Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Molecules ; 29(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064972

ABSTRACT

Nanoscale geranium waste (GW) and magnesium nanoparticle/GW nanocomposites (Mg NP/GW) were prepared using green synthesis. The Mg NP/GW samples were subjected to characterization using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR-FT). The surface morphology of the materials was examined using a scanning electron microscope (SEM), and their thermal stability was assessed through thermal gravimetric analysis (TG). The BET-specific surface area, pore volume, and pore size distribution of the prepared materials were determined using the N2 adsorption-desorption method. Additionally, the particle size and zeta potentials of the materials were also measured. The influence of the prepared nanomaterials on seed germination was intensively investigated. The results revealed an increase in seed germination percent at low concentrations of Mg NP/GWs. Upon treatment with Mg NP/GW nanoparticles, a reduction in the mitotic index (MI) was observed, indicating a decrease in cell division. Additionally, an increase in chromosomal abnormalities was detected. The efficacy of GW and Mg NP/GW nanoparticles as new elicitors was evaluated by studying their impact on the expression levels of the farnesyl diphosphate synthase (FPPS1) and geranylgeranyl pyrophosphate (GPPS1) genes. These genes play a crucial role in the terpenoid biosynthesis pathway in Sinapis alba (S. alba) and Pelargonium graveolens (P. graveolens) plants. The expression levels were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The qRT-PCR analysis of FPPS and GPPS gene expression was performed. The outputs of FPPS1 gene expression demonstrated high levels of mRNA in both S. alba and P. graveolens with fold changes of 25.24 and 21.68, respectively. In contrast, the minimum expression levels were observed for the GPPS1 gene, with fold changes of 11.28 and 6.48 in S. alba and P. graveolens, respectively. Thus, this study offers the employment of medicinal plants as an alternative to fertilizer usage resulting in promoting environmental preservation, optimal waste utilization, reducing water consumption, and cost reduction.


Subject(s)
Gene Expression Regulation, Plant , Pelargonium , Sinapis , Sinapis/genetics , Sinapis/drug effects , Sinapis/growth & development , Pelargonium/genetics , Pelargonium/growth & development , Gene Expression Regulation, Plant/drug effects , Nanoparticles/chemistry , Green Chemistry Technology , Germination/drug effects , Metal Nanoparticles/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Spectroscopy, Fourier Transform Infrared
2.
Transgenic Res ; 33(4): 267-282, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39044015

ABSTRACT

An essential aromatic plant, Pelargonium graveolens, does not grow well in areas where chromium contamination is a problem. Because of oxidative stress and the collapse of the photosynthetic system, crops frequently sustain severe damage. The production of excess ethylene, known as stress ethylene, which is detrimental to plant growth, the formation of roots, and early senescence, is also increased by heavy metal exposure. The effectiveness of the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase gene in transgenic Pelargonium graveolens under the control of CaMV 35S promoter was investigated to lessen the stress ethylene during chromium stress. Chromium was administered as potassium dichromate (K2Cr2O7) at four distinct concentrations (100 µM, 200 µM, 300 µM, and 500 µM) to transgenic and wild-type P. graveolens and stress-induced physiological changes were monitored. Transgenic P. graveolens demonstrated greater tolerance to chromium stress than wild-type P. graveolens, as evidenced by higher leaf-relative water content, chlorophyll content, CO2 absorption, transpiration rate, stomatal conductance, proline buildup, and antioxidant activity. The L1, L5, and L7, ACC deaminase-expressing transgenic lines also show a drop in ACC content during chromium stress, which subsequently lowered ethylene synthesis. Therefore, the reported transgenic P. graveolens lines having the ACC deaminase gene could be useful resources for growing in chromium-prone regions.


Subject(s)
Carbon-Carbon Lyases , Pelargonium , Plants, Genetically Modified , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Pelargonium/genetics , Pelargonium/growth & development , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Stress, Physiological/genetics , Chromium/toxicity , Chromium/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant/drug effects , Photosynthesis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Oxidative Stress , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/drug effects , Chlorophyll/metabolism
3.
Plant Cell Rep ; 43(6): 147, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771491

ABSTRACT

KEY MESSAGE: Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::Thchit42. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.


Subject(s)
Disease Resistance , Fusarium , Gene Expression Regulation, Plant , Pelargonium , Plant Leaves , Plants, Genetically Modified , Pelargonium/genetics , Fusarium/pathogenicity , Fusarium/physiology , Disease Resistance/genetics , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Colletotrichum/pathogenicity , Colletotrichum/physiology , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Geranium/genetics
4.
Plant Physiol Biochem ; 210: 108590, 2024 May.
Article in English | MEDLINE | ID: mdl-38574692

ABSTRACT

The essential oil of Pelargonium graveolens (rose-scented geranium), an important aromatic plant, comprising mainly mono- and sesqui-terpenes, has applications in food and cosmetic industries. This study reports the characterization of isoprenyl disphosphate synthases (IDSs) involved in P. graveolens terpene biosynthesis. The six identified PgIDSs belonged to different classes of IDSs, comprising homomeric geranyl diphosphate synthases (GPPSs; PgGPPS1 and PgGPPS2), the large subunit of heteromeric GPPS or geranylgeranyl diphosphate synthases (GGPPSs; PgGGPPS), the small subunit of heteromeric GPPS (PgGPPS.SSUI and PgGPPS.SSUII), and farnesyl diphosphate synthases (FPPS; PgFPPS).All IDSs exhibited maximal expression in glandular trichomes (GTs), the site of aroma formation, and their expression except PgGPPS.SSUII was induced upon treatment with MeJA. Functional characterization of recombinant proteins revealed that PgGPPS1, PgGGPPS and PgFPPS were active enzymes producing GPP, GGPP/GPP, and FPP respectively, whereas both PgGPPS.SSUs and PgGPPS2 were inactive. Co-expression of PgGGPPS (that exhibited bifunctional G(G)PPS activity) with PgGPPS.SSUs in bacterial expression system showed lack of interaction between the two proteins, however, PgGGPPS interacted with a phylogenetically distant Antirrhinum majus GPPS.SSU. Further, transient expression of AmGPPS.SSU in P. graveolens leaf led to a significant increase in monoterpene levels. These findings provide insight into the types of IDSs and their role in providing precursors for different terpenoid components of P. graveolens essential oil.


Subject(s)
Pelargonium , Plant Proteins , Terpenes , Terpenes/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pelargonium/metabolism , Pelargonium/genetics , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Gene Expression Regulation, Plant , Phylogeny , Trichomes/metabolism , Oils, Volatile/metabolism
5.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982362

ABSTRACT

The photosynthetically active green leaf (GL) and non-active white leaf (WL) tissues of variegated Pelargonium zonale provide an excellent model system for studying processes associated with photosynthesis and sink-source interactions, enabling the same microenvironmental conditions. By combining differential transcriptomics and metabolomics, we identified the main differences between these two metabolically contrasting tissues. Genes related to photosynthesis and associated pigments, the Calvin-Benson cycle, fermentation, and glycolysis were strongly repressed in WL. On the other hand, genes related to nitrogen and protein metabolism, defence, cytoskeletal components (motor proteins), cell division, DNA replication, repair and recombination, chromatin remodelling, and histone modifications were upregulated in WL. A content of soluble sugars, TCA intermediates, ascorbate, and hydroxybenzoic acids was lower, while the concentration of free amino acids (AAs), hydroxycinnamic acids, and several quercetin and kaempferol glycosides was higher in WL than in GL. Therefore, WL presents a carbon sink and depends on photosynthetic and energy-generating processes in GL. Furthermore, the upregulated nitrogen metabolism in WL compensates for the insufficient energy from carbon metabolism by providing alternative respiratory substrates. At the same time, WL serves as nitrogen storage. Overall, our study provides a new genetic data resource for the use of this excellent model system and for ornamental pelargonium breeding and contributes to uncovering molecular mechanisms underlying variegation and its adaptive ecological value.


Subject(s)
Pelargonium , Pelargonium/genetics , Pelargonium/metabolism , Transcriptome , Plant Breeding , Photosynthesis/genetics , Plant Leaves/genetics , Plant Leaves/metabolism
6.
PLoS One ; 17(4): e0267496, 2022.
Article in English | MEDLINE | ID: mdl-35482804

ABSTRACT

Pelargonium is a versatile genus mainly from the Cape Region, South Africa. The genus is divided into four subgenera and 16 sections characterized by several groups of chromosomes sizes and numbers. The DNA content of species from all subgenera and sections of Pelargonium, except for the sections Subsucculentia and Campylia was estimated using flow cytometry. Nuclei of Pelargonium samples (leaf or petal tissue) and an internal plant standard (leaf tissue) were isolated together and stained with propidium iodide. The DNA content was estimated providing that the 2C peaks of sample and standard be in linearity in the flow cytometer histograms. In total, 96 Pelargonium accessions of 60 species (22 Pelargonium species for the first time) were analyzed. The 2C DNA content ranged from 0.84 pg (P. longifolium, section Hoarea) to 6.69 pg (P. schizopetalum, section Magnistipulacea) and the corresponding 1Cx DNA content from 0.42 pg (P. longifolium) to 1.72 pg (P. transvaalense. This demonstrates the high plasticity within the genus Pelargonium. Some species, such as P. peltatum accessions revealed a pronounced endopolyploidization in leaves but not in petals underlining the importance to choose the right tissue as sample for the flow cytometry analysis. The reported genome sizes are a step forward towards the characterization of the Pelargonium collection within the German Gene Bank for Ornamental Plants and a valuable base for future sequencing programs of the Pelargonium genomes.


Subject(s)
Pelargonium , DNA, Plant/analysis , DNA, Plant/genetics , Flow Cytometry , Genome, Plant , Pelargonium/genetics , Ploidies
7.
Genome Biol Evol ; 13(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34893846

ABSTRACT

The repetitive part of the genome (the repeatome) contains a wealth of often overlooked information that can be used to resolve phylogenetic relationships and test evolutionary hypotheses for clades of related plant species such as Pelargonium. We have generated genome skimming data for 18 accessions of Pelargonium section Ciconium and one outgroup. We analyzed repeat abundancy and repeat similarity in order to construct repeat profiles and then used these for phylogenetic analyses. We found that phylogenetic trees based on read similarity were largely congruent with previous work based on morphological and chloroplast sequence data. For example, results agreed in identifying a "Core Ciconium" group which evolved after the split with P. elongatum. We found that this group was characterized by a unique set of repeats, which confirmed currently accepted phylogenetic hypotheses. We also found four species groups within P. sect. Ciconium that reinforce previous plastome-based reconstructions. A second repeat expansion was identified in a subclade which contained species that are considered to have dispersed from Southern Africa into Eastern Africa and the Arabian Peninsula. We speculate that the Core Ciconium repeat set correlates with a possible WGD event leading to this branch.


Subject(s)
Pelargonium , Africa, Eastern , Biological Evolution , Chloroplasts/genetics , Evolution, Molecular , Genome, Plant , Pelargonium/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid
8.
Plant J ; 107(2): 493-510, 2021 07.
Article in English | MEDLINE | ID: mdl-33949016

ABSTRACT

Geraniol, citronellol and their esters are high-value acyclic monoterpenes used in food technology, perfumery and cosmetics. A major source of these compounds is the essential oil of rose-scented geraniums of the genus Pelargonium. We provide evidence that their biosynthesis mainly takes place in the cytosol of glandular trichomes via geranyl monophosphate (GP) through the action of a Nudix hydrolase. Protein preparations could convert geranyl diphosphate (GDP) to geraniol in in vitro assays, a process which could be blocked by inorganic phosphatase inhibitors, suggesting a two-step conversion of GDP to geraniol. Pelargonium graveolens chemotypes enriched in either geraniol or (-)-citronellol accumulate GP or citronellyl monophosphate (CP), respectively, the presumed precursors to their monoterpenoid end products. Geranyl monophosphate was highly enriched in isolated glandular trichomes of lines producing high amounts of geraniol. In contrast, (-)-isomenthone-rich lines are depleted in these prenyl monophosphates and monoterpene alcohols and instead feature high levels of GDP, the precursor to plastidic p-menthane biosynthesis. A Nudix hydrolase cDNA from Pelargonium glandular trichomes, dubbed PgNdx1, encoded a cytosolic protein capable of hydrolyzing GDP to GP with a KM of about 750 nm but is only weakly active towards farnesyl diphosphate. In citronellol-rich lines, GDP, GP and CP were detected in nearly equimolar amounts, while citronellyl diphosphate was absent, suggesting that citronellol biosynthesis may proceed by reduction of GP to CP in this species. These findings highlight the cytosol as a compartment that supports monoterpene biosynthesis and expands the roles of Nudix hydrolases in the biosynthesis of plant volatiles.


Subject(s)
Acyclic Monoterpenes/metabolism , Pelargonium/metabolism , Plant Proteins/metabolism , Pyrophosphatases/metabolism , Cytosol/metabolism , Diphosphates/metabolism , Diterpenes/metabolism , Enzyme Inhibitors/pharmacology , Pelargonium/enzymology , Pelargonium/genetics , Phylogeny , Plant Proteins/genetics , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/genetics , Sequence Alignment , Trichomes/metabolism , Nudix Hydrolases
9.
Mol Phylogenet Evol ; 155: 106986, 2021 02.
Article in English | MEDLINE | ID: mdl-33059063

ABSTRACT

Geraniaceae organelle genomes have been shown to exhibit several highly unusual features compared to most other photosynthetic angiosperms. This includes massively rearranged plastomes with considerable size variation, extensive gene and intron loss, accelerated rates of nucleotide substitutions in both mitogenomes and plastomes, and biparental inheritance and cytonuclear incompatibility of the plastome. Most previous studies have focused on plastome evolution with mitogenome comparisons limited to only a few taxa or genes. In this study, mitogenomes and transcriptomes were examined for 27 species of Geraniales, including 13 species of Pelargonium. Extensive gene and intron losses were detected across the Geraniales with Pelargonium representing the most gene depauperate lineage in the family. Plotting these events on the Geraniaceae phylogenetic tree showed that gene losses occurred multiple times, whereas intron losses more closely reflected the relationships among taxa. In addition, P. australe acquired an intron by horizontal transfer. Comparisons of nucleotide substitution rates in Pelargonium showed that synonymous changes in nuclear genes were much lower than in mitochondrial genes. This is in contrast to the previously published studies that indicated that nuclear genes have 16 fold higher rates than mitochondrial genes across angiosperms. Elevated synonymous substitutions occurred for each mitochondrial gene in Pelargonium with the highest values 783 and 324 times higher than outgroups and other Geraniaceae, respectively. Pelargonium is one of four unrelated genera of angiosperms (Ajuga, Plantago and Silene) that have experienced highly accelerated nucleotide substitutions in mitogenomes. It is distinct from most angiosperms in also having elevated substitution rates in plastid genes but the cause of rate accelerations in Pelargonium plastomes and mitogenomes may be different.


Subject(s)
Genome, Mitochondrial , Introns/genetics , Nucleotides/genetics , Pelargonium/genetics , Cell Nucleus/genetics , Evolution, Molecular , Exons/genetics , Genes, Mitochondrial , Phylogeny , RNA Editing/genetics
10.
Mol Phylogenet Evol ; 137: 33-43, 2019 08.
Article in English | MEDLINE | ID: mdl-30926482

ABSTRACT

The predominantly South-African plant genus Pelargonium L'Hér. (Geraniaceae) displays remarkable morphological diversity, several basic chromosome numbers as well as high levels of organelle genomic rearrangements, and represents the 7th largest Cape Floristic Region clade. In this study, we reconstructed a phylogenetic tree based on 74 plastome exons and nuclear rDNA ITS regions for 120 species, which represents 43% taxon coverage for Pelargonium. We also performed a dating analysis to examine the timing of the major radiations in the genus. Phylogenetic analyses of nucleotide, amino acid, and ITS alignments confirmed the previously-documented subgeneric split into five main clades ((C1,C2),(B(A1,A2))) although clade only A1 received low bootstrap support. Using calibration evidence from a range of sources the Pelargonium crown age was estimated to be 9.7 My old, much younger than previous estimates for the genus but similar to recent studies of other Cape Floristic lineages that are part of both Fynbos and Succulent Karoo biomes.


Subject(s)
Genome, Plastid , Pelargonium/growth & development , Pelargonium/genetics , Phylogeny , Calibration , Genetic Variation , Likelihood Functions , Time Factors
11.
Genome Biol Evol ; 9(1): 64-76, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28172771

ABSTRACT

Geraniaceae are known for their unusual plastid genomes (plastomes), with the genus Pelargonium being most conspicuous with regard to plastome size and gene organization as judged by the sequenced plastomes of P. x hortorum and P. alternans. However, the hybrid origin of P. x hortorum and the uncertain phylogenetic position of P. alternans obscure the events that led to these extraordinary plastomes. Here, we examine all plastid reconfiguration hotspots for 60 Pelargonium species across all subgenera using a PCR and sequencing approach. Our reconstruction of the rearrangement history revealed four distinct plastome types. The ancestral plastome configuration in the two subgenera Magnipetala and Pelargonium is consistent with that of the P. alternans plastome, whereas that of the subgenus Parvulipetala deviates from this organization by one synapomorphic inversion in the trnNGUU­ndhF region. The plastome of P. x hortorum resembles those of one group of the subgenus Paucisignata, but differs from a second group by another inversion in the psaI­psaJ region. The number of microstructural changes and amount of repetitive DNA are generally elevated in all inverted regions. Nucleotide substitution rates correlate positively with the number of indels in all regions across the different subgenera. We also observed lineage- and species-specific changes in the gene content, including gene duplications and fragmentations. For example, the plastid rbcL­psaI region of Pelargonium contains a highly variable accD-like region. Our results suggest alternative evolutionary paths under possibly changing modes of plastid transmission and indicate the non-functionalization of the plastid accD gene in Pelargonium.


Subject(s)
Genome, Plastid , Pelargonium/classification , Pelargonium/genetics , Evolution, Molecular , Genome, Chloroplast , Pelargonium/cytology , Phylogeny
12.
New Phytol ; 214(2): 842-851, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27991660

ABSTRACT

For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested.


Subject(s)
Genome, Plastid , Inverted Repeat Sequences/genetics , Pelargonium/genetics , Gene Dosage , Genes, Plant , Phylogeny , Selection, Genetic
13.
Genome Biol Evol ; 8(10): 3193-3201, 2016 10 30.
Article in English | MEDLINE | ID: mdl-27664178

ABSTRACT

The mitochondrial nad1 gene of seed plants has a complex structure, including four introns in cis or trans configurations and a maturase gene (matR) hosted within the final intron. In the geranium family (Geraniaceae), however, sequencing of representative species revealed that three of the four introns, including one in a trans configuration and another that hosts matR, were lost from the nad1 gene in their common ancestor. Despite the loss of the host intron, matR has been retained as a freestanding gene in most genera of the family, indicating that this maturase has additional functions beyond the splicing of its host intron. In the common ancestor of Pelargonium, matR was transferred to the nuclear genome, where it was split into two unlinked genes that encode either its reverse transcriptase or maturase domain. Both nuclear genes are transcribed and contain predicted mitochondrial targeting signals, suggesting that they express functional proteins that are imported into mitochondria. The nuclear localization and split domain structure of matR in the Pelargonium nuclear genome offers a unique opportunity to assess the function of these two domains using transgenic approaches.


Subject(s)
Endoribonucleases/genetics , Evolution, Molecular , Gene Transfer, Horizontal , NADH Dehydrogenase/genetics , Nucleotidyltransferases/genetics , Pelargonium/genetics , Plant Proteins/genetics , Cell Nucleus/metabolism , Introns , Sequence Deletion , Trans-Splicing
14.
Nat Prod Commun ; 11(12): 1775-1782, 2016 Dec.
Article in English | MEDLINE | ID: mdl-30508331

ABSTRACT

Pelargonium graveolens L'Hér, also referred to as rose geranium, is a popular herbal plant with typical rosy fragrance largely based on the blend of monoterpenoid constituents. Among them, citronellol, which is biosynthesized from geraniol via double bond reduction, is the most abundant scent compound. In this study, three 12-oxophytodienoic acid reductases (PgOPRl-3) hive been cloned from P. graveolens, as -possible candidates for the double-bond reductase involved in citronellol biosynthesis. The bacterially expressed recombinant PgOPRs did not reduce geraniol to citronellol, but stereoselectively converted citral into (S)-citronellal in the presence of NADPH. Thus, the a,-unsaturated carbonyl moiety in the substrate is essential for the catalytic activity of PgOPRs; as reported for OPRs from other plants and structurally related yeast old yellow enzymes. PgOPRs promiscuously accepted linear and cyclic α,ß- uisaturated carbonyl substrates, including methacrolein, a typical reactive carbonyl compound. The possible biotechnological applications for PgOPRs in plant metabolic'engineering, based on their catalytic properties, are discussed herein.


Subject(s)
Oxidoreductases/metabolism , Pelargonium/enzymology , Plant Proteins/metabolism , Acyclic Monoterpenes , Cloning, Molecular , Fatty Acids, Unsaturated , Monoterpenes/metabolism , Oxidoreductases/genetics , Pelargonium/genetics , Plant Proteins/genetics , Recombinant Proteins/metabolism , Terpenes/metabolism
15.
Am Nat ; 185(4): 525-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25811086

ABSTRACT

Evolutionary radiations with extreme levels of diversity present a unique opportunity to study the role of the environment in plant evolution. If environmental adaptation played an important role in such radiations, we expect to find associations between functional traits and key climatic variables. Similar trait-environment associations across clades may reflect common responses, while contradictory associations may suggest lineage-specific adaptations. Here, we explore trait-environment relationships in two evolutionary radiations in the fynbos biome of the highly biodiverse Cape Floristic Region (CFR) of South Africa. Protea and Pelargonium are morphologically and evolutionarily diverse genera that typify the CFR yet are substantially different in growth form and morphology. Our analytical approach employs a Bayesian multiple-response generalized linear mixed-effects model, taking into account covariation among traits and controlling for phylogenetic relationships. Of the pairwise trait-environment associations tested, 6 out of 24 were in the same direction and 2 out of 24 were in opposite directions, with the latter apparently reflecting alternative life-history strategies. These findings demonstrate that trait diversity within two plant lineages may reflect both parallel and idiosyncratic responses to the environment, rather than all taxa conforming to a global-scale pattern. Such insights are essential for understanding how trait-environment associations arise and how they influence species diversification.


Subject(s)
Biological Evolution , Pelargonium/genetics , Proteaceae/genetics , Adaptation, Physiological , Bayes Theorem , Climate , Environment , Phenotype , Phylogeny , Plant Leaves/anatomy & histology , South Africa
16.
PLoS One ; 8(12): e83087, 2013.
Article in English | MEDLINE | ID: mdl-24358250

ABSTRACT

Climate change is often assumed to be a major driver of biodiversity loss. However, it can also set the stage for novel diversification in lineages with the evolutionary ability to colonize new environments. Here we tested if the extraordinary evolutionary success of the genus Pelargonium was related to the ability of its species to capitalize on the climate niche variation produced by the historical changes in southern Africa. We evaluated the relationship between rates of climate niche evolution and diversification rates in the main Pelargonium lineages and disentangled the roles of deep and recent historical events in the modification of species niches. Pelargonium clades exhibiting higher ecological differentiation along summer precipitation (SPP) gradients also experienced higher diversification rates. Faster rates of niche differentiation in spatially structured variables, along with lower levels of niche overlap among closely related species, suggest recent modification in species niches (e.g. dispersal or range shift) and niche lability. We suggest that highly structured SPP gradients established during the aridification process within southern Africa, in concert with niche lability and low niche overlap, contributed to species divergence. These factors are likely to be responsible for the extensive diversification of other lineages in this diversity hot spot.


Subject(s)
Biodiversity , Climate Change , Genetic Speciation , Geranium/genetics , Africa, Southern , Climate , Ecosystem , Geranium/growth & development , Pelargonium/genetics , Pelargonium/growth & development , Phylogeny , Spatial Analysis
17.
Am J Bot ; 100(7): 1306-21, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23825139

ABSTRACT

PREMISE OF THE STUDY: Trait integration may improve prediction of species and lineage responses to future climate change more than individual traits alone, particularly when analyses incorporate effects of phylogenetic relationships. The South African genus Pelargonium contains divergent major clades that have radiated along the same seasonal aridity gradient, presenting the opportunity to ask whether patterns of evolution in mean leaf trait values are achieved through the same set of coordinated changes among traits in each clade. METHODS: Seven leaf traits were measured on field-collected leaves from one-third of the species (98) of the genus. Trait relationships were examined using phylogenetic regression within major clades. Disparity analysis determined whether the course of trait evolution paralleled historical climate change events. KEY RESULTS: Divergence in mean trait values between sister clades A1 and A2 was consistent with expectations for leaves differing in longevity, despite strong similarity between clades in trait interactions. No traits in either clade exhibited significant relationships with multivariate climate axes, with one exception. Species in clades C and A2 included in this study occupied similar environments. These clades had similar values of individual trait means, except for δ(13)C, but they exhibited distinctive patterns of trait integration. CONCLUSIONS: Differing present-day patterns of trait integration are consistent with interpretations of adaptive responses to the prevailing climate at the time of each clade's origin. These differing patterns of integration are likely to exert strong effects on clade-level responses to future climate change in the winter rainfall region of South Africa.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Pelargonium/anatomy & histology , Pelargonium/genetics , Gene Expression Regulation, Plant , Pelargonium/physiology , Rain , Seasons , South Africa , Time Factors
18.
Planta ; 237(2): 509-15, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23053540

ABSTRACT

While uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.e. between the parental mitochondrial genomes. We have analyzed these Pelargonium hybrids for mitochondrial intergenomic recombination events by examining differences in DNA blot hybridization patterns of the mitochondrial genes atp1 and cob. Further investigation of these genes and their flanking regions using nucleotide sequence polymorphisms and PCR revealed DNA segments in the progeny, which contained both P. zonale and P. inquinans sequences suggesting an intergenomic recombination in hybrids of Pelargonium. This turns Pelargonium into an interesting subject for studies of recombination and evolutionary dynamics of mitochondrial genomes.


Subject(s)
DNA, Mitochondrial/metabolism , Genome, Mitochondrial , Inheritance Patterns , Mitochondria/genetics , Pelargonium/genetics , Recombination, Genetic , Base Sequence , Chimera/genetics , Chimera/metabolism , Crosses, Genetic , DNA, Mitochondrial/genetics , DNA, Plant/genetics , DNA, Plant/metabolism , Genes, Plant , Pelargonium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polymerase Chain Reaction/methods , Polymorphism, Genetic , Species Specificity
19.
BMC Plant Biol ; 12: 156, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22935247

ABSTRACT

BACKGROUND: Pelargonium is one of the most popular garden plants in the world. Moreover, it has a considerable economic importance in the ornamental plant market. Conventional cross-breeding strategies have generated a range of cultivars with excellent traits. However, gene transfer via Agrobacterium tumefaciens could be a helpful tool to further improve Pelargonium by enabling the introduction of new genes/traits. We report a simple and reliable protocol for the genetic transformation of Pelargonium spp. and the production of engineered long-life and male sterile Pelargonium zonale plants, using the pSAG12::ipt and PsEND1::barnase chimaeric genes respectively. RESULTS: The pSAG12::ipt transgenic plants showed delayed leaf senescence, increased branching and reduced internodal length, as compared to control plants. Leaves and flowers of the pSAG12::ipt plants were reduced in size and displayed a more intense coloration. In the transgenic lines carrying the PsEND1::barnase construct no pollen grains were observed in the modified anther structures, which developed instead of normal anthers. The locules of sterile anthers collapsed 3-4 days prior to floral anthesis and, in most cases, the undeveloped anther tissues underwent necrosis. CONCLUSION: The chimaeric construct pSAG12::ipt can be useful in Pelargonium spp. to delay the senescence process and to modify plant architecture. In addition, the use of engineered male sterile plants would be especially useful to produce environmentally friendly transgenic plants carrying new traits by preventing gene flow between the genetically modified ornamentals and related plant species. These characteristics could be of interest, from a commercial point of view, both for pelargonium producers and consumers.


Subject(s)
Genetic Engineering/methods , Pelargonium/genetics , Plant Infertility , Plants, Genetically Modified/physiology , Agrobacterium tumefaciens/genetics , Bacterial Proteins , Flowers/genetics , Flowers/physiology , Pelargonium/physiology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Somatic Embryogenesis Techniques , Plants, Genetically Modified/genetics , Ribonucleases/genetics , Transformation, Genetic
20.
Plant Cell Rep ; 31(11): 2015-29, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22898902

ABSTRACT

KEY MESSAGE : We reported the cloning of a rose DELLA gene. We obtained transgenic Pelargonium lines overexpressing this gene which presented several phenotypes in plant growth, root growth, flowering time and number of inflorescences. Control of development is an important issue for production of ornamental plant. The plant growth regulator, gibberellins (GAs), plays a pivotal role in regulating plant growth and development. DELLA proteins are nuclear negative regulator of GA signalling. Our objective was to study the role of GA in the plant architecture and in the blooming of ornamentals. We cloned a rose DELLA homologous gene, RoDELLA, and studied its function by genetic transformation of pelargonium. Several transgenic pelargonium (Pelargonium × domesticum 'Autum Haze') lines were produced that ectopically expressed RoDELLA under the control of the 35S promoter. These transgenic plants exhibited a range of phenotypes which could be related to the reduction in GA response. Most of transgenic plants showed reduced growth associated to an increase of the node and branch number. Moreover, overexpression of RoDELLA blocked or delayed flowering in transgenic pelargonium and exhibited defects in the root formation. We demonstrated that pelargonium could be used to validate ornamental gene as the rose DELLA gene. RoDELLA overexpression modified many aspects of plant developmental pathways, as the plant growth, the transition of vegetative to floral stage and the ability of rooting.


Subject(s)
Gibberellins/metabolism , Pelargonium/growth & development , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Rosa/genetics , Amino Acid Sequence , Flowers/genetics , Gene Expression Regulation, Plant , Inflorescence/genetics , Inflorescence/growth & development , Inflorescence/metabolism , Molecular Sequence Data , Pelargonium/genetics , Pelargonium/physiology , Pelargonium/ultrastructure , Phenotype , Phylogeny , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/metabolism , Plants, Genetically Modified , Sequence Alignment , Signal Transduction/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL