , Collagen Type I/drug effects , Collagen Type II/drug effects , Collagen Type II/genetics , Collagen Type II/metabolism , Femur/diagnostic imaging , Femur/drug effects , Femur/metabolism , Femur/pathology , Humans , Immunohistochemistry , Matrix Metalloproteinase 13/drug effects , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Osteocalcin/blood , Osteocalcin/drug effects , Osteoclasts/drug effects , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/metabolism , Ovariectomy , Patella/diagnostic imaging , Patella/drug effects , Patella/metabolism , Patella/pathology , Patellar Ligament/surgery , Patellofemoral Joint/diagnostic imaging , Patellofemoral Joint/metabolism , Patellofemoral Joint/pathology
13.
Mol Med Rep ; 20(1): 813-829, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31115526

ABSTRACT

Infrapatellar fat pad­derived stem cells (IFPSCs) are emerging as an alternative to adipose tissue­derived stem cells (ADSCs) from other sources. They are a reliable source of autologous stem cells obtained from medical waste that are suitable for use in cell­based therapy, tissue engineering and regenerative medicine. Such clinical applications require a vast number of high­quality IFPSCs. Unlike embryonic stem cells (ESCs), ADSCs and IFPSCs have limited population doubling capacity; however, in vitro expansion of primary IFPSCs through multiple passages (referred to as P) is a crucial step to acquire the desired population of cells. The present study investigated the effect of multiple passages on the stemness of IFPSCs during expansion and the possibility of predicting the loss of stemness using certain markers. IFPSCs were isolated from infrapatellar fat pad tissue resected during knee arthroplasty performed on aged patients (>65 years old). These cells from the stromal vascular fraction were serially passaged to at least to P7, and their stemness characteristics were examined at each passage. It was observed that IFPSCs maintained their spindle­shaped morphology, self­renewability and homogeneity at P2­4. Furthermore, immunostaining revealed that these cells expressed mesenchymal stem cell (CD166, CD90 and CD105) and ESC markers [Sox2, Nanog, Oct4 and nucleostemin (NS)], whereas the hematopoietic stem cell marker CD45 was absent. These cells were also able to differentiate into the three germ layer cell types, thus confirming their ability to generate clinical grade cells. The findings indicated that prolonged culture of IFPSCs (P>6) led to the loss of the stem cell proliferative marker NS, with an increased population doubling time and progression toward neuronal differentiation, acquiring a neurogenic phenotype. Additionally, IFPSCs demonstrated an inherent ability to secrete neurotrophic factors and express receptors for these factors, which is the cause of neuronal differentiation at later passages. Therefore, these findings validated NS as a prognostic indicator for impaired stemness and identified IFPSCs as a promising source for cell­based therapy, particularly for neurodegenerative diseases.


Subject(s)
Biomarkers , Cell Self Renewal/genetics , GTP-Binding Proteins/genetics , Mesenchymal Stem Cells/cytology , Nuclear Proteins/genetics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Aged , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Mesenchymal Stem Cells/metabolism , Nerve Growth Factors/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Patella/cytology , Patella/metabolism , Prognosis
14.
Med Sci Monit ; 25: 2702-2717, 2019 Apr 13.
Article in English | MEDLINE | ID: mdl-30979862

ABSTRACT

BACKGROUND Patella baja, or patella infera, consists of a low-lying patella that results in a limited range of motion, joint pain, and crepitations. Patellofemoral joint osteoarthritis (PFJOA) is a subtype OA of the knee. This study aimed to develop a reproducible and reliable rat model of PFJOA. MATERIAL AND METHODS Three-month-old female Sprague-Dawley rats (n=24) included a baseline group (n=8) that were euthanized at the beginning of the study. The sham group (n=8), and the patella ligament shortening (PLS) group (n=8) were euthanized and evaluated at ten weeks. The PLS model group (n=8) underwent insertion of a Kirschner wire under the patella tendon to induce patella baja. At ten weeks, the sham group and the PLS group were compared using X-ray imaging, macroscopic appearance, histology, immunohistochemistry, TUNEL staining for apoptosis, and micro-computed tomography (micro-CT). The patella height was determined using the modified Insall-Salvati (MIS) ratio. RESULTS The establishment of the rat model of patella baja in the PLS group at ten weeks was confirmed by X-ray. In the PLS group, patella volume, sagittal length, and cross-sectional area were significantly increased compared with the sham group. The PFJ showed typical lesions of OA, confirmed macroscopically and histologically. Compared with the sham group, in the rat model of PFJOA, there was increased cell apoptosis, and immunohistochemistry showed increased expression of biomarkers of osteoarthritis, compared with the sham group. CONCLUSIONS A rat model of PFJOA was developed that was confirmed by changes in cartilage and subchondral bone.


Subject(s)
Osteoarthritis, Knee/pathology , Patella/pathology , Patellofemoral Joint/pathology , Animals , Cartilage, Articular/pathology , Disease Models, Animal , Female , Knee Joint/diagnostic imaging , Knee Joint/pathology , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/metabolism , Patella/diagnostic imaging , Patella/metabolism , Patellar Ligament/diagnostic imaging , Patellar Ligament/pathology , Patellofemoral Joint/diagnostic imaging , Patellofemoral Joint/metabolism , Radiography , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
15.
Connect Tissue Res ; 60(6): 597-610, 2019 11.
Article in English | MEDLINE | ID: mdl-31020864

ABSTRACT

Purpose: There is a clinical need to better characterize tissue sources being used for stem cell therapies. This study focuses on comparison of cells and connective tissue progenitors (CTPs) derived from native human infrapatellar fatpad (IPFP), synovium (SYN), and periosteum (PERI). Materials and Methods: IPFP, SYN, PERI were harvested from twenty-eight patients undergoing arthroplasty. CTPs were quantitatively characterized using automated colony-forming-unit assay to compare total nucleated cell concentration-[Cell], cells/mg; prevalence-(PCTP), CTPs/million nucleated cells; CTP concentration-[CTP], CTPs/mg; proliferation and differentiation potential; and correlate outcomes with patient's age and gender. Results: [Cell] did not differ between IPFP, SYN, and PERI. PCTP was influenced by age and gender: patients >60 years, IPFP and SYN had higher PCTP than PERI (p < 0.001) and females had higher PCTP in IPFP (p < 0.001) and SYN (p = 0.001) than PERI. [CTP] was influenced by age: patients <50 years, SYN (p = 0.0165) and PERI (p < 0.001) had higher [CTP] than IPFP; patients between 60 and 69 years, SYN (p < 0.001) had higher [CTP] than PERI; patients >70 years, IPFP (p = 0.006) had higher [CTP] than PERI. In patients >60 years, proliferation potential of CTPs differed significantly (SYN>IPFP>PERI); however, differentiation potentials were comparable between all three tissue sources. Conclusion: SYN and IPFP may serve as a preferred tissue source for patients >60 years, and PERI along with SYN and IPFP may serve as a preferred tissue source for patients <60 years for cartilage repair. However, the heterogeneity among the CTPs in any given tissue source suggests performance-based selection might be useful to optimize cell-sourcing strategies to improve efficacy of cellular therapies for cartilage repair.


Subject(s)
Adipose Tissue/metabolism , Chondrogenesis , Patella/metabolism , Periosteum/metabolism , Stem Cells/metabolism , Synovial Membrane/metabolism , Adipose Tissue/pathology , Adult , Aged , Aged, 80 and over , Cartilage/injuries , Cartilage/metabolism , Cartilage/pathology , Cell- and Tissue-Based Therapy , Female , Humans , Male , Middle Aged , Patella/pathology , Periosteum/pathology , Stem Cells/pathology , Synovial Membrane/pathology
16.
Lipids Health Dis ; 18(1): 67, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30885225

ABSTRACT

BACKGROUND: The infrapatellar fat pad (IFP) of the knee joint has received lots of attention recently due to its emerging role in the pathogenesis of osteoarthritis (OA), where it displays an inflammatory phenotype. The aim of the present study was to examine the infrapatellar fatty acid (FA) composition in a rabbit (Oryctolagus cuniculus) model of early OA created by anterior cruciate ligament transection (ACLT). METHODS: OA was induced randomly in the left or right knee joint of skeletally mature New Zealand White rabbits by ACLT, while the contralateral knee was left intact. A separate group of unoperated rabbits served as controls. The IFP of the ACLT, contralateral, and control knees were harvested following euthanasia 2 or 8 weeks post-ACLT and their FA composition was determined with gas chromatography-mass spectrometry. RESULTS: The n-3/n-6 polyunsaturated FA (PUFA) ratio shifted in a pro-inflammatory direction after ACLT, already observed 2 weeks after the operation (0.20 ± 0.008 vs. 0.18 ± 0.009). At 8 weeks, the FA profile of the ACLT group was characterized with increased percentages of 20:4n-6 (0.44 ± 0.064 vs. 0.98 ± 0.339 mol-%) and 22:6n-3 (0.03 ± 0.014 vs. 0.07 ± 0.015 mol-%) and with decreased monounsaturated FA (MUFA) sums (37.19 ± 1.586 vs. 33.20 ± 1.068 mol-%) and n-3/n-6 PUFA ratios (0.20 ± 0.008 vs. 0.17 ± 0.008). The FA signature of the contralateral knees resembled that of the unoperated controls in most aspects, but had increased proportions of total n-3 PUFA and reduced MUFA sums. CONCLUSIONS: These findings provide novel information on the effects of early OA on the infrapatellar FA profile in the rabbit ACLT model. The reduction in the n-3/n-6 PUFA ratio of the IFP is in concordance with the inflammation and cartilage degradation in early OA and could contribute to disease pathogenesis.


Subject(s)
Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-6/analysis , Osteoarthritis, Knee/metabolism , Patella/metabolism , Adipose Tissue/metabolism , Animals , Anterior Cruciate Ligament/surgery , Disease Models, Animal , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Female , Knee Joint/metabolism , Knee Joint/pathology , Osteoarthritis, Knee/etiology , Rabbits
17.
Ann N Y Acad Sci ; 1442(1): 153-164, 2019 04.
Article in English | MEDLINE | ID: mdl-30891782

ABSTRACT

Adipokines secreted from the infrapatellar fat pad (IPFP), such as adipsin and adiponectin, have been implicated in osteoarthritis pathogenesis. CITED2, a mechanosensitive transcriptional regulator with chondroprotective activity, may modulate their expression. Cited2 haploinsufficient mice (Cited2+/- ) on a high-fat diet (HFD) exhibited increased body weight and increased IPFP area compared to wild-type (WT) mice on an HFD. While an exercise regimen of moderate treadmill running induced the expression of CITED2, as well as PGC-1α, and reduced the expression of adipsin and adiponectin in the IPFP of WT mice on an HFD, Cited2 haploinsufficiency abolished the loading-induced expression of PGC-1α and loading-induced suppression of adipsin and adiponectin. Furthermore, knocking down or knocking out CITED2 in adipose stem cells (ASCs)/preadipocytes derived from the IPFP in vitro led to the increased expression of adipsin and adiponectin and reduced PGC-1α, and abolished the loading-induced suppression of adipsin and adiponectin and loading-induced expression of PGC-1α. Overexpression of PGC-1α in these ASC/preadipocytes reversed the effects caused by CITED2 deficiency. The current data suggest that CITED2 is a critical regulator in physiologic loading-induced chondroprotection in the context of an HFD and PGC-1α is required for the inhibitory effects of CITED2 on the expression of adipokines such as adipsin and adiponectin in the IPFP.


Subject(s)
Adipokines/metabolism , Adipose Tissue/metabolism , Patella/metabolism , Repressor Proteins/physiology , Stress, Mechanical , Trans-Activators/physiology , Animals , Diet, High-Fat , Female , Haploinsufficiency , Male , Mice , Mice, Knockout , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal , RNA, Messenger/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
18.
Eur J Hum Genet ; 27(5): 671-680, 2019 05.
Article in English | MEDLINE | ID: mdl-30664715

ABSTRACT

We review genetic diseases with identified molecular bases that include abnormal, reduced (hypoplasia), or absent (aplasia) patellae as a significant aspect of the phenotype. The known causal genes can be broadly organized according to three major developmental and cellular processes, although some genes may act in more than one of these: limb specification and pattern formation; DNA replication and chromatin structure; bone development and differentiation. There are also several genes whose phenotypes in mice indicate relevance to patellar development, for which human equivalent syndromes have not been reported. Developmental studies in mouse and chick embryos, as well as patellar involvement in human diseases with decreased mobility, document the additional importance of local environmental factors in patellar ontogenesis. Patellar anomalies found in humans can be an important clue to a clinical genetic diagnosis, and a better knowledge of the genetics of patellar anomalies will improve our understanding of limb development.


Subject(s)
Genetic Phenomena , Patella/metabolism , Biological Evolution , Bone Diseases/genetics , Chromatin/genetics , DNA Replication/genetics , Humans , Patella/abnormalities , Patella/embryology
19.
BMC Musculoskelet Disord ; 19(1): 449, 2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30579353

ABSTRACT

BACKGROUND: Osteoarthritis is a degradative joint disease found in humans and commercial swine which can develop from a number of factors, including prior joint trauma. An impact injury model was developed to deliver in vitro loads to disease-free porcine patellae in a model of OA. METHODS: Axial impactions (2000 N normal) and shear impactions (500 N normal with induced shear forces) were delivered to 48 randomly assigned patellae. The patellae were then cultured for 0, 3, 7, or 14 days following the impact. Specimens in the tissue surrounding the loading site were harvested and expression of 18 OA related genes was studied via quantitative PCR. The selected genes were previously identified from published work and fell into four categories: cartilage matrix, degradative enzymes, inflammatory response, and apoptosis. RESULTS: Type II collagen (Col2a1) showed significantly lower expression in shear vs. axial adjacent tissue at day 0 and 7 (fold changes of 0.40 & 0.19, respectively). In addition, higher expression of degradative enzymes and Fas, an apoptosis gene, was observed in the shear specimens. CONCLUSIONS: The results suggest that a more physiologically valid shear load may induce more damage to surrounding articular cartilage than a normal load alone.


Subject(s)
Cartilage, Articular/metabolism , Osteoarthritis, Knee/genetics , Patella/metabolism , Transcriptome , Animals , Cartilage, Articular/pathology , Collagen Type II/genetics , Collagen Type II/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Enzymologic , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Patella/pathology , Stress, Mechanical , Sus scrofa , Time Factors , Tissue Culture Techniques , fas Receptor/genetics , fas Receptor/metabolism
20.
Mol Biol Cell ; 29(25): 2989-3002, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30281379

ABSTRACT

The earliest step in DNA replication is origin licensing, which is the DNA loading of minichromosome maintenance (MCM) helicase complexes. The Cdc10-dependent transcript 1 (Cdt1) protein is essential for MCM loading during the G1 phase of the cell cycle, but the mechanism of Cdt1 function is still incompletely understood. We examined a collection of rare Cdt1 variants that cause a form of primordial dwarfism (the Meier-Gorlin syndrome) plus one hypomorphic Drosophila allele to shed light on Cdt1 function. Three hypomorphic variants load MCM less efficiently than wild-type (WT) Cdt1, and their lower activity correlates with impaired MCM binding. A structural homology model of the human Cdt1-MCM complex positions the altered Cdt1 residues at two distinct interfaces rather than the previously described single MCM interaction domain. Surprisingly, one dwarfism allele (Cdt1-A66T) is more active than WT Cdt1. This hypermorphic variant binds both cyclin A and SCFSkp2 poorly relative to WT Cdt1. Detailed quantitative live-cell imaging analysis demonstrated no change in the stability of this variant, however. Instead, we propose that cyclin A/CDK inhibits the Cdt1 licensing function independent of the creation of the SCFSkp2 phosphodegron. Together, these findings identify key Cdt1 interactions required for both efficient origin licensing and tight Cdt1 regulation to ensure normal cell proliferation and genome stability.


Subject(s)
Cell Cycle Proteins/physiology , Cyclin A/metabolism , DNA Replication/physiology , Genome, Human , Minichromosome Maintenance Proteins/physiology , Alleles , Binding Sites , Cell Cycle Proteins/genetics , Cell Line , Congenital Microtia/genetics , Congenital Microtia/metabolism , Genetic Variation , Growth Disorders/genetics , Growth Disorders/metabolism , HEK293 Cells , Humans , Micrognathism/genetics , Micrognathism/metabolism , Mutation, Missense , Patella/abnormalities , Patella/metabolism , Protein Binding , S Phase , S-Phase Kinase-Associated Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...