Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Int Urogynecol J ; 35(3): 713-722, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430238

ABSTRACT

INTRODUCTION AND HYPOTHESIS: Fully absorbable implants may be an alternative to permanent meshes in the correction pf pelvic organ prolapse (POP) as they may reduce adverse events by promoting tissue regeneration and collagen metabolism. This study was aimed at evaluating the long-term host and biomechanical response to a fully absorbable poly-4-hydroxybutyrate (P4HB) scaffold in comparison with polypropylene (PP) mesh. METHODS: Poly-4-hydroxybutyrate scaffold (n = 16) and PP mesh (n = 16) were surgically implanted in the posterior vaginal wall of parous female Dohne Merino sheep. Vaginal explants were evaluated in terms of gross necropsy, host response (immune response, collagen deposition, tissue regeneration), biomechanics, and degradation of P4HB at 12 and 24 months post-implantation. RESULTS: Gross necropsy revealed no infection or fluid collection using P4HB or PP. At 12 months, exposures were observed with both P4HB (3 out of 8) and PP (4 out of 8), whereas at 24 months, exposures were observed only with PP (4 out of 8). The tensile stiffness of the P4HB explants was maintained over time despite complete absorption of P4HB. The collagen amount of the vaginal tissue after P4HB implantation increased over time and was significantly higher than PP at 24 months. P4HB scaffolds exhibited significantly lower myofibroblast differentiation than PP meshes at 24 months. CONCLUSIONS: The P4HB scaffold allowed for gradual load transfer to the vaginal wall and resulted in mechanically self-sufficient tissue. P4HB scaffold had a more favorable host response than PP mesh, with higher collagen content, lower myofibroblastic differentiation, and no exposures at 24 months. P4HB scaffolds have potential as an alternative to permanent implants in treating POP.


Subject(s)
Pelvic Organ Prolapse , Female , Humans , Pelvic Organ Prolapse/surgery , Pelvic Organ Prolapse/metabolism , Vagina/surgery , Vagina/metabolism , Collagen/metabolism , Absorbable Implants , Wound Healing , Surgical Mesh/adverse effects
2.
Int Urogynecol J ; 35(4): 881-891, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488886

ABSTRACT

INTRODUCTION AND HYPOTHESIS: The objective was to investigate the correlation between endogenous vaginal microecological alterations and female pelvic organ prolapse (POP). METHODS: Patients who underwent vaginal hysterectomy were retrospectively analyzed as the POP group (n = 30) and the non-POP group (n = 30). The vaginal microbial metabolites and enzyme levels were tested using the dry chemoenzymatic method. The mRNA and protein expression were tested using real-time quantitative PCR and immunohistochemistry. SPSS version 25.0 and GraphPad Prism 8.0 were performed for statistical analysis. RESULTS: Compared with the non-POP group, the vaginal pH, H2O2 positivity and leukocyte esterase positivity were higher in patients with POP (all p < 0.05). Further analysis showed that patients with pelvic organ prolapse quantification (POP-Q) stage IV had higher rates of vaginal pH, H2O2 positivity and leukocyte esterase positivity than those with POP-Q stage III. Additionally, the mRNA expression of decorin (DCN), transforming growth factor beta 1 (TGF-ß1), and matrix metalloproteinase-3 (MMP-3) in uterosacral ligament tissues were higher, whereas collagen I and III were lower. Similarly, the positive expression of MMP-3 in uterosacral ligament tissue was significantly upregulated in the POP group compared with the non-POP group (p = 0.035), whereas collagen I (p = 0.004) and collagen III (p = 0.019) in uterosacral ligament tissue were significantly downregulated in the POP group. Correlation analysis revealed that there was a significant correlation between vaginal microecology and collagen metabolism. In addition, MMP-3 correlated negatively with collagen I and collagen III (p = 0.002, r = -0.533; p = 0.002, r = -0.534 respectively), whereas collagen I correlated positively with collagen III (p = 0.001, r = 0.578). CONCLUSIONS: Vaginal microecological dysbiosis affects the occurrence of female POP, which could be considered a novel therapeutic option.


Subject(s)
Pelvic Organ Prolapse , Vagina , Female , Humans , Pelvic Organ Prolapse/metabolism , Middle Aged , Retrospective Studies , Matrix Metalloproteinase 3/metabolism , Decorin/metabolism , Decorin/genetics , Aged , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Hysterectomy, Vaginal , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type III/metabolism , Collagen Type III/genetics , RNA, Messenger/metabolism , Ligaments/metabolism , Microbiota , Adult
3.
Commun Biol ; 7(1): 159, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326542

ABSTRACT

Pelvic organ prolapse (POP) markedly affects the quality of life of women, including significant financial burden. Using single-cell RNA sequencing, we constructed a transcriptional profile of 30,452 single cells of the uterosacral ligament in POP and control samples, which has never been constructed before. We identified 10 major cell types, including smooth muscle cells, endothelial cells, fibroblasts, neutrophils, macrophages, monocytes, mast cells, T cells, B cells, and dendritic cells. We performed subpopulation analysis and pseudo-time analysis of POP primary cells, and explored differentially expressed genes. We verified previous cell clusters of human neutrophils of uterosacral ligaments. We found a significant reduction in receptor-ligand pairs related to ECM and cell adhesion between fibroblasts and endothelial cells in POP. The transcription factors related to the extracellular matrix, development, and immunity were identified in USL. Here we provide insight into the molecular mechanisms of POP and valuable information for future research directions.


Subject(s)
Endothelial Cells , Pelvic Organ Prolapse , Humans , Female , Endothelial Cells/metabolism , Quality of Life , Ligaments/metabolism , Pelvic Organ Prolapse/genetics , Pelvic Organ Prolapse/metabolism , Single-Cell Analysis
4.
J Biochem Mol Toxicol ; 38(2): e23654, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38348712

ABSTRACT

The occurrence of pelvic organ prolapse (POP) seriously affects women's quality of life. However, the pathogenesis of POP remains unclear. We aimed to clarify the role of Frizzled class receptor 3 (FZD3) in POP. FZD3 expression in the vaginal wall tissues was detected using immunohistochemistry, real-time polymerase chain reaction, and western blot analysis. Then, vaginal wall fibroblasts (VWFs) were isolated from patients with POP and non-POP, and were identified. Cell viability and apoptosis were evaluated using Cell Counting Kit-8 and flow cytometry, respectively. Extracellular matrix (ECM) degradation was assessed by western blot analysis. The results illustrated that FZD3 was downregulated in POP. VWFs from POP had lower cell viability, ECM degradation, and higher apoptosis. Knockdown of FZD3 inhibited cell viability, ECM degradation, and promoted apoptosis of VWFs, whereas overexpression of FZD3 had opposite results. Moreover, IWP-4 (Wingless-type [Wnt] pathway inhibitor) reversed the role of FZD3 overexpression on biological behaviors. Taken together, FZD3 facilitates VWFs viability, ECM degradation, and inhibits apoptosis via the Wnt pathway in POP. The findings provide a potential target for the treatment of POP.


Subject(s)
Pelvic Organ Prolapse , Wnt Signaling Pathway , Humans , Female , Quality of Life , Extracellular Matrix/metabolism , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/pathology , Fibroblasts/metabolism , Apoptosis , Frizzled Receptors/metabolism
5.
Adv Healthc Mater ; 13(8): e2302905, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219051

ABSTRACT

The suboptimal outcomes of pelvic organ prolapse (POP) surgery illustrate the demand for improved therapies. However, their development is hampered by the limited knowledge on the cellular pathophysiology of POP. Current investigations, that are limited to tissues and 2D in vitro models, provide highly inconclusive results on how the extracellular matrix (ECM) metabolism and fibroblasts are affected in POP. This study uses a physiologically relevant 3D in vitro model to investigate the cellular pathophysiology of POP by determining the differences between POP and non-POP fibroblasts on ECM metabolism, proliferation, and fibroblast-to-myofibroblast (FMT) transition. This model, based on the synthetic and biomimetic polyisocyanide hydrogel, enables the incorporation of mechanical loading, which simulates the forces exerted on the pelvic floor. Under static conditions, 3D cultured POP fibroblasts are less proliferative, undergo FMT, and exhibit lower collagen and elastin contents compared to non-POP fibroblasts. However, under mechanical loading, the differences between POP and non-POP fibroblasts are less pronounced. This study contributes to the development of more comprehensive models that can accurately mimic the POP pathophysiology, which will aid in an enhanced understanding and may contribute to improved therapies in the future.


Subject(s)
Collagen , Pelvic Organ Prolapse , Humans , Collagen/metabolism , Extracellular Matrix/metabolism , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/surgery , Fibroblasts/metabolism , Cells, Cultured
6.
Cell Signal ; 114: 111000, 2024 02.
Article in English | MEDLINE | ID: mdl-38056607

ABSTRACT

This study delves into the role of FBLN5 in pelvic organ prolapse (POP) and its molecular mechanisms, focusing on the FOSL1/miR-222/MEIS1/COL3A1 axis. Gene relationships linked to POP were confirmed using bioinformatics databases like GEO and StarBase. Primary human uterosacral ligament fibroblasts (hUSLF) were extracted and subjected to mechanical stretching. Cellular cytoskeletal changes were examined via phalloidin staining, intracellular ROS levels with a ROS kit, cell apoptosis through flow cytometry, and cell senescence using ß-galactosidase staining. FBLN5's downstream targets were identified, and the interaction between FOSL1 and miR-222 and miR-222 and MEIS1 were validated using assays. In rat models, the role of FBLN5 in POP was assessed using bladder pressure tests. Results indicated diminished FBLN5 expression in uterine prolapse. Enhanced FBLN5 countered mechanical damage in hUSLF cells by downregulating FOSL1. FOSL1 augmented miR-222, inhibiting MEIS1, which subsequently fostered COL3A1 transcription. In rat models, the absence of FBLN5 exacerbated POP by influencing the FOSL1/miR-222/MEIS1/COL3A1 pathway. FBLN5's protective role likely involves regulating the above axis and boosting COL3A1 expression. Further research is needed to validate the effectiveness and safety of this mechanism in human patients and to propose potential new treatment options.


Subject(s)
MicroRNAs , Pelvic Organ Prolapse , Female , Humans , Rats , Animals , Reactive Oxygen Species/metabolism , Pelvic Organ Prolapse/genetics , Pelvic Organ Prolapse/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Collagen Type III , Extracellular Matrix Proteins/genetics
7.
Histochem Cell Biol ; 161(2): 195-205, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37874337

ABSTRACT

Pelvic organ prolapse (POP) is a common disorder among women that negatively affects women's quality of life. Early growth response 2 (EGR2) is a transcription factor that regulates cell growth. The present study aimed to explore the role of EGR2 in POP progression and provided a new target for the treatment and prevention of POP. Firstly, we extracted primary vaginal anterior wall fibroblasts from POP tissues and non-POP tissues and then constructed an EGR2-silencing lentivirus for further study. Immunoblotting, qPCR, TUNEL assay, CCK-8 assay, dual luciferase assay, and ELISA assay were carried out. EGR2 expression was much higher in POP tissues than in control tissues, and EGR2 expression positively correlated with cytokine signaling 3 (SOCS3) expression. Knockdown of EGR2 increased cell proliferation, upregulated PCNA expression, and reduced apoptosis in POP fibroblasts. Moreover, we found that the knockdown of EGR2 increased COL1A1, COL3A1, and Elastin expression and decreased MMP2 and MMP9 activities, and knockdown of EGR2 increased TGF-ß/Smad pathway activity in POP fibroblasts. Interestingly, the results of dual luciferase assay demonstrated that EGR2 was able to increase SOCS3 transcriptional activity. EGR2 knockdown alleviated the apoptosis of POP fibroblasts by reducing SOCS3 expression and improving the proliferation and collagen synthesis of POP fibroblasts. Overall, our study illustrated that EGR2 was highly expressed in POP tissues, and knockdown of EGR2 alleviated apoptosis and reduced matrix degradation in POP fibroblasts. This study might provide a new insight into the pathogenesis of POP.


Subject(s)
Pelvic Organ Prolapse , Quality of Life , Female , Humans , Signal Transduction , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/pathology , Vagina/metabolism , Vagina/pathology , Luciferases/metabolism
8.
Altern Ther Health Med ; 30(1): 265-269, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37793331

ABSTRACT

Background: The incidence of Pelvic organ prolapse (POP) was as high as 50% in women, with the main symptoms of vaginal tissue prolapse, accompanied by urination, defecation, and sexual dysfunction, which affected patients' quality of life. POP is more prominent in postmenopausal women due to various factors. By constructing a model, we predict POP and expect to reduce the incidence of POP. Objective: To explore the risk factors for POP in postmenopausal women and develop a predictive model that can identify high-risk individuals early so that targeted preventive measures can be taken to reduce the burden of POP. Methods: Using retrospective studies, 290 menopausal women treated in the Department of Gynecology of the Ninth People's Hospital of Suzhou from January 2019 to December 2022 were selected as the study subjects. Women with menopause were divided into the POP group (62 cases) and a non-POP group (228 cases) according to whether or not POP occurred. Single factor analysis was performed on the two data groups. The risk factors of POP in menopausal women were screened by multivariate logistic regression analysis. Based on the screening results, a graph prediction model expressed as a nomogram is constructed. The model's effectiveness was analyzed by the goodness of fit test and receiver operating characteristic curve (ROC) curve. The decision curve was used to analyze the clinical effectiveness of the model. Results: Multifactor logistic regression analysis showed that Older age (OR = 2.309, P = .007), more childbirth frequency (OR = 3.121, P = .002), low expression of estradiol (E2) (OR = 1.499, P = .023), low expression of serum 25-hydroxyvitamin D3[25-(OH)D3] (OR = 2.073, P = .011), and lower blood calcium (OR = 21.677, P = .014) were all risk factors for POP in menopausal women. Based on the above indicators, a risk prediction model is constructed. The model has been proved to have good recognition ability, areas under curve (AUC) = 0.887 (95%CI: 0.845-0.926), The best cutoff value is 0.37, The sensitivity and specificity were 0.885 and 0.840, respectively; The goodness of fit test showed that the predicted value of the model had no statistical significance with the actual value. The threshold probability is in the range of 1%~99%. The net benefit of menopausal women is higher than the other two extreme curves. It shows that the model is clinically effective. Conclusion: Age, times of delivery, E2, 25-(OH)D3, and blood calcium are related to POP in menopausal women. A nomogram model based on these 5 indicators can effectively assess the risk of POP in postmenopausal women. The clinician can use this column chart to calculate the risk of POP occurrence for each patient and make clinical recommendations accordingly.


Subject(s)
Pelvic Organ Prolapse , Postmenopause , Female , Humans , Retrospective Studies , Quality of Life , Calcium , Pelvic Organ Prolapse/epidemiology , Pelvic Organ Prolapse/complications , Pelvic Organ Prolapse/metabolism , Risk Factors
10.
Acta Biomater ; 169: 363-371, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37579913

ABSTRACT

It is well known that pelvic organ prolapse (POP) significantly reduces the quality of life of affected women and in many cases requires corrective surgery. Aim of the study was to compare the immune response against titanized versus non-titanized meshes, especially macrophage polarization and immune checkpoint association. For this, we analyzed 644 POP surgeries, which were performed between 2017 and 2022, in our department. Four of them needed revision surgery caused by erosion. We analyzed the influx of CD68 & CD163 positive macrophages and the expression of immune checkpoint molecules PD-L1 and PD1 in these 4 patients. We identified a large number of CD68 and CD163 positive macrophages and additionally a PD-L1 expression of these cells. Based on the in-vivo results, we isolated monocytes and co-cultivated monocytes with different mesh material covered with or without fibroblasts. We identified a significantly enhanced macrophage activation and PD-L1 expression in macrophages surrounding non-titanized polypropylene mesh material. Encapsulation of the material by fibroblasts was crucial for that. Specifically, CD68-positive macrophages are upregulated (p < 0.001), co-expressing PD-L1 (p < 0.001) in monocytes co-cultivated with non-titanized polypropylene meshes. Monocytes co-cultivated with titanized polypropylene meshes showed significantly lower expression of CD163 (p = 0.027) and PD-L1 (p = 0.022). In conclusion, our in vitro data suggest that the titanium coating leads to a decreased polarization of macrophages and to a decreased immune response compared to non-titanized meshes. This could be an indication for the increased incidence of erosion of the non-titanized meshes, which is a severe complication of this procedure and requires revision surgery. STATEMENT OF SIGNIFICANCE: Pelvic organ prolapse is a well-known problem for women and often requires corrective surgery. Polypropylene meshes are often used, which differ in their coating (titanized vs. non-titanized). A severe side effect of these surgeries is mesh erosion, due to onset of inflammation, which requires revision surgery. We examined all erosion cases (4 of 644 patients) with implanted nontitanium-coated meshes by immunohistochemistry and found upregulation of macrophage polarization (as markers CD68 and CD163) and increased expression of the immune checkpoint molecules PD-L1 and PD1. This suggests inflammatory processes and an enhanced immune response. In addition, we set up an in vitro experiment to investigate whether coating plays a role. Here, we demonstrated that the non-titanized meshes elicited a significantly higher immune response in comparison to titanized meshes, which could lead to the higher erosion rate of the non-titanized meshes. Our results highlight the benefit of titanized meshes, which should lead to a lower revision surgery rate and thus improved patient outcome.


Subject(s)
Pelvic Organ Prolapse , Polypropylenes , Humans , Female , B7-H1 Antigen , Immune Checkpoint Proteins , Quality of Life , Pelvic Organ Prolapse/surgery , Pelvic Organ Prolapse/metabolism , Surgical Mesh
11.
Reprod Sci ; 30(12): 3495-3506, 2023 12.
Article in English | MEDLINE | ID: mdl-37430099

ABSTRACT

Menopause is a significant risk factor for pelvic organ prolapse (POP), suggesting that ovarian sex steroids play a major role in the etiology of the condition. POP results from failure of the uterine-cervix-vagina support structures, including the uterosacral ligament (USL). We previously identified consistent degenerative USL phenotypes that occur in POP and used their characteristics to develop a standardized POP Histologic Quantification System (POP-HQ). In this study, POP and matched control USL tissue was first segregated into the unique POP-HQ phenotypes, and specimens were then compared for estrogen receptor (ER) alpha (ERα), ERbeta (ERß), the G-protein estrogen receptor (GPER), and androgen receptor (AR) content via immunohistochemical staining. ER and AR expression levels in the control USL tissues were indistinguishable from those observed in the POP-A phenotype, and partially overlapped with those of the POP-I phenotype. However, control-USL steroid receptor expression was statistically distinct from the POP-V phenotype. This difference was driven mainly by the increased expression of GPER and AR in smooth muscle, connective tissue, and endothelial cells, and increased expression of ERα in connective tissue. These findings support a multifactorial etiology for POP involving steroid signaling that contributes to altered smooth muscle, vasculature, and connective tissue content in the USL. Furthermore, these data support the concept that there are consistent and distinct degenerative processes that lead to POP and suggest that personalized approaches are needed that target specific cell and tissues in the pelvic floor to treat or prevent this complex condition.


Subject(s)
Pelvic Organ Prolapse , Receptors, Estrogen , Female , Humans , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Receptors, Androgen/metabolism , Endothelial Cells/metabolism , Ligaments/metabolism , Ligaments/pathology , Pelvic Organ Prolapse/genetics , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/pathology , Estrogens/metabolism
12.
Connect Tissue Res ; 64(4): 376-388, 2023 07.
Article in English | MEDLINE | ID: mdl-37092609

ABSTRACT

The widespread prevalence of Pelvic Organ Prolapse (POP) and the paucity of ongoing treatments prompted us to develop a unique rat model combining ovariectomy and simulated vaginal delivery. We hypothesized that the tissue changes caused by low hormone levels and mechanical stretch could complement each other. Thus, the combined model can potentially mimic the collagen metabolism of vaginal wall tissue as well as mechanical stretch properties to complement disease progression in POP. Ovariectomy with sequential simulated vaginal delivery was performed on rats in the modeling group. Sham surgeries were performed as control. At 2, 4, and 12 weeks after modeling, the vaginal tissues of rats were evaluated by Masson's trichrome staining, Picro-Sirius red staining, immunohistochemistry, western blotting, and uniaxial tensile tests. Compared to the control group, the vaginal tissues of the model rats showed an atrophic epithelial layer and loose collagen fibers. The smooth muscle fibers were ruptured, smaller in diameter, and disorganized. The ratio of collagen type I/III significantly increased, but the contents of both Collagen I and III decreased. The expression of metalloproteinases 2 and 9 in the tissues increased, and the expression of tissue inhibitors of metalloproteinases 1 and 2 decreased. The tangent modulus of the tissues was significantly increased in the model rats. We verified a novel method to establish a pelvic organ prolapse model in rats. This approach combined the advantages of low hormone levels and mechanical stretch effects.


Subject(s)
Pelvic Organ Prolapse , Female , Humans , Rats , Animals , Pelvic Organ Prolapse/metabolism , Collagen Type I/metabolism , Collagen Type III/metabolism , Ovariectomy , Hormones
13.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047060

ABSTRACT

Pelvic organ prolapse (POP) represents a major health care burden in women, but its underlying pathophysiological mechanisms have not been elucidated. We first used a case-control design to perform an exome chip study in 526 women with POP and 960 control women to identify single nucleotide variants (SNVs) associated with the disease. We then integrated the functional interactions between the POP candidate proteins derived from the exome chip study and other POP candidate molecules into a molecular landscape. We found significant associations between POP and SNVs in 54 genes. The proteins encoded by 26 of these genes fit into the molecular landscape, together with 43 other POP candidate molecules. The POP landscape is located in and around epithelial cells and fibroblasts of the urogenital tract and harbors four interacting biological processes-epithelial-mesenchymal transition, immune response, modulation of the extracellular matrix, and fibroblast function-that are regulated by sex hormones and TGFB1. Our findings were corroborated by enrichment analyses of differential gene expression data from an independent POP cohort. Lastly, based on the landscape and using vaginal fibroblasts from women with POP, we predicted and showed that metformin alters gene expression in these fibroblasts in a beneficial direction. In conclusion, our integrated molecular landscape of POP provides insights into the biological processes underlying the disease and clues towards novel treatments.


Subject(s)
Pelvic Organ Prolapse , Female , Humans , Pelvic Organ Prolapse/genetics , Pelvic Organ Prolapse/metabolism , Vagina/metabolism , Causality
14.
Front Immunol ; 14: 1084516, 2023.
Article in English | MEDLINE | ID: mdl-36891295

ABSTRACT

Introduction: In the pathology of pelvic organ prolapse (POP), little is known about the contributing role of pelvic microenvironment. Also, the age-related differences in pelvic microenvironment of POP patients is always ignored. In the present study, we investigated the age-related differences in pelvic microenvironment between Young POP patients and Old POP patients, and the novel cell types and critical regulators which contributes to the age-related differences. Methods: Single-cell transcriptomic analyses were used to detect the changes in cell composition and gene expression from the pelvic microenvironment of control group (<60 years), Young POP group (<60 years) and Old POP group (>60 years). Then, immunohistochemistry and immunofluorescence were used to verify the novel cell types and critical regulators in the pelvic microenvironment. Furthermore, histopathological alteration and mechanical property alteration in POP with different ages were revealed by vaginal tissue histology and biomechanical testing. Results: The up-regulated biological process in Old women with POP is mainly related to chronic inflammation, while the up-regulated biological process in Young women with POP is mainly related to extracellular matrix metabolism. Meantime, CSF3+ endothelial cells and FOLR2+ macrophages were found to play a central role in inducing pelvic chronic inflammation. Furthermore, the collagen fiber and mechanical property of POP patients decreased with aging. Conclusions: Taken together, this work provides a valuable resource for deciphering the aging-related immune cell types and the critical regulators in pelvic microenvironment. With better understanding of normal and abnormal events in this pelvic microenvironment, we provided rationales of personalized medicine for POP patients with different ages.


Subject(s)
Folate Receptor 2 , Pelvic Organ Prolapse , Humans , Female , Aged , Endothelial Cells/metabolism , Single-Cell Gene Expression Analysis , Pelvic Organ Prolapse/genetics , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/pathology , Aging/genetics , Inflammation
15.
Chin Med J (Engl) ; 136(5): 578-587, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36914936

ABSTRACT

BACKGROUND: Extracellular matrix (ECM) remodeling is the most important pathomechanism of pelvic organ prolapse (POP). Fibroblasts are the key to ECM regulation. The passaging capacity of human vaginal wall fibroblasts (hVWFs) is limited in vitro . Here, we aimed to immortalize hVWFs through the introduction of human telomerase reverse transcriptase (hTERT). METHODS: Primary cells were derived from the vaginal wall tissue of patients with POP. Cellular senescence was detected via senescence-associated ß-galactosidase staining. We employed a lentiviral transfection vector to stably express hTERT in hVWFs at passage 3, generating immortalized hVWFs (i-hVWFs). We then assessed cellular proliferation via the CCK-8 and EdU assays as well as cellular migration via wound healing assays. G-banded chromosome karyotypic analysis was performed to evaluate chromosomal karyotype stability. Finally, cellular tumorigenesis capacity was assessed in nude mice. A two-tailed Student's t test was used to compare differences between the two groups. RESULTS: Our results showed that senescence of primary hVWFs significantly increased from passage seven. From passage 11, hVWFs showed a significantly higher senescence percentage than i-hVWFs. During the continuous passage, i-hVWFs presented stability in proliferation, migration capacity, expression of ECM regulation-related genes, and chromosome karyotype. In vivo tumorigenesis was absent in i-hVWFs. CONCLUSIONS: The senescence of hVWFs significantly increased from the seventh passage, and we successfully used hTERT to immortalize hVWFs derived from patients with POP. Studies on POP that require a long-lived hVWF line will benefit from our technique.


Subject(s)
Pelvic Organ Prolapse , Telomerase , Animals , Mice , Female , Humans , Telomerase/genetics , Gene Expression , Mice, Nude , Cell Transformation, Neoplastic/metabolism , Fibroblasts/metabolism , Pelvic Organ Prolapse/metabolism
16.
Acta Biomater ; 152: 335-344, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36055614

ABSTRACT

Collagen is the predominant structural protein within connective tissues. Pelvic organ prolapse (POP) is characterized by weakening of the pelvic floor connective tissues and loss of support for pelvic organs. In this study, we examined the multiscale structure, molecular composition and biomechanics of native collagen fibrils in connective tissues of the posterior vaginal fornix collected from healthy women and POP patients, and established the correlation of these properties with clinical POP quantification (POP-Q) scores. The collagen characteristics, including collagen amount, ratio of Collagen I and Collagen III, collagen fibril d-period, alignment and stiffness, were found to change progressively with the increase of the clinical measurement of Point C, a measure of uterine descent and apical prolapse. The results imply that a severe prolapse is associated with stiffer collagen fibrils, reduced collagen d-period, increased fibril alignment and imbalanced collagen synthesis, degradation and deposition. Additionally, prolapse progression appears to be synchronized with deterioration of the collagen matrix, suggesting that a POP-Q score obtained via a non-invasive clinical test can be potentially used to quantitatively assess collagen abnormality of a patient's local tissue. STATEMENT OF SIGNIFICANCE: Abnormal collagen metabolism and deposition are known to associate with connective tissue disorders, such as pelvic organ prolapse. Quantitative correlation of the biochemical and biophysical characteristics of collagen in a prolapse patient's tissue with the clinical diagnostic measurements is unexplored and unestablished. This study fills the knowledge gap between clinical prolapse quantification and the individual's cellular and molecular disorders leading to connective tissue failure, thus, provides the basis for clinicians to employ personalized treatment that can best manage the patient's condition and to alert pre-symptomatic patients for early management to avoid unwanted surgery.


Subject(s)
Pelvic Organ Prolapse , Biomechanical Phenomena , Collagen/chemistry , Connective Tissue , Female , Humans , Pelvic Organ Prolapse/metabolism , Vagina/metabolism
17.
Acta Biomater ; 148: 323-335, 2022 08.
Article in English | MEDLINE | ID: mdl-35671876

ABSTRACT

Polypropylene meshes used in pelvic organ prolapse (POP) repair are hampered by complications. Most POP meshes are highly unstable after tensioning ex vivo, as evidenced by marked deformations (pore collapse and wrinkling) that result in altered structural properties and material burden. By intentionally introducing collapsed pores and wrinkles into a mesh that normally has open pores and remains relatively flat after implantation, we reproduce mesh complications in vivo. To do this, meshes were implanted onto the vagina of rhesus macaques in nondeformed (flat) vs deformed (pore collapse +/- wrinkles) configurations and placed on tension. Twelve weeks later, animals with deformed meshes had two complications, (1) mesh exposure through the vaginal epithelium, and (2) myofibroblast proliferation with fibrosis - a mechanism of pain. The overarching response to deformed mesh was vaginal thinning associated with accelerated apoptosis, reduced collagen content, increased proteolysis, deterioration of mechanical integrity, and loss of contractile function consistent with stress shielding - a precursor to mesh exposure. Regional differences were observed, however, with some areas demonstrating myofibroblast proliferation and matrix deposition. Variable mechanical cues imposed by deformed meshes likely induce these two disparate responses. Utilizing meshes associated with uniform stresses on the vagina by remaining flat with open pores after tensioning is critical to improving outcomes. STATEMENT OF SIGNIFICANCE: Pain and exposure are the two most reported complications associated with the use of polypropylene mesh in urogynecologic procedures. Most meshes have unstable geometries as evidenced by pore collapse and wrinkling after tensioning ex vivo, recapitulating what is observed in meshes excised from women with complications in vivo. We demonstrate that collapsed pores and wrinkling result in two distinct responses (1) mesh exposure associated with tissue degradation and atrophy and (2) myofibroblast proliferation and matrix deposition consistent with fibrosis, a tissue response associated with pain. In conclusion, mesh deformation leads to areas of tissue degradation and myofibroblast proliferation, the likely mechanisms of mesh exposure and pain, respectively. These data corroborate that mesh implantation in a flat configuration with open pores is a critical factor for reducing complications in mesh-augmented surgeries.


Subject(s)
Pelvic Organ Prolapse , Polypropylenes , Animals , Female , Fibrosis , Humans , Macaca mulatta , Pain , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/surgery , Polypropylenes/adverse effects , Polypropylenes/chemistry , Surgical Mesh/adverse effects , Vagina/metabolism , Vagina/surgery
18.
Genes (Basel) ; 13(5)2022 05 06.
Article in English | MEDLINE | ID: mdl-35627214

ABSTRACT

Background: The relationship between pelvic organ prolapse (POP), an aging-related disease, and the senescence-related protein mitofusin 2 (Mfn2) has rarely been studied. The aim of the present study was to explore the therapeutic effects of the downregulation of Mfn2 expression by stem cells on POP through animal experiments. Methods: First, a rat POP model was constructed by ovariectomy and traction. The rats in the non-pelvic organ prolapse (NPOP) and POP groups were divided into four groups for negative controls (N1−N4, N1: NPOP-normal saline; N2: NPOP-untransfected stem cells; N3: NPOP-short hairpin negative control (NPOP-sh-NC); N4: NPOP-short hairpin-Mfn2 (NPOP-sh-Mfn2)), and four groups for prolapse (P1−P4, P1: POP-normal saline; P2: POP-untransfected stem cells; P3: POP-sh-NC; P4: POP-sh-Mfn2), respectively. Stem cells were then cultured and isolated. The expression of Mfn2 was inhibited by lentivirus transfection, and the stem cells were injected into the uterosacral ligament of the rats in each group. The expression levels of Mfn2 and procollagen 1A1/1A2/3A1 in the uterosacral ligaments of the rats were observed at 0, 7, 14, and 21 days after injection. Results: Compared to the rats in the NPOP group, the POP rats had significant prolapse. The Mfn2 expression in the uterosacral ligaments of the POP rats was significantly increased (p < 0.05, all), and the expression of procollagen 1A1/1A2/3A1 was significantly decreased (p < 0.001, all). The POP rat model maintained the same trend after 21 days (without stem cell injection). At day 14, compared to the rats in the N1 group, the Mfn2 expression in the uterosacral ligament of the rats in the N4 group was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all). Similarly, compared to the rats in the P1 group, the Mfn2 expression in the uterosacral ligament of the rats in the P4 group was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all). Similarly, on day 21, the Mfn2 mRNA and protein expression in the uterosacral ligament of the POP and NPOP rats was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all) in the rats in the sh-Mfn2 group (N4, P4) compared to the rats in the saline group (N1, P1). Conclusions: The downregulation of Mfn2 expression by stem cells decreased the expression of Mfn2 and increased the expression of procollagen1A1/1A2/3A1 in the uterosacral ligament of the POP rats; this effect was significant 14−21 days after the injection. Thus, Mfn2 may be a new target for POP control.


Subject(s)
GTP Phosphohydrolases/metabolism , Mesenchymal Stem Cells , Mitochondrial Proteins/metabolism , Pelvic Organ Prolapse , Animals , Down-Regulation , Female , Hydrolases/genetics , Ligaments/metabolism , Mesenchymal Stem Cells/metabolism , Pelvic Organ Prolapse/genetics , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/therapy , Postmenopause , Procollagen/genetics , Procollagen/metabolism , Rats , Saline Solution/metabolism
19.
Int Urogynecol J ; 33(7): 1803-1812, 2022 07.
Article in English | MEDLINE | ID: mdl-35596801

ABSTRACT

INTRODUCTION AND HYPOTHESIS: This study was aimed at identifying the difference in collagen type-1 expression in women with and without pelvic organ prolapse (POP). METHODS: A systematic review and meta-analysis was carried out women with and without pelvic organ prolapse. This meta-analysis was conducted on research articles describing the evaluation of collagen type-1 expression between patients with and without POP. The articles were obtained from PubMed, EBSCO, and ProQuest, and were published between January 2000 and June 2021. Pooled mean difference (MD) and pooled odds ratio (OR) were calculated using fixed effect models. Review Manager (RevMan 5.4) was used to analyze the data. The main outcome measures were pooled MD and pooled OR of collagen type-1 expression in patients with and without POP. RESULTS: A total of seven case-control studies were included in the meta-analysis using the effect size of the MD and two case-control studies were included in the meta-analysis using the effect size of the OR. A total of 247 POP cases and 132 non-POP cases were identified from the studies. Our study indicated that patients with POP had a lower level of collagen type-1 expression than non-POP patients (MD = -6.77; 95% CI: -8.37, -5.17, p < 0.00001). Patients with low expression of collagen type-1 in pelvic support tissue are at a more than 3 times higher risk of suffering from pelvic organ prolapse (OR = 3.23, 95% CI: 1.52 to 6.87, p = 0.002). CONCLUSION: The results of this study showed that patients with pelvic organ prolapse have lower expression of collagen type-1 than nonpelvic organ prolapse patients.


Subject(s)
Collagen Type I , Pelvic Organ Prolapse , Collagen Type I/biosynthesis , Collagen Type I/metabolism , Female , Humans , Pelvic Organ Prolapse/metabolism
20.
Biomolecules ; 12(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-35053242

ABSTRACT

Pelvic organ prolapse (POP) is a multifactorial connective tissue disorder caused by damage to the supportive structures of the pelvic floor, leading to the descent of pelvic organs in the vagina. In women with POP, fibroblast function is disturbed or altered, which causes impaired collagen metabolism that affects the mechanical properties of the tissue. Ideal surgical repair, either native tissue repair or POP surgery using an implant, aims to create a functional pelvic floor that is load-bearing, activating fibroblasts to regulate collagen metabolism without creating fibrotic tissue. Fibroblast function plays a crucial role in the pathophysiology of POP by directly affecting the connective tissue quality. On the other hand, fibroblasts determine the success of the POP treatment, as the fibroblast-to-(myo)fibroblast transition is the key event during wound healing and tissue repair. In this review, we aim to resolve the question of "cause and result" for the fibroblasts in the development and treatment of POP. This review may contribute to preventing the development and progress of anatomical abnormalities involved in POP and to optimizing surgical outcomes.


Subject(s)
Myofibroblasts/metabolism , Pelvic Organ Prolapse/metabolism , Female , Humans , Myofibroblasts/pathology , Pelvic Floor/pathology , Pelvic Organ Prolapse/pathology , Pelvic Organ Prolapse/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...