Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Nature ; 611(7937): 721-726, 2022 11.
Article in English | MEDLINE | ID: mdl-36108675

ABSTRACT

Small-ring cage hydrocarbons are popular bioisosteres (molecular replacements) for commonly found para-substituted benzene rings in drug design1. The utility of these cage structures derives from their superior pharmacokinetic properties compared with their parent aromatics, including improved solubility and reduced susceptibility to metabolism2,3. A prime example is the bicyclo[1.1.1]pentane motif, which is mainly synthesized by ring-opening of the interbridgehead bond of the strained hydrocarbon [1.1.1]propellane with radicals or anions4. By contrast, scaffolds mimicking meta-substituted arenes are lacking because of the challenge of synthesizing saturated isosteres that accurately reproduce substituent vectors5. Here we show that bicyclo[3.1.1]heptanes (BCHeps), which are hydrocarbons for which the bridgehead substituents map precisely onto the geometry of meta-substituted benzenes, can be conveniently accessed from [3.1.1]propellane. We found that [3.1.1]propellane can be synthesized on a multigram scale, and readily undergoes a range of radical-based transformations to generate medicinally relevant carbon- and heteroatom-substituted BCHeps, including pharmaceutical analogues. Comparison of the absorption, distribution, metabolism and excretion (ADME) properties of these analogues reveals enhanced metabolic stability relative to their parent arene-containing drugs, validating the potential of this meta-arene analogue as an sp3-rich motif in drug design. Collectively, our results show that BCHeps can be prepared on useful scales using a variety of methods, offering a new surrogate for meta-substituted benzene rings for implementation in drug discovery programmes.


Subject(s)
Bridged Bicyclo Compounds , Drug Design , Heptanes , Anions/chemistry , Benzene/chemistry , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Drug Discovery , Heptanes/chemical synthesis , Heptanes/chemistry , Pentanes/chemical synthesis , Pentanes/chemistry , Solubility
2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34244445

ABSTRACT

The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.


Subject(s)
Hydrocarbons, Aromatic/chemistry , Pentanes/chemistry , Biological Assay , Crystallography, X-Ray , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Pentanes/chemical synthesis , Stereoisomerism
3.
Nat Commun ; 12(1): 1644, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712595

ABSTRACT

Bicyclo[1.1.1]pentanes (BCPs) are important motifs in contemporary drug design as linear spacer units that improve pharmacokinetic profiles. The synthesis of BCPs featuring adjacent stereocenters is highly challenging, but desirable due to the fundamental importance of 3D chemical space in medicinal chemistry. Current methods to access these high-value chiral molecules typically involve transformations of pre-formed BCPs, and can display limitations in substrate scope. Here we describe an approach to synthesize α-chiral BCPs involving the direct, asymmetric addition of simple aldehydes to [1.1.1]propellane, the predominant BCP precursor. This is achieved by combining a photocatalyst and an organocatalyst to generate a chiral α-iminyl radical cation intermediate, which installs a stereocenter simultaneously with ring-opening of [1.1.1]propellane. The reaction proceeds under mild conditions, displays broad scope, and provides an array of α-chiral BCPs in high yield and enantioselectivity. We also present a theoretical model for stereoinduction in this mode of photoredox organocatalysis.


Subject(s)
Pentanes/chemical synthesis , Aldehydes/chemistry , Catalysis , Molecular Structure , Stereoisomerism
4.
Nature ; 580(7802): 220-226, 2020 04.
Article in English | MEDLINE | ID: mdl-32066140

ABSTRACT

Multicomponent reactions are relied on in both academic and industrial synthetic organic chemistry owing to their step- and atom-economy advantages over traditional synthetic sequences1. Recently, bicyclo[1.1.1]pentane (BCP) motifs have become valuable as pharmaceutical bioisosteres of benzene rings, and in particular 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para-phenyl ring replacements2. These structures are often generated from [1.1.1]propellane via opening of the internal C-C bond through the addition of either radicals or metal-based nucleophiles3-13. The resulting propellane-addition adducts are then transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. Although this approach has been effective so far, a multicomponent reaction that enables single-step access to complex and diverse polysubstituted drug-like BCP products would be more time efficient compared to current stepwise approaches. Here we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicyclopentanes using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. This copper-mediated reaction operates on short timescales (five minutes to one hour) across multiple (more than ten) nucleophile classes and can accommodate a diverse array of radical precursors, including those that generate alkyl, α-acyl, trifluoromethyl and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which is substantially more metabolically stable than its commercial progenitor.


Subject(s)
Chemistry Techniques, Synthetic , Copper/chemistry , Pentanes/chemistry , Pentanes/chemical synthesis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/chemical synthesis , Biological Products/chemical synthesis , Biological Products/chemistry , Biological Products/metabolism , Cyclization , Pharmaceutical Preparations/metabolism
5.
J Med Chem ; 61(23): 10573-10587, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30350999

ABSTRACT

Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM) components and results in impaired liver function. Vitamin D plays a critical role in the development of liver fibrosis as it inhibits transforming growth factor ß1 (TGFß1)-induced excessive deposition of ECM in activated hepatic stellate cells (HSCs). Here, a series of novel nonsecosteroidal vitamin D receptor (VDR) agonists with phenyl-pyrrolyl pentane skeleton was designed and synthesized. Among them, seven compounds including 15a exhibited more efficient inhibitory activity in collagen deposition and fibrotic gene expression. Histological examination results displayed that compound 15a treatment prevented the development of hepatic fibrosis that induced by carbon tetrachloride (CCl4) injections in mice. In addition, compound 15a, unlike the positive control calcipotriol and 1,25(OH)2D3, did not cause hypercalcemia that is toxic to nerve, heart, and many other organs. These findings provide novel insights into drug discoveries for hepatic fibrosis using nonsecosteroidal VDR modulators.


Subject(s)
Drug Design , Liver Cirrhosis/drug therapy , Pentanes/chemical synthesis , Pentanes/pharmacology , Pyrroles/chemistry , Receptors, Calcitriol/agonists , Animals , Cell Line , Chemistry Techniques, Synthetic , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver/physiopathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/physiopathology , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Pentanes/chemistry , Pentanes/therapeutic use , Protein Conformation , Receptors, Calcitriol/chemistry
6.
Molecules ; 23(10)2018 Oct 06.
Article in English | MEDLINE | ID: mdl-30301207

ABSTRACT

Resistance to antibiotics is an increasingly serious threat to global public health and its management translates to significant health care costs. The validation of new Gram-negative antibacterial targets as sources for potential new antibiotics remains a challenge for all the scientists working in this field. The interference with bacterial Quorum Sensing (QS) mechanisms represents a potentially interesting approach to control bacterial growth and pursue the next generation of antimicrobials. In this context, our research is focused on the discovery of novel compounds structurally related to (S)-4,5-dihydroxy-2,3-pentanedione, commonly known as (S)-DPD, a small signaling molecule able to modulate bacterial QS in both Gram-negative and Gram-positive bacteria. In this study, a practical and versatile synthesis of racemic DPD is presented. Compared to previously reported syntheses, the proposed strategy is short and robust: it requires only one purification step and avoids the use of expensive or hazardous starting materials as well as the use of specific equipment. It is therefore well suited to the synthesis of derivatives for pharmaceutical research, as demonstrated by four series of novel DPD-related compounds described herein.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Pentanes/chemical synthesis , Quorum Sensing/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/pathogenicity , Humans , Ketones , Lactones/chemistry , Lactones/pharmacology , Pentanes/chemistry , Pentanes/pharmacology , Signal Transduction/drug effects
7.
Eur J Med Chem ; 157: 1174-1191, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30193216

ABSTRACT

Modulating the vitamin D receptor (VDR) is an effective way to treat for cancer. We previously reported a potent non-secosteroidal VDR modulator (sw-22) with modest anti-tumor activity, which could be due to its undesirable physicochemical and pharmacokinetic properties. In this study, we investigated the structure-activity and structure-property relationships around the 2'-hydroxyl group of sw-22 to improve the physicochemical properties, pharmacokinetic properties and anti-tumor activity. Compounds 19a and 27b, the potent non-secosteroidal VDR modulators, were identified as the most effective molecules in inhibiting the proliferation of three cancer cell lines, particularly breast cancer cells, with a low IC50 via the distribution of cell cycle and induction of apoptosis by stimulating the expression of p21, p27 and Bax. Further investigation revealed that 19a and 27b possessed favorable rat microsomal metabolic stability (2.22 and 2.3 times, respectively, more stable than sw-22), solubility (43.9 and 50.2 times, respectively, more soluble than sw-22) and in vivo pharmacokinetic properties. In addition, 19a and 27b showed excellent in vivo anti-tumor activity without cause hypercalcemia, which is the main side effect of marketed VDR modulators. In summary, the favorable physicochemical properties, pharmacokinetic properties and anti-tumor activity of 19a and 27b highlight their potential therapeutic applications in cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Pentanes/pharmacology , Receptors, Calcitriol/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Pentanes/chemical synthesis , Pentanes/chemistry , Receptors, Calcitriol/agonists , Receptors, Calcitriol/antagonists & inhibitors , Selective Estrogen Receptor Modulators/chemical synthesis , Selective Estrogen Receptor Modulators/chemistry , Structure-Activity Relationship
8.
Macromol Rapid Commun ; 39(9): e1800043, 2018 May.
Article in English | MEDLINE | ID: mdl-29578265

ABSTRACT

The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol-1 ) building block and a carboxyl-terminated PI (9 kg mol-1 ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced. A solvent vapor annealing (SVA) process is used to promote the self-assembly of frustrated PS-b-P2VP-b-PI chains into a thin-film core-shell double gyroid (Q230 , space group: Ia3¯d) structure. As terraces are formed within PS-b-P2VP-b-PI thin films during the SVA process under a CHCl3 vapor, different plane orientations of the Q230 structure ((211), (110), (111), and (100)) are observed at the polymer-air interface depending on the film thickness.


Subject(s)
Butadienes/chemistry , Hemiterpenes/chemistry , Nanostructures/chemistry , Pentanes/chemistry , Polystyrenes/chemistry , Polyvinyls/chemistry , Butadienes/chemical synthesis , Hemiterpenes/chemical synthesis , Particle Size , Pentanes/chemical synthesis , Polymers/chemical synthesis , Polymers/chemistry , Polystyrenes/chemical synthesis , Polyvinyls/chemical synthesis
9.
J Med Chem ; 61(7): 3059-3075, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29518319

ABSTRACT

The vitamin D3 receptor (VDR), which belongs to the nuclear-receptor superfamily, is a potential molecular target for anticancer-drug discovery. In this study, a series of nonsteroidal vitamin D mimics with phenyl-pyrrolyl pentane skeletons with therapeutic potentials in cancer treatment were synthesized. Among them, 11b and 11g were identified as the most effective agents in reducing the viability of four cancer-cell lines, particularly those of breast-cancer cells, with IC50 values in the submicromolar-concentration range. In addition, 11b and 11g possessed VDR-binding affinities and displayed significant partial VDR-agonistic activities determined by dual-luciferase-reporter assays and human-leukemia-cell-line (HL-60)-differentiation assays. Furthermore, 11b and 11g inhibited tumor growth in an orthotopic breast-tumor model via inhibition of cell proliferation and induction of cell apoptosis. More importantly, 11b and 11g exhibited favorable pharmacokinetic behavior in vivo and did not increase serum calcium levels or cause any other apparent side effects. In summary, 11b and 11g act as novel VDR modulators and may be promising candidates for cancer chemotherapy.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Pentanes/chemical synthesis , Pentanes/pharmacology , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Receptors, Calcitriol/drug effects , Animals , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Biological Availability , Breast Neoplasms/drug therapy , Calcium/blood , Cell Cycle/drug effects , Drug Screening Assays, Antitumor , Female , HL-60 Cells , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Nude , Molecular Mimicry , Pentanes/pharmacokinetics , Pyrroles/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Vitamin D/pharmacology , Vitamins/pharmacology
10.
Faraday Discuss ; 202: 247-267, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28678237

ABSTRACT

Catalytic strategies for the synthesis of 1,5-pentanediol (PDO) with 69% yield from hemicellulose and the synthesis of 1,6-hexanediol (HDO) with 28% yield from cellulose are presented. Fractionation of lignocellulosic biomass (white birch wood chips) in gamma-valerolactone (GVL)/H2O generates a pure cellulose solid and a liquid stream containing hemicellulose and lignin, which is further dehydrated to furfural with 85% yield. Furfural is converted to PDO with sequential dehydration, hydration, ring-opening tautomerization, and hydrogenation reactions. Acid-catalyzed cellulose dehydration in tetrahydrofuran (THF)/H2O produces a mixture of levoglucosenone (LGO) and 5-hydroxymethylfurfural (HMF), which are converted with hydrogen to tetrahydrofuran-dimethanol (THFDM). HDO is then obtained from hydrogenolysis of THFDM. Techno-economic analysis demonstrates that this approach can produce HDO and PDO at a minimum selling price of $4090 per ton.


Subject(s)
Glycols/chemical synthesis , Lignin/chemistry , Pentanes/chemical synthesis , Biomass , Catalysis , Dehydration , Glycols/chemistry , Hydrogen-Ion Concentration , Pentanes/chemistry
11.
J Enzyme Inhib Med Chem ; 31(sup3): 140-149, 2016.
Article in English | MEDLINE | ID: mdl-27483122

ABSTRACT

Epigenetic alterations are associated with cancer and their targeting is a promising approach for treatment of this disease. Among current epigenetic drugs, histone deacetylase (HDAC) inhibitors induce changes in gene expression that can lead to cell death in tumors. Valproic acid (VPA) is a HDAC inhibitor that has antitumor activity at mM range. However, it is known that VPA is a hepatotoxic drug. Therefore, the aim of this study was to design a set of VPA derivatives adding the arylamine core of the suberoylanilide hydroxamic acid (SAHA) with different substituents at its carboxyl group. These derivatives were submitted to docking simulations to select the most promising compound. The compound 2 (N-(2-hydroxyphenyl)-2-propylpentanamide) was the best candidate to be synthesized and evaluated in vitro as an anti-cancer agent against HeLa, rhabdomyosarcoma and breast cancer cell lines. Compound 2 showed a better IC50 (µM range) than VPA (mM range) on these cancer cells. And also, 2 was particularly effective on triple negative breast cancer cells. In conclusion, 2 is an example of drugs designed in silico that show biological properties against human cancer difficult to treat as triple negative breast cancer.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Computer Simulation , Drug Design , Pentanes/pharmacology , Rhabdomyosarcoma/pathology , Valproic Acid/analogs & derivatives , Amides/chemical synthesis , Amides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Histone Deacetylases/metabolism , Humans , MCF-7 Cells , Models, Molecular , Molecular Structure , Pentanes/chemical synthesis , Pentanes/chemistry , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
12.
Angew Chem Int Ed Engl ; 54(44): 13106-9, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26480341

ABSTRACT

The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold-deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of (2) H6 -1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to (2) H6 -1, the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1. Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory.


Subject(s)
Pentanes/chemistry , Pentanes/chemical synthesis , Molecular Conformation , Stereoisomerism
13.
Bioorg Med Chem Lett ; 25(22): 5362-6, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26432035

ABSTRACT

Vitamin D receptor (VDR) is a family of nuclear receptors (NR) that regulates physiological effects such as the immune system, calcium homeostasis, and cell proliferation. We synthesized non-secosteroidal VDR ligands bearing a long alkyl chain based on the diphenylpentane skeleton. The VDR-mediated transcriptional activities of the synthesized compounds were evaluated using a reporter gene assay and HL-60 cell differentiation-inducing assay. We herein described the structure-activity relationship and effects of alkyl-chain length on VDR-mediated transcriptional activity.


Subject(s)
Pentanes/chemistry , Receptors, Calcitriol/agonists , Alkylation , Biological Assay , Cell Differentiation/drug effects , HL-60 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Pentanes/chemical synthesis , Pentanes/pharmacology , Receptors, Calcitriol/chemistry , Receptors, Calcitriol/genetics , Structure-Activity Relationship , Transcription, Genetic/drug effects
14.
Org Lett ; 16(7): 1884-7, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24628135

ABSTRACT

From a medicinal chemistry perspective, bicyclo[1.1.1]pentan-1-amine (1) has served as a unique and important moiety. Synthetically, however, this compound has received little attention, and only one scalable route to this amine has been demonstrated. Reduction of an easily available and potentially versatile intermediate, 1-azido-3-iodobicyclo[1.1.1]pentane (2), can offer both a flexible and scalable alternative to this target. Herein, we describe our scrutiny of this reportedly elusive transformation and report our ensuing success with this endeavor.


Subject(s)
Amines/chemistry , Azides/chemistry , Bridged Bicyclo Compounds/chemical synthesis , Hydrocarbons, Iodinated/chemistry , Pentanes/chemistry , Pentanes/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Molecular Structure
15.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1061-6, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23827543

ABSTRACT

A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene-block-polyisoprene-block-polystyrene (PS-b-PI-b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS-b-PI-b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, (1)H NMR, (13)C NMR, GPC and FTIR.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Butadienes/chemistry , Elastomers/chemical synthesis , Pentanes/chemistry , Polystyrenes/chemistry , Sulfhydryl Compounds/chemistry , Surface-Active Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Butadienes/chemical synthesis , Elastomers/chemistry , Elastomers/pharmacology , Escherichia coli/drug effects , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Pentanes/chemical synthesis , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Polystyrenes/chemical synthesis , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Surface-Active Agents/chemistry
16.
Dalton Trans ; 42(25): 9030-2, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23483093

ABSTRACT

The living isospecific-cis-1,4-polymerization and block-copolymerization of (E)-1,3-pentadiene with 1,3-butadiene have been achieved for the first time by using cationic half-sandwich scandium catalysts.


Subject(s)
Alkadienes/chemical synthesis , Butadienes/chemistry , Organometallic Compounds/chemistry , Pentanes/chemical synthesis , Scandium/chemistry , Alkadienes/chemistry , Catalysis , Pentanes/chemistry , Polymerization , Stereoisomerism
17.
J Am Chem Soc ; 134(45): 18853-9, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23078101

ABSTRACT

Plasmonic polymers present an interesting concept that builds on the analogy between molecular polymers and linear chains of strongly interacting metal nanoparticles. Ensemble-averaged optical properties of plasmonic polymers are strongly influenced by their structure. In the present work, we formed plasmonic polymers by using solution-based assembly of gold nanorods (NRs) end-tethered with photoactive macromolecular tethers. By using postassembly ligand photo-cross-linking, we established a method to arrest NR polymer growth after a particular self-assembly time, and in this manner, using kinetics of step-growth polymerization, we achieved control over the average degree of polymerization of plasmonic polymers. Photo-cross-linking of ligands also enabled control over the internanorod distance and resulted in the increased rigidity of NR chains. These results, along with a higher structural integrity of NR chains, can be utilized in plasmonic nanostructure engineering and facilitate advanced applications of plasmonic polymers in sensing and optoelectronics.


Subject(s)
Butadienes/chemistry , Butadienes/chemical synthesis , Pentanes/chemistry , Pentanes/chemical synthesis , Polystyrenes/chemistry , Polystyrenes/chemical synthesis , Gold/chemistry , Kinetics , Ligands , Metal Nanoparticles/chemistry , Polymerization
18.
J Am Chem Soc ; 134(33): 13562-4, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22866957

ABSTRACT

Bacteria have developed cell-to-cell communication mechanisms, termed quorum sensing (QS), that regulate bacterial gene expression in a cell population-dependent manner. Autoinducer-2 (AI-2), a class of QS signaling molecules derived from (4S)-4,5-dihydroxy-2,3-pentanedione (DPD), has been identified in both Gram-negative and Gram-positive bacteria. Despite considerable interest in the AI-2 QS system, the biomolecular communication used by distinct bacterial species still remains shrouded. Herein, we report the synthesis and evaluation of a new class of DPD analogues, C4-alkoxy-5-hydroxy-2,3-pentanediones, termed C4-alkoxy-HPDs. Remarkably, two of the analogues were more potent QS agonists than the natural ligand, DPD, in Vibrio harveyi. The findings presented extend insights into ligand-receptor recognition/signaling in the AI-2 mediated QS system.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Pentanes/chemistry , Pentanes/pharmacology , Quorum Sensing/drug effects , Vibrio/drug effects , Anti-Bacterial Agents/chemical synthesis , Drug Discovery , Humans , Pentanes/chemical synthesis , Vibrio/metabolism , Vibrio Infections/drug therapy
20.
J Med Chem ; 55(7): 3414-24, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22420884

ABSTRACT

Replacement of the central, para-substituted fluorophenyl ring in the γ-secretase inhibitor 1 (BMS-708,163) with the bicyclo[1.1.1]pentane motif led to the discovery of compound 3, an equipotent enzyme inhibitor with significant improvements in passive permeability and aqueous solubility. The modified biopharmaceutical properties of 3 translated into excellent oral absorption characteristics (~4-fold ↑ C(max) and AUC values relative to 1) in a mouse model of γ-secretase inhibition. In addition, SAR studies into other fluorophenyl replacements indicate the intrinsic advantages of the bicyclo[1.1.1]pentane moiety over conventional phenyl ring replacements with respect to achieving an optimal balance of properties (e.g., γ-secretase inhibition, aqueous solubility/permeability, in vitro metabolic stability). Overall, this work enhances the scope of the [1.1.1]-bicycle beyond that of a mere "spacer" unit and presents a compelling case for its broader application as a phenyl group replacement in scenarios where the aromatic ring count impacts physicochemical parameters and overall drug-likeness.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Bridged Bicyclo Compounds/chemical synthesis , Oxadiazoles/chemical synthesis , Pentanes/chemical synthesis , Sulfonamides/chemical synthesis , Administration, Oral , Animals , Biological Availability , Brain/metabolism , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/pharmacology , Cell Line , Dogs , Female , Humans , Mice , Microsomes, Liver/metabolism , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Pentanes/pharmacokinetics , Pentanes/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...