Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Chin J Nat Med ; 22(2): 137-145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38342566

ABSTRACT

Excessive oxidative stress impairs cartilage matrix metabolism balance, significantly contributing to osteoarthritis (OA) development. Celastrol (CSL), a drug derived from Tripterygium wilfordii, has recognized applications in the treatment of cancer and immune system disorders, yet its antioxidative stress mechanisms in OA remain underexplored. This study aimed to substantiate CSL's chondroprotective effects and unravel its underlying mechanisms. We investigated CSL's impact on chondrocytes under both normal and inflammatory conditions. In vitro, CSL mitigated interleukin (IL)-1ß-induced activation of proteinases and promoted cartilage extracellular matrix (ECM) synthesis. In vivo, intra-articular injection of CSL ameliorated cartilage degeneration and mitigated subchondral bone lesions in OA mice. Mechanistically, it was found that inhibiting nuclear factor erythroid 2-related factor 2 (NRF2) abrogated CSL-mediated antioxidative functions and exacerbated the progression of OA. This study is the first to elucidate the role of CSL in the treatment of OA through the activation of NRF2, offering a novel therapeutic avenue for arthritis therapy.


Subject(s)
NF-E2-Related Factor 2 , Osteoarthritis , Mice , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/metabolism , Chondrocytes , Interleukin-1beta
2.
Plant J ; 118(3): 731-752, 2024 May.
Article in English | MEDLINE | ID: mdl-38226777

ABSTRACT

Prunella vulgaris is one of the bestselling and widely used medicinal herbs. It is recorded as an ace medicine for cleansing and protecting the liver in Chinese Pharmacopoeia and has been used as the main constitutions of many herbal tea formulas in China for centuries. It is also a traditional folk medicine in Europe and other countries of Asia. Pentacyclic triterpenoids are a major class of bioactive compounds produced in P. vulgaris. However, their biosynthetic mechanism remains to be elucidated. Here, we report a chromosome-level reference genome of P. vulgaris using an approach combining Illumina, ONT, and Hi-C technologies. It is 671.95 Mb in size with a scaffold N50 of 49.10 Mb and a complete BUSCO of 98.45%. About 98.31% of the sequence was anchored into 14 pseudochromosomes. Comparative genome analysis revealed a recent WGD in P. vulgaris. Genome-wide analysis identified 35 932 protein-coding genes (PCGs), of which 59 encode enzymes involved in 2,3-oxidosqualene biosynthesis. In addition, 10 PvOSC, 358 PvCYP, and 177 PvUGT genes were identified, of which five PvOSCs, 25 PvCYPs, and 9 PvUGTs were predicted to be involved in the biosynthesis of pentacyclic triterpenoids. Biochemical activity assay of PvOSC2, PvOSC4, and PvOSC6 recombinant proteins showed that they were mixed amyrin synthase (MAS), lupeol synthase (LUS), and ß-amyrin synthase (BAS), respectively. The results provide a solid foundation for further elucidating the biosynthetic mechanism of pentacyclic triterpenoids in P. vulgaris.


Subject(s)
Chromosomes, Plant , Genome, Plant , Pentacyclic Triterpenes , Prunella , Prunella/genetics , Prunella/metabolism , Pentacyclic Triterpenes/metabolism , Genome, Plant/genetics , Chromosomes, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Triterpenes/metabolism
3.
Toxicol In Vitro ; 95: 105756, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38061603

ABSTRACT

Betulinic acid (BA), a natural pentacyclic triterpene, was extracted from the white birch tree, Triphyophyllum peltatum and the jujube tree. In a variety of human cancer cell lines, this substance displays anticancer properties. In this study, we examined how BA works to inhibit human laryngeal cancer growth. We discovered that BA minimally exhibited cytotoxicity in normal cells (human normal cell line GES-1), while remarkably inhibiting viability of AMC-HN-8, TU212, HEp-2 and M4e cells in a concentration-dependent manner. In AMC-HN-8 cancer cells, BA induced apoptosis, activated caspase-3/9/PARP, significantly reduced mitochondrial membrane potential (MMP), increased the expression of cytochrome C in the cytoplasm, transported Bax to the mitochondria, increased the production of reactive oxygen species (ROS), and the ROS scavenger N-acetylcysteine can reduce apoptosis. All data showed that BA triggered apoptosis via the mitochondrial pathway, in which ROS production was likely involved. The findings support the development of BA as a viable drug for the treatment of human laryngeal carcinoma.


Subject(s)
Carcinoma , Laryngeal Neoplasms , Triterpenes , Humans , Reactive Oxygen Species/metabolism , Pentacyclic Triterpenes/metabolism , Betulinic Acid , Laryngeal Neoplasms/drug therapy , Cell Line, Tumor , Triterpenes/pharmacology , Apoptosis , Mitochondria/metabolism , Cell Proliferation , Carcinoma/drug therapy , Carcinoma/metabolism
4.
Open Vet J ; 13(10): 1326-1333, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38027402

ABSTRACT

Background: Hypoxia ischemia leads to abnormal behavior and growth. Prenatal hypoxia also decreases brain adaptive potential, which can cause fatal effects such as cell death. Asiatic acid (AA) in Centella asiatica is a neuroprotector through antioxidant and anti-inflammatory activities. Aim: This study aimed to analyze the effect of AA as a neuroprotector against hypoxia during intrauterine development on locomotor activity, head width, and brain-derived neurotrophic factor (BDNF) expression. Methods: The true experimental laboratory research used a posttest control-only design. Zebrafish embryos (Danio rerio) aged 0-2 dpf (days postfertilization) were exposed to hypoxia with oxygen levels reaching 1.5 mg/l. Then, AA was administered at successive concentrations, namely, 0.36, 0.72, and 1.45 µg/ml, at 2 hpf (hours postfertilization), 3, 6, and 9 dpf. Head width, velocity activity, and BDNF expression were observed. Results: Intrauterine hypoxia significantly decreased head width, velocity rate, and BDNF expression (<0.001). Administration of AA at all concentrations and age 9 dpf to zebrafish larvae with intrauterine hypoxia exposure increased head width ( p < 0.0001), velocity (p < 0.05), and relative mRNA expression of BDNF (p < 0.05). Conclusion: AA is potentially neuroprotective to the brain in zebrafish larvae exposed to hypoxia during intrauterine development.


Subject(s)
Brain-Derived Neurotrophic Factor , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/metabolism , Larva , Hypoxia/veterinary
5.
Curr Drug Targets ; 24(16): 1282-1291, 2023.
Article in English | MEDLINE | ID: mdl-37957908

ABSTRACT

INTRODUCTION: Rosa webbiana (RW) Wall Ex. Royle is used in traditional medicine in Pakistan for the treatment of several diseases including jaundice. To date, only neuroprotective potential of the plant has been evaluated. OBJECTIVE: The current study was designed to isolate bioactive compound(s) and investigate its possible radical scavenging, anti-inflammatory and hepatoprotective activities. METHODS: Column chromatography was done to isolate compounds from the chloroform fraction of RW. The compound was characterized by mass spectrometry, 1H-NMR, and 2D-NMR spectroscopy. Radical scavenging activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) assays, while anti-inflammatory potential was evaluated via xylene-induced ear edema and carrageenan-induced paw edema models. For hepatoprotection, CCl4-induced model in mice was used. RESULTS: A triterpene compound (3α, 21ß-dihydroxy-olean-12-ene) was isolated from RW fruits (ARW1). The compound exhibited DPPH and H2O2 scavenging activities 61 ± 1.31% and 66 ± 0.48% respectively at 500 µg/ml. ARW1 (at 50 mg/kg) exhibited 62.9 ± 0.15% inhibition of xylene-induced ear edema and 66.6 ± 0.17% carrageenan-induced paw edema in mice. In CCl4-induced hepatotoxic mice, ARW1 significantly countered elevation in alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin (T.B), and reduction in total protein (T.P) levels. Liver histomorphological study supported the serum biochemical profile for hepatoprotection. Moreover, ARW1 significantly attenuated the toxic changes in body and liver weight induced by CCl4. CONCLUSION: The compound ARW1 exhibited anti-radical, anti-inflammatory and hepatoprotective effects. The anti-inflammatory and hepatoprotective activities may be attributed to anti-oxidant potential of the compound.


Subject(s)
Plant Extracts , Rosa , Mice , Animals , Carrageenan/adverse effects , Carrageenan/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Xylenes/adverse effects , Xylenes/metabolism , Hydrogen Peroxide/adverse effects , Hydrogen Peroxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Liver/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Edema/chemically induced , Edema/drug therapy , Edema/prevention & control , Pentacyclic Triterpenes/metabolism , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/therapeutic use
6.
Sheng Li Xue Bao ; 75(5): 682-690, 2023 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-37909139

ABSTRACT

Metabolic associated fatty liver disease (MAFLD) is a liver disease with hepatocyte steatosis caused by metabolic disorders, which is closely related to obesity, diabetes, metabolic dysfunction, and other factors. Its pathological process changes from simple steatosis, liver inflammation to non-alcoholic steatohepatitis (NASH), and then leads to liver fibrosis, cirrhosis, and liver cancer. At present, no specific therapeutics are available for treatment of MAFLD targeting its etiology. Celastrol is the main active component of the traditional Chinese medicine Celastrus orbiculatus Thunb. In recent years, it has been found that celastrol shows important medicinal value in regulating lipid metabolism, reducing fat and weight, and protecting liver, and then ameliorates MAFLD. This article reviews the related research progress of celastrol in the prevention and treatment of MAFLD, so as to provide a reference for the comprehensive development and utilization of celastrol.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Liver/pathology , Pentacyclic Triterpenes/metabolism , Obesity
7.
Adv Healthc Mater ; 12(29): e2301325, 2023 11.
Article in English | MEDLINE | ID: mdl-37530416

ABSTRACT

Overactivated macrophages are a prominent feature of many inflammatory and autoimmune diseases, including sepsis. Attention and regulation of macrophages activity is of great significance for sepsis treatment. Herein, this study shows that folic acid-functionalized exosomes accumulate in the lung of septic mice and specifically target inflammatory macrophages. Therefore, FA-functionalized exosomes co-loaded with resveratrol (an anti-inflammatory polyphenol) and celastrol (an immunosuppressive pentacyclic triterpenoid; FA-Exo/R+C), which exhibit powerful anti-inflammatory and immunosuppressive activities against LPS-stimulated macrophages in vitro by regulating NF-κB and ERK1/2 signaling pathways, are designed. Encouraged by these positive data, the efficacy of FA-Exo/R+C is systematically investigated in an LPS-induced mouse sepsis model. FA-Exo/R+C shows striking therapeutic benefits in terms of attenuated cytokine storm, reduced acute lung injury, and increased survival of septic mice by inhibiting the inflammation and proliferation of proinflammatory M1 macrophages. Importantly, multiple administrations of FA-Exo/R+C significantly enhance and prolong the protective effect, and resist rechallenge to LPS. Collectively, the strategy of co-delivering drugs combination through functionalized exosomes offers a new avenue for sepsis treatment.


Subject(s)
Exosomes , Sepsis , Animals , Mice , Resveratrol/pharmacology , Resveratrol/therapeutic use , Exosomes/metabolism , Folic Acid/pharmacology , Lipopolysaccharides/pharmacology , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/metabolism , Pentacyclic Triterpenes/therapeutic use , Disease Models, Animal , Anti-Inflammatory Agents/therapeutic use , Sepsis/drug therapy , Sepsis/metabolism
8.
Int J Mol Sci ; 24(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37445744

ABSTRACT

Developing new agricultural bactericides is a feasible strategy for stopping the increase in the resistance of plant pathogenic bacteria. Some pentacyclic triterpene acid derivatives were elaborately designed and synthesized. In particular, compound A22 exhibited the best antimicrobial activity against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac) with EC50 values of 3.34 and 3.30 mg L-1, respectively. The antimicrobial mechanism showed that the compound A22 induced excessive production and accumulation of reactive oxygen species (ROS) in Xoo cells, leading to a decrease in superoxide dismutase and catalase enzyme activities and an increase in malondialdehyde content. A22 also produced increases in Xoo cell membrane permeability and eventual cell death. In addition, in vivo experiments showed that A22 at 200 mg L-1 exhibited protective activity against rice bacterial blight (50.44%) and citrus canker disease (84.37%). Therefore, this study provides a paradigm for the agricultural application of pentacyclic triterpene acid.


Subject(s)
Oryza , Triterpenes , Xanthomonas , Reactive Oxygen Species/metabolism , Amides/metabolism , Triterpenes/pharmacology , Triterpenes/metabolism , Xanthomonas/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Oryza/metabolism , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/metabolism , Plant Diseases/microbiology , Microbial Sensitivity Tests
9.
Biotechnol Bioeng ; 120(10): 3013-3024, 2023 10.
Article in English | MEDLINE | ID: mdl-37306471

ABSTRACT

The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica. Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl-CoA was reinforced by heterogenous expression of ackA-pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL-11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17-fold higher than the initial production of YLFL-2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica, demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.


Subject(s)
Metabolic Engineering , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Fermentation , Pentacyclic Triterpenes/metabolism , Acetates/metabolism
10.
Cell Biol Int ; 47(2): 492-501, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36317450

ABSTRACT

The tumorigenesis and progression of colorectal cancer are closely related to the tumor microenvironment, especially inflammatory response. Inhibitors of histone deacetylase (HDAC) have been reported as epigenetic regulators of the immune system to treat cancer and inflammatory diseases and our results demonstrated that Celastrol could act as a new HDAC inhibitor. Considering macrophages as important members of the tumor microenvironment, we further found that Celastrol could influence the polarization of macrophages to inhibit colorectal cancer cell growth. Specially, we used the supernatant of HCT116 and SW480 cells to induce Ana-1 cells in vitro and chose the spontaneous colorectal cancer model APCmin/+ mice as an animal model to validate in vivo. The results indicated that Celastrol could reverse the polarization of macrophages from M2 to M1 through impacting the colorectal tumor microenvironment both in vitro and in vivo. Furthermore, using bioinformatics analysis, we found that Celastrol might mechanistically polarize the macrophages through MAPK signaling pathway. In conclusion, our findings identified that Celastrol as a new HDAC inhibitor and suggested that Celastrol could modulate macrophage polarization, thus inhibiting colorectal cancer growth, which may provide some novel therapeutic strategies for colorectal cancer.


Subject(s)
Colorectal Neoplasms , Histone Deacetylase Inhibitors , Mice , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/metabolism , Macrophages/metabolism , Pentacyclic Triterpenes/metabolism , Colorectal Neoplasms/metabolism , Cell Transformation, Neoplastic/metabolism , Cell Polarity , Tumor Microenvironment
11.
Nat Prod Rep ; 40(8): 1303-1353, 2023 08 16.
Article in English | MEDLINE | ID: mdl-36454108

ABSTRACT

Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.


Subject(s)
Biological Products , Saponins , Triterpenes , Pentacyclic Triterpenes/metabolism , Biological Products/metabolism , Triterpenes/chemistry , Plants/metabolism , Saponins/chemistry
12.
J Biol Chem ; 298(11): 102569, 2022 11.
Article in English | MEDLINE | ID: mdl-36209824

ABSTRACT

The nuclear bile acid receptor, farnesoid X receptor (FXR), is an important regulator of intestinal and metabolic function. Previous studies suggest that pentacyclic triterpenes (PCTs), a class of plant-derived bioactive phytochemical, can modulate FXR activity and may therefore offer therapeutic benefits. Here, we investigated the effects of a prototypical PCT, hederagenin (HG), on FXR expression, activity, and antisecretory actions in colonic epithelial cells. T84 cells and murine enteroid-derived monolayers were employed to assess HG effects on FXR expression and activity in colonic epithelia. We measured mRNA levels by qRT-PCR and protein by ELISA and immunoblotting. Transepithelial Cl- secretion was assessed as changes in short circuit current in Ussing chambers. We determined HG treatment (5-10 µM) alone did not induce FXR activation but significantly increased expression of the receptor, both in T84 cells and murine enteroid-derived monolayers. This effect was accompanied by enhanced FXR activity, as assessed by FGF-15/19 induction in response to the synthetic, GW4064, or natural FXR agonist, chenodeoxycholic acid. Effects of HG on FXR expression and activity were mimicked by another PCT, oleanolic acid. Furthermore, we found FXR-induced downregulation of cystic fibrosis transmembrane conductance regulator Cl- channels and inhibition of transepithelial Cl- secretion were enhanced in HG-treated cells. These data demonstrate that dietary PCTs have the capacity to modulate FXR expression, activity, and antisecretory actions in colonic epithelial cells. Based on these data, we propose that plants rich in PCTs, or extracts thereof, have excellent potential for development as a new class of "FXR-targeted nutraceuticals".


Subject(s)
Chenodeoxycholic Acid , Colon , Mice , Animals , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/metabolism , Colon/metabolism , Chenodeoxycholic Acid/pharmacology , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism
13.
J Med Invest ; 69(1.2): 127-134, 2022.
Article in English | MEDLINE | ID: mdl-35466134

ABSTRACT

Two novel reagents, N-myristoylated Cbl-b inhibitory peptide (C14-Cblin) and celastrol, a quinone methide triterpene, are reported to be effective in preventing myotube atrophy. The combined effects of C14-Cblin and celastrol on rat L6 myotubes atrophy induced by 3D-clinorotation, a simulated microgravity model, was investigated in the present study. We first examined their effects on expression in atrogenes. Increase in MAFbx1/atrogin-1 and MuRF-1 by 3D-clinorotation was significantly suppressed by treatment with C14-Cblin or celastrol, but there was no additive effect of simultaneous treatment. However, celastrol significantly suppressed the upregulation of Cbl-b and HSP70 by 3D-clinorotation. Whereas 3D-clinorotation decreased the protein level of IRS-1 in L6 myotubes, C14-Cblin and celastrol inhibited the degradation of IRS-1. C14-Cblin and celastrol promoted the phosphorylation of FOXO3a even in microgravity condition. Simultaneous administration of C14-Cblin and celastrol had shown little additive effect in reversing the impairment of IGF-1 signaling by 3D-clinorotation. While 3D-clinorotation-induced marked oxidative stress in L6 myotubes, celastrol suppressed 3D-clinorotation-induced ROS production. Finally, the C14-Cblin and celastrol-treated groups were inhibited decrease in L6 myotube diameter and increased the protein content of slow-twitch MyHC cultured under 3D-clinorotation. The simultaneous treatment of C14-Cblin and celastrol additively prevented 3D-clinorotation-induced myotube atrophy than single treatment. J. Med. Invest. 69 : 127-134, February, 2022.


Subject(s)
Muscle Fibers, Skeletal , Animals , Atrophy/metabolism , Atrophy/pathology , Humans , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Pentacyclic Triterpenes/metabolism , Pentacyclic Triterpenes/pharmacology , Rats , Rotation
14.
J Sep Sci ; 45(6): 1222-1239, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35080126

ABSTRACT

Celastrol has attracted great attention owing to its anti-arthritis, antioxidant, and anticancer activities. Nevertheless, its metabolism in vivo (rats) and in vitro (rat liver microsomes and intestinal flora) has not been comprehensively characterized. In this study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry was used as a rapid and sensitive approach for studying the metabolism of celastrol in vivo and in vitro. A total of 43 metabolites were identified and characterized. These include 26 metabolites in vivo, and 28 metabolites in vitro (nine metabolites in rat liver microsomes and 24 metabolites in rat intestinal flora). Additionally, the celastrol-biotransformation capacity of the intestinal tract was confirmed to exceed that of the liver. Furthermore, the metabolic profile of celastrol is summarised. The information obtained from this study may provide a basis for understanding the pharmacological mechanisms of celastrol and will be beneficial for clinical applications.


Subject(s)
Microsomes, Liver , Animals , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Microsomes, Liver/metabolism , Pentacyclic Triterpenes/metabolism , Rats , Rats, Sprague-Dawley
15.
J Control Release ; 342: 122-133, 2022 02.
Article in English | MEDLINE | ID: mdl-34998913

ABSTRACT

Celastrol, a natural triterpene extracted from traditional Chinese medicine, shows anticancer effects on various cancer cells. However, its poor water-solubility, short plasma half-life, and high systemic toxicity impede its applications in vivo, necessitating a stable drug delivery system to overcome these critical drawbacks. We present here a block copolymer, poly(2-(N-oxide-N,N-dimethylamino)ethyl methacrylate)-block-poly(2-hydroxyethyl methacrylate) (OPDMA-HEMA), as the carrier for celastrol delivery. The amphiphilic polymer-celastrol conjugate can self-assemble into nanoparticles in aqueous solutions. The OPDMA outer shell confers the nanoparticles with improved pharmacokinetics and efficient mitochondria targeting capacity, and profoundly potentiates celastrol's induction of immunogenic cell death, which collectively contribute to the enhanced therapeutic effects of celastrol in vivo. This mitochondria-targeted polymer-celastrol conjugate may promise the applications of celastrol in cancer treatment.


Subject(s)
Polymers , Triterpenes , Mitochondria , Pentacyclic Triterpenes/metabolism , Polymers/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use
16.
Plant J ; 109(3): 555-567, 2022 02.
Article in English | MEDLINE | ID: mdl-34750899

ABSTRACT

Triterpenes are among the most diverse plant natural products, and their diversity is closely related to various triterpene skeletons catalyzed by different 2,3-oxidosqualene cyclases (OSCs). Celastrol, a friedelane-type triterpene with significant bioactivities, is specifically distributed in higher plants, such as Celastraceae species. Friedelin is an important precursor for the biosynthesis of celastrol, and it is synthesized through the cyclization of 2,3-oxidosqualene, with the highest number of rearrangements being catalyzed by friedelane-type triterpene cyclases. However, the molecular mechanisms underlying the catalysis of friedelin production by friedelane-type triterpene cyclases have not yet been fully elucidated. In this study, transcriptome data of four celastrol-producing plants from Celastraceae were used to identify a total of 21 putative OSCs. Through functional characterization, the friedelane-type triterpene cyclases were separately verified in the four plants. Analysis of the selection pressure showed that purifying selection acted on these OSCs, and the friedelane-type triterpene cyclases may undergo weaker selective restriction during evolution. Molecular docking and site-directed mutagenesis revealed that changes in some amino acids that are unique to friedelane-type triterpene cyclases may lead to variations in catalytic specificity or efficiency, thereby affecting the synthesis of friedelin. Our research explored the functional diversity of triterpene synthases from a multispecies perspective. It also provides some references for further research on the relative mechanisms of friedelin biosynthesis.


Subject(s)
Celastrus/genetics , Celastrus/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Pentacyclic Triterpenes/metabolism , Tripterygium/genetics , Tripterygium/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Plant , Genes, Plant , Plants, Medicinal/genetics , Plants, Medicinal/metabolism
17.
Free Radic Res ; 56(11-12): 699-712, 2022.
Article in English | MEDLINE | ID: mdl-36624963

ABSTRACT

Betulinic acid (BA), a pentacyclic triterpenoid found in certain plant species, has been reported to have several health benefits including antioxidant and anti-apoptotic properties. However, the mechanism by which BA confers these properties is currently unknown. Saccharomyces cerevisiae, a budding yeast with a short life cycle and conserved cellular mechanism with high homology to humans, was used as a model for determining the role of BA in aging and programmed cell death (PCD). Treatment with hydrogen peroxide (H2O2) exhibited significantly increased (30-35%) survivability of antioxidant (sod1Δ, sod2Δ, cta1Δ, ctt1Δ, and tsa1Δ) and anti-apoptotic (pep4Δ and fis1Δ) mutant strains when cells were pretreated with BA (30 µM) as demonstrated in spot and CFU (Colony forming units) assays. Measurement of intracellular oxidation level using the ROS-specific dye H2DCF-DA showed that all tested BA-pretreated mutants exhibited decreased ROS than the control when exposed to H2O2. Similarly, when mutant strains were pretreated with BA and then exposed to H2O2, there was reduced lipid peroxidation as revealed by the reduced malondialdehyde content. Furthermore, BA-pretreated mutant cells showed significantly lower apoptotic activity by decreasing DNA/nuclear fragmentation and chromatin condensation under H2O2-induced stress as determined by DAPI and acridine orange/ethidium bromide staining. In addition, BA treatment also extended the life span of antioxidant and anti-apoptotic mutants by ∼10-25% by scavenging ROS and preventing apoptotic cell death. Our overall results suggest that BA extends the chronological life span of mutant strains lacking antioxidant and anti-apoptotic genes by lowering the impact of oxidative stress, ROS levels, and apoptotic activity. These properties of BA could be further explored for its use as a valuable nutraceutical.


Subject(s)
Antioxidants , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Antioxidants/pharmacology , Antioxidants/metabolism , Longevity , Betulinic Acid , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Oxidative Stress , Apoptosis , Pentacyclic Triterpenes/metabolism
18.
Molecules ; 26(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833897

ABSTRACT

Friedelin, a pentacyclic triterpene found in the leaves of the Celastraceae species, demonstrates numerous biological activities and is a precursor of quinonemethide triterpenes, which are promising antitumoral agents. Friedelin is biosynthesized from the cyclization of 2,3-oxidosqualene, involving a series of rearrangements to form a ketone by deprotonation of the hydroxylated intermediate, without the aid of an oxidoreductase enzyme. Mutagenesis studies among oxidosqualene cyclases (OSCs) have demonstrated the influence of amino acid residues on rearrangements during substrate cyclization: loss of catalytic activity, stabilization, rearrangement control or specificity changing. In the present study, friedelin synthase from Maytenus ilicifolia (Celastraceae) was expressed heterologously in Saccharomyces cerevisiae. Site-directed mutagenesis studies were performed by replacing phenylalanine with tryptophan at position 473 (Phe473Trp), methionine with serine at position 549 (Met549Ser) and leucine with phenylalanine at position 552 (Leu552Phe). Mutation Phe473Trp led to a total loss of function; mutants Met549Ser and Leu552Phe interfered with the enzyme specificity leading to enhanced friedelin production, in addition to α-amyrin and ß-amyrin. Hence, these data showed that methionine 549 and leucine 552 are important residues for the function of this synthase.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Maytenus/enzymology , Plant Proteins/metabolism , Triterpenes/metabolism , Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/genetics , Amino Acid Substitution , Biosynthetic Pathways , Cyclization , Genes, Plant , Leucine/chemistry , Maytenus/genetics , Methionine/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/biosynthesis , Pentacyclic Triterpenes/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
19.
Bioorg Med Chem ; 52: 116494, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34800877

ABSTRACT

High mobility group box-1 protein (HMGB1) is a typical Damage-Associated Molecular Patterns (DAMPs) released in response to cellular inflammation. The pentacyclic triterpenes (PTs) are considered to be the natural inhibitors against HMGB1-related inflammation. To explore new lead compounds of PTs as anti-inflammatory agents, biotransformation of four PTs by Streptomyces olivaceus CICC 23628 was investigated in this study. As a result, thirteen unique 3,4-seco-triterpenes metabolites were isolated and twelve of them were first identified and reported. Structures of metabolites were determined based on HR-ESI-MS, 1D/2D NMR, and single-crystal X-ray diffraction. Furthermore, all compounds were subjected to the bioassay on the model of HMGB1-stimulated RAW 264.7 cells to evaluate their anti-inflammatory activity through nitric oxide (NO) inhibition activity. Compounds 3b (3,4-seco-olean-12-en-4,21α,22ß,24-tetrahydroxy-ol-3-oic acid) and 2b (3,4-seco-olean-12-en-4,21ß,22ß,24,29-pentahydroxy-ol-3-oic acid) exhibited NO inhibitory activity with IC50 values of 15.94 µM and 36.00 µM, respectively. Thus, indicating their potential as HMGB1 inhibitors and in developing potent anti-inflammatory agents. This work provides an operationally simple, efficient method for the rapid diversification of the PTs scaffold for a variety of distinctive 3,4-seco-triterpenes to facilitate the discovery of potential anti-inflammatory compounds.


Subject(s)
Anti-Inflammatory Agents/pharmacology , HMGB1 Protein/antagonists & inhibitors , Pentacyclic Triterpenes/pharmacology , Streptomyces/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Biotransformation , Cells, Cultured , Dose-Response Relationship, Drug , HMGB1 Protein/metabolism , Mice , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/metabolism , RAW 264.7 Cells , Structure-Activity Relationship
20.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681605

ABSTRACT

Glioma, particularly its most malignant form, glioblastoma multiforme (GBM), is the most common and aggressive malignant central nervous system tumor. The drawbacks of the current chemotherapy for GBM have aroused curiosity in the search for targeted therapies. Aberrantly overexpressed epidermal growth factor receptor (EGFR) in GBM results in poor prognosis, low survival rates, poor responses to therapy and recurrence, and therefore EGFR-targeted therapy stands out as a promising approach for the treatment of gliomas. In this context, a series of pentacyclic triterpene analogues were subjected to in vitro and in silico assays, which were conducted to assess their potency as EGFR-targeted anti-glioma agents. In particular, compound 10 was the most potent anti-glioma agent with an IC50 value of 5.82 µM towards U251 human glioblastoma cells. Taking into account its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), compound 10 exerts selective antitumor action towards Jurkat human leukemic T-cells. This compound also induced apoptosis and inhibited EGFR with an IC50 value of 9.43 µM compared to erlotinib (IC50 = 0.06 µM). Based on in vitro and in silico data, compound 10 stands out as a potential orally bioavailable EGFR-targeted anti-glioma agent endowed with the ability to cross the blood-brain barrier (BBB).


Subject(s)
Pentacyclic Triterpenes/chemistry , Apoptosis/drug effects , Binding Sites , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Glioma/metabolism , Glioma/pathology , Half-Life , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Molecular Docking Simulation , Pentacyclic Triterpenes/metabolism , Pentacyclic Triterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...