Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 503
Filter
1.
Adv Appl Microbiol ; 127: 143-221, 2024.
Article in English | MEDLINE | ID: mdl-38763527

ABSTRACT

Almost one century after the Sir Alexander Fleming's fortuitous discovery of penicillin and the identification of the fungal producer as Penicillium notatum, later Penicillium chrysogenum (currently reidentified as Penicillium rubens), the molecular mechanisms behind the massive production of penicillin titers by industrial strains could be considered almost fully characterized. However, this filamentous fungus is not only circumscribed to penicillin, and instead, it seems to be full of surprises, thereby producing important metabolites and providing expanded biotechnological applications. This review, in addition to summarizing the classical role of P. chrysogenum as penicillin producer, highlights its ability to generate an array of additional bioactive secondary metabolites and enzymes, together with the use of this microorganism in relevant biotechnological processes, such as bioremediation, biocontrol, production of bioactive nanoparticles and compounds with pharmaceutical interest, revalorization of agricultural and food-derived wastes or the enhancement of food industrial processes and the agricultural production.


Subject(s)
Penicillins , Penicillium chrysogenum , Penicillium chrysogenum/metabolism , Penicillium chrysogenum/genetics , Penicillins/biosynthesis , Penicillins/metabolism , Biotechnology , Biodegradation, Environmental , Secondary Metabolism , Industrial Microbiology
2.
Bioresour Technol ; 395: 130354, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272147

ABSTRACT

The influence of extracellular variations on the cellular metabolism and thereby the process performance at large-scale can be evaluated using the so-called scale-down simulators. Nevertheless, the major challenge is to design an appropriate scale-down simulator, which can accurately mimic the cell lifelines that record the flow paths and experiences of cells circulating in large-scale bioreactors. To address this, a dedicated SDSA (scale-down simulator application) was purposedly developed on the basis of black box model and process reaction model established for Penicillium chrysogenum strain as well as cell lifelines or trajectories information in an industrial-scale fermentor. Guided by the SDSA, the industrial-relevant metabolic regimes for substrate availability, i.e., excess, limitation and starvation, were successfully reproduced at laboratory-scale three-compartment scale-down (SD) system. In addition, such SDSA can also display individual process dynamics in each compartment, and demonstrate how individual factors influence the entire bioprocess performance, thus serving both educational and research purposes.


Subject(s)
Bioreactors , Penicillium chrysogenum , Penicillium chrysogenum/metabolism
3.
Z Naturforsch C J Biosci ; 78(9-10): 345-352, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37354002

ABSTRACT

A systematic chemical study of the secondary metabolites of the marine fungus, Penicillium chrysogenum (No. Y20-2), led to the isolation of 21 compounds, one of which is new (compound 3). The structures of the 21 compounds were determined by conducting extensive analysis of the spectroscopic data. The pro-angiogenic activity of each compound was evaluated using a zebrafish model. The results showed that compounds 7, 9, 16, and 17 had strong and dose-dependent pro-angiogenic effects, with compound 16 demonstrating the strongest pro-angiogenic activity, compounds 6, 12, 14, and 18 showing moderate activity, and compounds 8, 13, and 19 exhibiting relatively weak activity.


Subject(s)
Penicillium chrysogenum , Penicillium , Animals , Penicillium chrysogenum/chemistry , Penicillium chrysogenum/metabolism , Zebrafish , Penicillium/chemistry , Molecular Structure
4.
Arch Microbiol ; 205(6): 240, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37195521

ABSTRACT

Recently, it has been shown that metabolites derived from endosymbiotic fungi attracted high attention, since plenty of them have promising pharmaceutical applications. The variation of metabolic pathways in fungi is considered an optimistic source for lead compounds. Among these classes are terpenoids, alkaloids, polyketides, and steroids, which have proved several pharmacological activities, including antitumor, antimicrobial, anti-inflammatory, and antiviral actions. This review concludes the major isolated compounds from different strains of Penicillium chrysogenum during the period 2013-2023, together with their reported pharmacological activities. From literature surveys, 277 compounds have been identified from P. chrysogenum, which has been isolated as an endosymbiotic fungus from different host organisms, with specific attention paid to those showing marked biological activities that could be useful in the pharmaceutical industry in the future. This review represents documentation for a valuable reference for promising pharmaceutical applications or further needed studies on P. chrysogenum.


Subject(s)
Anti-Infective Agents , Penicillium chrysogenum , Penicillium , Penicillium chrysogenum/metabolism , Fungi , Anti-Infective Agents/metabolism , Antiviral Agents/metabolism , Metabolic Networks and Pathways , Pharmaceutical Preparations/metabolism
5.
Chem Biodivers ; 20(4): e202300004, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36859575

ABSTRACT

The endophyte Nemania primolutea, inhibited the growth of Penicillium chrysogenum in the coculture system. Four new compounds, nemmolutines A-B (1-2), and penigenumin (3) from N. primolutea, penemin (4) from P. chrysogenum were isolated from the coculture. On the other hand, P. chrysogenum inhibited the Aspergillus fumigatus in the coculture. Induced metabolites (13-16) with monasone naphthoquinone scaffolds including a new one from P. chrysogenum were produced by the coculture of P. chrysogenum, and A. fumigatus. Interesting, cryptic metabolites penicichrins A-B isolated from wild P. chrysogenum induced by host Ziziphus jujuba medium were also found in induced P. chrysogenum cultured in PDB ordinary medium. So the induction of penicichrin production by supplementing with host extract occurred in the fungus P. chrysogenum not the host medium. The productions of penicichrins were the spontaneous metabolism, and the metabolites (13-16) were the culture driven. Compounds 4, 6, 8, 10, 11, 14, and 15 showed significant antifungal activities against the phytopathogen Alternaria alternata with MICS of 1-8 µg/mL, and compounds 7, 9, and 12 indicated significant antifeedant activities against silkworms with feeding deterrence indexes (FDIs) of 92 %, 66 %, and 64 %. The carboxy group in 4-(2-hydroxybutynoxy)benzoic acid derivatives, and xylabisboeins; the hydroxy group in mellein derivatives; and the quinoid in monasone naphthoquinone increased the antifungal activities.


Subject(s)
Antifungal Agents , Penicillium chrysogenum , Penicillium , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Aspergillus fumigatus/chemistry , Aspergillus fumigatus/metabolism , Penicillium/chemistry , Penicillium/metabolism , Penicillium chrysogenum/chemistry , Penicillium chrysogenum/metabolism , Ascomycota/chemistry , Ascomycota/metabolism , Culture Techniques/methods
6.
Appl Microbiol Biotechnol ; 107(2-3): 691-717, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36595038

ABSTRACT

Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.


Subject(s)
Penicillium chrysogenum , Penicillium , Penicillium chrysogenum/metabolism , Proteomics/methods , Penicillium/metabolism , Plant Extracts/metabolism , Fungal Proteins/metabolism
7.
Environ Sci Pollut Res Int ; 30(14): 39653-39665, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36598719

ABSTRACT

Degradation of grease waste remains a challenging task. Current work deals with the biotransformation of grease waste into fatty acids under submerged fermentation using Penicillium chrysogenum SNP5 through media formulation and artificial neural network (ANN). Fermentation media was formulated to ameliorate the uptake of hydrocarbon by enhancing alkane hydroxylase (AlkB) activity, extracellular release of fatty acids and inhibiting beta-oxidation of fatty acid by regulating transketolase. Further, the process parameters of fermentation were optimized through Artificial Neural Network (ANN) using three critical variables viz; inoculum size (spores/ml), pH, and incubation time (days) while media engineering was done with the optimal supplementation of various medium components such as glucose, YPD, MnSO4, tetrahydrobiopterin (THB) and phloretin. The maximum conversion of 66.5% of grease waste into fatty acid was achieved at optimum conditions: inoculums size 3.36 × 107 spores/ml, incubation time 11.5 days, pH 7.2 along with formulated media composed of 1% grease in czapek-dox medium supplemented with 55.5 mM glucose, 0.5% YPD, 16.6 mM hexadecane, 1 mM MnSO4, 1 mM THB, and 1 mM phloretin. The presence of long-chain fatty acids in purified extracts such as oleic acid and octadecanoic acid as end products has valued the evolved process as another source of alternative fuel.


Subject(s)
Penicillium chrysogenum , Penicillium chrysogenum/metabolism , Fatty Acids/metabolism , Fermentation , Biotransformation , Neural Networks, Computer , Hydrocarbons/metabolism , Glucose/metabolism
8.
Water Sci Technol ; 86(2): 292-301, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35906908

ABSTRACT

In this work a parametric study and a bench bioreactor degradation test of Direct Black 22 (DB22) by Penicillium chrysogenum was performed as a first approach to an industrial application, framed within a policy of sustainable processes development. Three ancillary carbon sources and their optimum initial concentrations were studied. These were: glucose, potato starch and potato industry wastewater. Their optimum initial concentration was 6 g/L. The use of potato starch as co-substrate showed the highest decolorization rate and COD removal. Degradation of DB22 using different immobilization supports (stainless steel sponge, loofah sponge and polyethylene strips) was studied and the results showed that the time needed for the treatment decreased from 6 to 4 d. Phytotoxicity was evaluated in the final products of the immobilized cells assays, using Lactuca sativa seeds. For all treatments phytoxicity was reduced with respect to the untreated wastewater, except for the assays using polyethylene strips. Finally, the reuse of the biomass attached to different carriers and the performance of the treatment of DB22 in a 1 L bench scale bioreactor were tested. P. chrysogenum decolorized at least four sucesives reuses. The reactor assays showed a better performance of the treatment.


Subject(s)
Penicillium chrysogenum , Water Purification , Coloring Agents/metabolism , Industrial Waste/analysis , Penicillium chrysogenum/metabolism , Polyethylenes , Starch/metabolism , Textile Industry , Textiles , Waste Disposal, Fluid/methods , Wastewater , Water Purification/methods
9.
Microb Pathog ; 169: 105632, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35714847

ABSTRACT

Fungi are a common problem in the photographic collection, so the aim of this study focused on isolating and molecular identification of fungi from old albumen prints dating to an archive of Dr. Francis and belonging to the Al-Hagar Family and dating back to 1880-1890. The isolated fungi were identified according to their morphological traits and PCR sequencing. The ability of these isolates to cause deterioration was evaluated on model samples (2 × 2 cm) of albumen silver prints. The effect of these fungi on the morphology and structure of the tested samples were examined by SEM, ATR-FTIR, and chromatic alternations. Four fungal species Aspergillus sydowii, A. flavus, Talaromyces atroroseus, and Penicillium chrysogenum were identified. All isolates were able to grow on the surface of the model Albumen silver print and were capable of causing damage to the binder and able to extend their growth to the paper fibers. A. sydowii, A. flavus, and P. chrysogenum caused hydrolysis and oxidation to the albumen prints, while no significant chemical damage to the albumen was detected for the photographic sample infected with T. atroroseus. All the inoculated samples were significantly affected in terms of color change and the high-light areas have become darker. ATR-FTIR spectra showed the degradation of the protein content in Albumen silver prints inoculated with A. sydowii, A. flavus, and P. chrysogenum.


Subject(s)
Penicillium chrysogenum , Penicillium , Albumins , Fungi , Hydrolysis , Penicillium chrysogenum/genetics , Penicillium chrysogenum/metabolism , Silver/pharmacology
10.
Microb Cell Fact ; 21(1): 50, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35366869

ABSTRACT

BACKGROUND: Reactive oxygen species (ROS) trigger different morphogenic processes in filamentous fungi and have been shown to play a role in the regulation of the biosynthesis of some secondary metabolites. Some bZIP transcription factors, such as Yap1, AtfA and AtfB, mediate resistance to oxidative stress and have a role in secondary metabolism regulation. In this work we aimed to get insight into the molecular basis of this regulation in the industrially important fungus Penicillium chrysogenum through the characterization of the role played by two effectors that mediate the oxidative stress response in development and secondary metabolism. RESULTS: In P. chrysogenum, penicillin biosynthesis and conidiation are stimulated by the addition of H2O2 to the culture medium, and this effect is mediated by the bZIP transcription factors PcYap1 and PcRsmA. Silencing of expression of both proteins by RNAi resulted in similar phenotypes, characterized by increased levels of ROS in the cell, reduced conidiation, higher sensitivity of conidia to H2O2 and a decrease in penicillin production. Both PcYap1 and PcRsmA are able to sense H2O2-generated ROS in vitro and change its conformation in response to this stimulus. PcYap1 and PcRsmA positively regulate the expression of brlA, the first gene of the conidiation central regulatory pathway. PcYap1 binds in vitro to a previously identified regulatory sequence in the promoter of the penicillin gene pcbAB: TTAGTAA, and to a TTACTAA sequence in the promoter of the brlA gene, whereas PcRsmA binds to the sequences TGAGACA and TTACGTAA (CRE motif) in the promoters of the pcbAB and penDE genes, respectively. CONCLUSIONS: bZIP transcription factors PcYap1 and PcRsmA respond to the presence of H2O2-generated ROS and regulate oxidative stress response in the cell. Both proteins mediate ROS regulation of penicillin biosynthesis and conidiation by binding to specific regulatory elements in the promoters of key genes. PcYap1 is identified as the previously proposed transcription factor PTA1 (Penicillin Transcriptional Activator 1), which binds to the regulatory sequence TTAGTAA in the pcbAB gene promoter. This is the first report of a Yap1 protein directly regulating transcription of a secondary metabolism gene. A model describing the regulatory network mediated by PcYap1 and PcRsmA is proposed.


Subject(s)
Penicillium chrysogenum , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Fungal , Hydrogen Peroxide/metabolism , Oxidative Stress , Penicillium chrysogenum/genetics , Penicillium chrysogenum/metabolism , Secondary Metabolism/genetics
11.
Adv Biol (Weinh) ; 6(6): e2101322, 2022 06.
Article in English | MEDLINE | ID: mdl-35277945

ABSTRACT

The mechanism of production of extracellular vesicles (EVs) and their molecular contents are of great interest due to their diverse roles in biological systems and are far from being completely understood. Even though cellular cargo releases mediated by EVs have been demonstrated in several cases, their role in secondary metabolite production and release remains elusive. In this study, this aspect is investigated in detail using Raman microspectroscopic imaging. Considerable evidence is provided to suggest that the release of antibiotic penicillin by the filamentous fungus Penicillium chrysogenum involves EVs. Further, the study also reveals morphological modifications of the fungal body during biogenesis, changes in cell composition at the locus of biogenesis, and major molecular contents of the released EVs. The results suggest a possible general role of EVs in the release of antibiotics from the producing organisms.


Subject(s)
Extracellular Vesicles , Penicillium chrysogenum , Extracellular Vesicles/metabolism , Penicillins , Penicillium chrysogenum/metabolism
12.
Microb Biotechnol ; 15(2): 630-647, 2022 02.
Article in English | MEDLINE | ID: mdl-35084102

ABSTRACT

Fungal antifungal proteins (AFPs) have attracted attention as novel biofungicides. Their exploitation requires safe and cost-effective producing biofactories. Previously, Penicillium chrysogenum and Penicillium digitatum produced recombinant AFPs with the use of a P. chrysogenum-based expression system that consisted of the paf gene promoter, signal peptide (SP)-pro sequence and terminator. Here, the regulatory elements of the afpA gene encoding the highly produced PeAfpA from Penicillium expansum were developed as an expression system for AFP production through the FungalBraid platform. The afpA cassette was tested to produce PeAfpA and P. digitatum PdAfpB in P. chrysogenum and P. digitatum, and its efficiency was compared to that of the paf cassette. Recombinant PeAfpA production was only achieved using the afpA cassette, being P. chrysogenum a more efficient biofactory than P. digitatum. Conversely, P. chrysogenum only produced PdAfpB under the control of the paf cassette. In P. digitatum, both expression systems allowed PdAfpB production, with the paf cassette resulting in higher protein yields. Interestingly, these results did not correlate with the performance of both promoters in a luciferase reporter system. In conclusion, AFP production is a complex outcome that depends on the regulatory sequences driving afp expression, the fungal biofactory and the AFP sequence.


Subject(s)
Penicillium chrysogenum , Penicillium , Antifungal Agents/metabolism , Fungal Proteins/metabolism , Penicillium/genetics , Penicillium/metabolism , Penicillium chrysogenum/genetics , Penicillium chrysogenum/metabolism , alpha-Fetoproteins/metabolism
13.
Biotechnol Lett ; 44(2): 179-192, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35000028

ABSTRACT

Penicillins and cephalosporins are the most important class of beta (ß) lactam antibiotics, accounting for 65% total antibiotic market. Penicillins are produced by Penicillium rubens (popularly known as P. chrysogenum) were used to synthesize the active pharmaceutical intermediate (API), 6-aminopenicillinic acid (6-APA) employed in semisynthetic antibiotic production. The wild strains produce a negligible amount of penicillin (Pen). High antibiotic titre-producing P. chrysogenum strains are necessitating for industrial Pen production to meet global demand at lower prices. Classical strain improvement (CSI) approaches such as random mutagenesis, medium engineering, and fermentation are the cornerstones for high-titer Pen production. Since, Sir Alexander Fleming Discovery of Pen, great efforts are expanded to develop at a commercial scale antibiotics producing strains. Breakthroughs in genetic engineering, heterologous expression and CRISPR/Cas9 genome editing tools opened a new window for Pen production at a commercial scale to assure health crisis. The current state of knowledge, limitations of CSI and genetic engineering approaches to Pen production are discussed in this review.


Subject(s)
Penicillins , Penicillium chrysogenum , Anti-Bacterial Agents/metabolism , Cephalosporins/metabolism , Genetic Engineering , Penicillium chrysogenum/genetics , Penicillium chrysogenum/metabolism
14.
Molecules ; 26(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34771045

ABSTRACT

The high-yielding production of pharmaceutically significant secondary metabolites in filamentous fungi is obtained by random mutagenesis; such changes may be associated with shifts in the metabolism of polyamines. We have previously shown that, in the Acremonium chrysogenum cephalosporin C high-yielding strain (HY), the content of endogenous polyamines increased by four- to five-fold. Other studies have shown that the addition of exogenous polyamines can increase the production of target secondary metabolites in highly active fungal producers, in particular, increase the biosynthesis of ß-lactams in the Penicillium chrysogenum Wis 54-1255 strain, an improved producer of penicillin G. In the current study, we demonstrate that the introduction of exogenous polyamines, such as spermidine or 1,3-diaminopropane, to A. chrysogenum wild-type (WT) and HY strains, leads to an increase in colony germination and morphological changes in a complete agar medium. The addition of 5 mM polyamines during fermentation increases the production of cephalosporin C in the A. chrysogenum HY strain by 15-20% and upregulates genes belonging to the beta-lactam biosynthetic cluster. The data obtained indicate the intersection of the metabolisms of polyamines and beta-lactams in A. chrysogenum and are important for the construction of improved producers of secondary metabolites in filamentous fungi.


Subject(s)
Cephalosporins/biosynthesis , Gene Expression Regulation, Fungal/drug effects , Penicillium chrysogenum/genetics , Penicillium chrysogenum/metabolism , Polyamines/pharmacology , beta-Lactams/metabolism , Polyamines/metabolism , Secondary Metabolism/drug effects
15.
ScientificWorldJournal ; 2021: 6641533, 2021.
Article in English | MEDLINE | ID: mdl-34054359

ABSTRACT

Crude oil spills as a result of natural disasters or extraction and transportation operations are common nowadays. Oil spills have adverse effects on both aquatic and terrestrial ecosystems and pose a threat to human health. This study have been concerned with studying the capability of six fungal species (Curvularia brachyspora, Penicillium chrysogenum, Scopulariopsis brevicaulis, Cladosporium sphaerospermum, Alternaria alternata, and Stemphylium botryosum) and three fungal consortia (FC), FC1 (P. chrysogenum and C. brachyspora), FC2 (S. brevicaulis and S. botryosum), and FC3 (S. brevicaulis, S. botryosum, and C. sphaerospermum), to remediate petroleum hydrocarbons (PHs). Qualitative and quantitative changes in polyaromatic hydrocarbons (PAHs) and saturated hydrocarbons (SH) mixtures and the patterns of PHs degradation have been examined using HPLC and GC. Studying the GC chromatogram of C. sphaerospermum revealed severe degradation of SHs exhibited by this species, and the normal-paraffin and isoparaffin degradation percentage have been valued 97.19% and 98.88%, respectively. A. alternata has shown the highest significant (at P ˂ 0.05) PAH degradation percent reaching 72.07%; followed by P. chrysogenum, 59.51%. HPLC data have revealed that high-molecular-weight PAH percent/total PAHs decreased significantly from 98.94% in control samples to 68.78% in samples treated with A. alternata. FC1 and FC2 consortia have exhibited the highest significant PH deterioration abilities than did the individual isolates, indicating that these fungal consortia exhibited positive synergistic effects. The study supports the critical idea of the potential PAH and SH biodegradation as a more ecologically acceptable alternative to their chemical degradation.


Subject(s)
Alternaria/metabolism , Ascomycota/metabolism , Biodegradation, Environmental , Cladosporium/metabolism , Curvularia/metabolism , Penicillium chrysogenum/metabolism , Petroleum/metabolism , Scopulariopsis/metabolism , Chromatography, Gas , Chromatography, High Pressure Liquid , Hydrocarbons/metabolism , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons/metabolism
16.
Methods Mol Biol ; 2296: 195-207, 2021.
Article in English | MEDLINE | ID: mdl-33977449

ABSTRACT

Penicillium chrysogenum, recently re-identified as Penicillium rubens, is the microorganism used for the industrial production of penicillin. This filamentous fungus (mold) probably represents the best example of adaptation of a microorganism to industrial production conditions and therefore, it can be considered as a model organism for the study of primary and secondary metabolism under a highly stressful environment. In this regard, biosynthesis and production of benzylpenicillin can be used as an interesting phenotypic trait for those studies. In this chapter, we describe P. chrysogenum culture procedures for the production of benzylpenicillin and the process of antibiotic quantitation either by bioassay or by high-performance liquid chromatography (HPLC).


Subject(s)
Fermentation/physiology , Penicillin G/chemistry , Penicillin G/metabolism , Penicillium chrysogenum/metabolism , Penicillium chrysogenum/physiology , Biological Assay/methods , Chromatography, High Pressure Liquid/methods , Secondary Metabolism/physiology
17.
J Gen Appl Microbiol ; 66(6): 323-329, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33041267

ABSTRACT

The tyrosinase of Penicillium chrysogenum strain AUMC 14100 Accession No. MN219732 was purified to homogeneity and chemically modified by N-ethylmaleimide (NEM) and 5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl chloride, DC). The inactivation of the purified enzyme obeyed pseudo-first-order reaction kinetics in the presence of NEM and DC (1-5 mM). The rate constants of the enzyme inactivation by NEM and DC were calculated to be 0.083 mol/min and 0.0013 mol/min, respectively. The recovery of enzyme activity by the protective effect of substrate indicates a non-specific modification of the active center. The order of tyrosinase inactivation kinetics and the substrate protection revealed the essentiality of sulfhydryl and lysyl residues in the enzyme active site and its role in the enzyme catalysis. The immobilized tyrosinase on alginate showed a gradual increase in residual activity over the immobilization time until the fourth hour. The desorptivity of tyrosinase was gradually raised with higher sodium dodecyl sulfate (SDS) concentrations. The immobilized enzyme retained about 70% of its original activity after 8 repeated cycles. Thus, immobilized tyrosinase of Penicillium chrysogenum removed 75% of phenol after 8 cycles and thus seems likely to be a good candidate for phenol removal in aqueous solution.


Subject(s)
Biodegradation, Environmental , Monophenol Monooxygenase/metabolism , Penicillium chrysogenum/metabolism , Phenol/metabolism , Catalytic Domain/physiology , Monophenol Monooxygenase/genetics , Penicillium chrysogenum/enzymology , Penicillium chrysogenum/genetics
18.
J Appl Microbiol ; 131(2): 743-755, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33251646

ABSTRACT

AIMS: This paper aims to quantify the growth and organic acid production of Aspergillus niger, Penicillium chrysogenum and Penicillium simplicissimum when these fungi are exposed to varying levels of lithium (Li) and cobalt (Co). The study also tests whether pre-exposing the fungi to these metals enables the fungi to develop tolerance to Li or Co. METHODS AND RESULTS: When cultures of A. niger, P. chrysogenum or P. simplicissimum were exposed to 250 mg l-1 of Li or Co, biomass production and excretion of organic acids were significantly inhibited after 5 days of growth compared to cultures grown in the absence of these metals. Pre-exposing cultures of A. niger to 250 mg l-1 of Li or Co for 20 days significantly increased biomass production when the fungus was subsequently sub-cultured into 250 or 500 mg l-1 of Li or Co. However, pre-exposure of P. chrysogenum or P. simplicissimum to 250 mg l-1 of Li or Co for 20 days did not increase biomass production. CONCLUSIONS: Aspergillus niger, but not the Penicillium species, developed tolerance to Li and to Co during the 20-day pre-exposure period. Therefore, processes that utilize fungal bioleaching with A. niger to mobilize and recover valuable metals such as Li or Co should consider a pre-exposure step for fungi to improve their tolerance to metal toxicity. SIGNIFICANCE AND IMPACT OF THE STUDY: Fungi may have the ability to extract valuable metals such as Li and Co from spent rechargeable batteries. However, the toxicity of the extracted metals can inhibit fungal growth and organic acid production. Pre-exposure to metals may alleviate toxicity for some fungal species. This knowledge can be used to improve the design of bioleaching protocols, increasing the potential for fungal bioleaching to become an economical and environmentally friendly method of recovering Li and Co from spent batteries.


Subject(s)
Cobalt/toxicity , Fungi/drug effects , Lithium/toxicity , Acids , Aspergillus niger/drug effects , Aspergillus niger/growth & development , Aspergillus niger/metabolism , Biomass , Electric Power Supplies , Ions , Organic Chemicals/metabolism , Penicillium/drug effects , Penicillium/growth & development , Penicillium/metabolism , Penicillium chrysogenum/drug effects , Penicillium chrysogenum/growth & development , Penicillium chrysogenum/metabolism
19.
Mar Drugs ; 18(11)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233849

ABSTRACT

One new meroterpenoid-type alkaloid, oxalicine C (1), and two new erythritol derivatives, penicierythritols A (6) and B (7), together with four known meroterpenoids (2-5), were isolated from the marine algal-derived endophytic fungus Penicillium chrysogenum XNM-12. Their planar structures were determined by means of spectroscopic analyses, including UV, 1D and 2D NMR, and HRESIMS spectra. Their stereochemical configurations were established by comparing the experimental and calculated electronic circular dichroism (ECD) spectra for compound 1, as well as by comparison of the optical rotations with literature data for compounds 6 and 7. Notably, oxalicine C (1) represents the first example of an oxalicine alkaloid with a cleaved α-pyrone ring, whereas penicierythritols A (6) and B (7) are the first reported from the Penicillium species. The antimicrobial activities of compounds 1-7 were evaluated. Compounds 1 and 6 exhibited moderate antibacterial effects against the plant pathogen Ralstonia solanacearum with minimum inhibitory concentration (MIC) values of 8 and 4 µg/mL, respectively. Compound 6 also possesses moderate antifungal properties against the plant pathogen Alternaria alternata with a MIC value of 8 µg/mL.


Subject(s)
Alternaria/drug effects , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Erythritol/pharmacology , Penicillium chrysogenum/metabolism , Ralstonia solanacearum/drug effects , Stramenopiles/microbiology , Terpenes/pharmacology , Alternaria/growth & development , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/isolation & purification , Erythritol/analogs & derivatives , Erythritol/isolation & purification , Microbial Sensitivity Tests , Molecular Structure , Ralstonia solanacearum/growth & development , Secondary Metabolism , Structure-Activity Relationship , Terpenes/isolation & purification
20.
J Nat Prod ; 83(11): 3223-3229, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33074672

ABSTRACT

Raman microspectroscopy is a minimally invasive technique that can identify molecules without labeling. In this study, we demonstrate the detection of penicillin G inside Penicillium chrysogenum KF425 fungal cells. Raman spectra acquired from the fungal cells had highly overlapped spectroscopic signatures and hence were analyzed with multivariate curve resolution by alternating least-squares (MCR-ALS) to extract the spectra of individual molecular constituents. In addition to detecting spatial distribution of multiple constituents such as proteins and lipids inside the fungal body, we could also observe the subcellular localization of penicillin G. This methodology has the potential to be employed in screening the production of bioactive compounds by microorganisms.


Subject(s)
Penicillin G/metabolism , Penicillium chrysogenum/metabolism , Spectrum Analysis, Raman/methods , Chromatography, High Pressure Liquid/methods , Fermentation , Least-Squares Analysis , Multivariate Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...