Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.286
Filter
1.
Food Res Int ; 191: 114735, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059967

ABSTRACT

The present study was carried out to investigate the proximate composition, fatty acid (FA) profile and volatile compounds (VC) of cooked green licuri (Syagrus coronata) - an unripe stage that is then cooked - and naturally ripe licuri almonds. The FA profiles were determined by gas chromatography (GC) and the VC composition was evaluated using headspace-solid-phase microextraction coupled with GC-MS. The cooked green licuri presented higher moisture, and lower contents of ashes, proteins and lipids than naturally ripe licuri almonds. The FA profiles of cooked green licuri and naturally ripe licuri almonds showed that saturated FAs were predominant (80%) in both samples, and the concentrations of lauric, palmitic, and oleic acids in naturally ripe licuri almonds were higher than those in cooked green licuri. Limonene was the predominant compound in naturally ripe licuri almonds. The main class of VC in the cooked green licuri were aldehydes, with 3-methyl-butanal and furfural being the main species. Alcohols, such as 3-methyl-butanol and 2-heptanol, were the main class of VC in naturally ripe licuri almonds. Among the volatile compounds, 1-hexanol and 2-nonanone contributed to the aroma of cooked green licuri almonds, whereas 2-heptanone, ethanol, and limonene contributed to the aroma of naturally ripe licuri almonds (almonds not subjected to any cooking process). In a word, cooked green licuri and naturally riped licuri almonds, despite having different proximate compositions, present similar fatty acid profile and distinct aromatic characteristics. Therefore, cooked green licuri and naturally riped licuri almonds are an alternative source of nutrient and could be investigated for the use in the food industry to enhance flavor and aroma to new products.


Subject(s)
Cooking , Fatty Acids , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Fatty Acids/analysis , Brazil , Solid Phase Microextraction , Cyclohexenes/analysis , Terpenes/analysis , Limonene/analysis , Odorants/analysis , Palmitic Acid/analysis , Oleic Acid/analysis , Aldehydes/analysis , Lauric Acids/analysis , Pentanols/analysis
2.
J Agric Food Chem ; 72(28): 15832-15840, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38957132

ABSTRACT

Prenylflavonoids are promising candidates for food additives and functional foods due to their diverse biological activities and potential health benefits. However, natural prenylflavonoids are generally present in low abundance and are limited to specific plant species. Here, we report the biosynthesis of licoflavanone from naringenin and prenol by recombinant Escherichia coli. By investigating the activities of seven different sources of prenyltransferases overexpressed in E. coli toward various flavonoid substrates, the prenyltransferase AnaPT exhibits substrate preference when naringenin serves as the prenyl acceptor. Furthermore, licoflavanone production was successfully achieved by coupling the isopentenol utilization pathway and AnaPT in recombinant E. coli. In addition, the effects of fermentation temperatures, induction temperatures, naringenin concentrations, and substrate feeding strategies were investigated on the biosynthesis of licoflavanone in recombinant E. coli. Consequently, the recombinant E. coli strain capable of improved dimethylallyl diphosphate (DMAPP) supply and suitable for prenylflavonoid biosynthesis increased licoflavanone titers to 142.1 mg/L in a shake flask and to 537.8 mg/L in a 1.3 L fermentor, which is the highest yield for any prenylflavonoids reported to date. These strategies proposed in this study provide a reference for initiating the production of high-value prenylflavonoids.


Subject(s)
Dimethylallyltranstransferase , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/genetics , Pentanols/metabolism , Metabolic Engineering , Flavonoids/metabolism , Flavonoids/biosynthesis , Hemiterpenes/metabolism , Fermentation
3.
J Chromatogr A ; 1730: 465056, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878742

ABSTRACT

Chinese bacon is highly esteemed by consumers worldwide due to its unique aroma. The composition of volatile organic compounds (VOCs) varies significantly among different types of Chinese bacon. This study analyzed the VOCs of Chinese bacon from Sichuan, Hunan, Guangxi, and Shaanxi provinces using gas chromatography-mass spectrometry (GC-MS), an electronic nose (E-nose), and gas chromatography-ion mobility spectrometry (GC-IMS). The results demonstrate that the combination of GC-MS and GC-IMS effectively distinguishes Chinese bacon from different regions. Notably, Guangxi bacon lacks a smoky aroma, which sets it apart from the other types. However, it contains many esters that play a crucial role in its flavor profile. In contrast, phenols, including guaiacol, which is typical in smoked bacon, were present in the bacon from Sichuan, Hunan, and Shaanxi but were absent in Guangxi bacon. Furthermore, Hunan bacon exhibited a higher aldehyde content than Sichuan bacon. 2-methyl-propanol and 3-methyl-butanol were identified as characteristic flavor compounds of Zhenba bacon. This study provides a theoretical foundation for understanding and identifying the flavor profiles of Chinese bacon. Using various analytical techniques to investigate the flavor compounds is essential for effectively distinguishing bacon from different regions.


Subject(s)
Electronic Nose , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Ion Mobility Spectrometry/methods , Odorants/analysis , Meat Products/analysis , China , Flavoring Agents/analysis , Flavoring Agents/chemistry , Propanols/analysis , Aldehydes/analysis , Pentanols
4.
J Microbiol Biotechnol ; 34(6): 1356-1364, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38754998

ABSTRACT

Isoamyl fatty acid esters (IAFEs) are widely used as fruity flavor compounds in the food industry. In this study, various IAFEs were synthesized from isoamyl alcohol and various fatty acids using a cutinase enzyme (Rcut) derived from Rhodococcus bacteria. Rcut was immobilized on methacrylate divinylbenzene beads and used to synthesize isoamyl acetate, butyrate, hexanoate, octanoate, and decanoate. Among them, Rcut synthesized isoamyl butyrate (IAB) most efficiently. Docking model studies showed that butyric acid was the most suitable substrate in terms of binding energy and distance from the active site serine (Ser114) γ-oxygen. Up to 250 mM of IAB was synthesized by adjusting reaction conditions such as substrate concentration, reaction temperature, and reaction time. When the enzyme reaction was performed by reusing the immobilized enzyme, the enzyme activity was maintained at least six times. These results demonstrate that the immobilized Rcut enzyme can be used in the food industry to synthesize a variety of fruity flavor compounds, including IAB.


Subject(s)
Carboxylic Ester Hydrolases , Enzymes, Immobilized , Flavoring Agents , Molecular Docking Simulation , Rhodococcus , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Rhodococcus/enzymology , Rhodococcus/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/chemistry , Esters/metabolism , Esters/chemistry , Pentanols/metabolism , Pentanols/chemistry , Fatty Acids/metabolism , Fatty Acids/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Temperature , Substrate Specificity , Butyric Acid/metabolism , Butyric Acid/chemistry , Catalytic Domain
6.
Food Res Int ; 187: 114398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763656

ABSTRACT

Nowadays, it is important to monitor the freshness of meat during storage to protect consumers' health. Volatile organic compounds (VOCs) are responsible for odour and taste of food, and they give an indication about meat quality and freshness. This study had the aim to seek and select potential new markers of meat spoilage through a semi-quantitative analysis in five types of meat (beef, raw and baked ham, pork sausage and chicken) and then to develop a new quantitative analytical method to detect and quantify potential markers on five types of meat simultaneously. Firstly, a new headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method was developed to evaluate the volatile profile of five types of meat, preserved at 4 °C for 5 days. Among the 40 compounds identified, 15 were chosen and selected as potential shelf-life markers on the basis of their presence in most of meat samples or/and for their constant increasing/decreasing trend within the sample. Afterwards, a quantitative HS-SPME-GC-MS analytical method was developed to confirm which VOCs can be considered markers of shelf-life for these meat products, stored at 4 °C for 12 days. Some of the compounds analyzed attracted attention as they can be considered markers of shelf-life for at least 4 types of meat: 1-butanol, 3-methylbutanol, 1-hexanol, 2-nonanone, nonanal, 1-octen-3-ol and linalool. In conclusion, in this study a new quantitative HS-SPME-GC-MS analytical method to quantity 15 VOCs in five types of meat was developed and it was demonstrated that some of the compounds quantified can be considered markers of shelf-life for some of the meat products analyzed.


Subject(s)
Food Storage , Gas Chromatography-Mass Spectrometry , Meat Products , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Meat Products/analysis , Animals , Swine , Odorants/analysis , Cattle , Aldehydes/analysis , Chickens , Ketones/analysis , Pentanols/analysis , Acyclic Monoterpenes/analysis , Octanols
7.
Chembiochem ; 25(12): e202400064, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38568158

ABSTRACT

Bacterial isoprenoids are necessary for many biological processes, including maintaining membrane integrity, facilitating intercellular communication, and preventing oxidative damage. All bacterial isoprenoids are biosynthesized from two five carbon structural isomers, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are cell impermeant. Herein, we demonstrate exogenous delivery of IPP and DMAPP into Bacillus subtilis by utilizing a self-immolative ester (SIE)-caging approach. We initially evaluated native B. subtilis esterase activity, which revealed a preference for short straight chain esters. We then examined the viability of the SIE-caging approach in B. subtilis and demonstrate that the released caging groups are well tolerated and the released IPP and DMAPP are bioavailable, such that isoprenoid biosynthesis can be rescued in the presence of pathway inhibitors. We further show that IPP and DMAPP are both toxic and inhibit growth of B. subtilis at the same concentration. Lastly, we establish the optimal ratio of IPP to DMAPP (5 : 1) for B. subtilis growth and find that, surprisingly, DMAPP alone is insufficient to rescue isoprenoid biosynthesis under high concentrations of fosmidomycin. These findings showcase the potential of the SIE-caging approach in B. subtilis and promise to both aid in novel isoprenoid discovery and to inform metabolic engineering efforts in bacteria.


Subject(s)
Bacillus subtilis , Hemiterpenes , Organophosphorus Compounds , Terpenes , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Hemiterpenes/metabolism , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/metabolism , Terpenes/metabolism , Terpenes/chemistry , Pentanols/metabolism , Pentanols/chemistry
8.
mSystems ; 9(4): e0122523, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38470040

ABSTRACT

Ectomycorrhizal fungi establish mutually beneficial relationships with trees, trading nutrients for carbon. Suillus are ectomycorrhizal fungi that are critical to the health of boreal and temperate forest ecosystems. Comparative genomics has identified a high number of non-ribosomal peptide synthetase and terpene biosynthetic gene clusters (BGC) potentially involved in fungal competition and communication. However, the functionality of these BGCs is not known. This study employed co-culture techniques to activate BGC expression and then used metabolomics to investigate the diversity of metabolic products produced by three Suillus species (Suillus hirtellus EM16, Suillus decipiens EM49, and Suillus cothurnatus VC1858), core members of the pine microbiome. After 28 days of growth on solid media, liquid chromatography-tandem mass spectrometry identified a diverse range of extracellular metabolites (exometabolites) along the interaction zone between Suillus co-cultures. Prenol lipids were among the most abundant chemical classes. Out of the 62 unique terpene BGCs predicted by genome mining, 41 putative prenol lipids (includes 37 putative terpenes) were identified across the three Suillus species using metabolomics. Notably, some terpenes were significantly more abundant in co-culture conditions. For example, we identified a metabolite matching to isomers isopimaric acid, sandaracopimaric acid, and abietic acid, which can be found in pine resin and play important roles in host defense mechanisms and Suillus spore germination. This research highlights the importance of combining genomics and metabolomics to advance our understanding of the chemical diversity underpinning fungal signaling and communication.IMPORTANCEUsing a combination of genomics and metabolomics, this study's findings offer new insights into the chemical diversity of Suillus fungi, which serve a critical role in forest ecosystems.


Subject(s)
Agaricales , Hemiterpenes , Microbiota , Mycorrhizae , Pentanols , Terpenes , Mycorrhizae/genetics , Lipids
9.
Helicobacter ; 29(2): e13064, 2024.
Article in English | MEDLINE | ID: mdl-38459689

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) infection is the most extensively studied risk factor for gastric cancer. As with any bacteria, H. pylori will release distinctive odors that result from an emission of volatile metabolic byproducts in unique combinations and proportions. Effectively capturing and identifying these volatiles can pave the way for the development of innovative and non-invasive diagnostic methods for determining infection. Here we characterize the H. pylori volatilomic signature, pinpoint potential biomarkers of its presence, and evaluate the variability of volatilomic signatures between different H. pylori isolates. MATERIALS AND METHODS: Using needle trap extraction, volatiles in the headspace above H. pylori cultures were collected and, following thermal desorption at 290°C in a splitless mode, were analyzed using gas chromatography-mass spectrometry. The resulting volatilomic signatures of H. pylori cultures were compared to those obtained from an analysis of the volatiles in the headspace above the cultivating medium only. RESULTS: Amongst the volatiles detected, 21 showed consistent differences between the bacteria cultures and the cultivation medium, with 11 compounds being elevated and 10 showing decreased levels in the culture's headspace. The 11 elevated volatiles are four ketones (2-pentanone, 5-methyl-3-heptanone, 2-heptanone, and 2-nonanone), three alcohols (2-methyl-1-propanol, 3-methyl-1-butanol, and 1 butanol), one aromatic (styrene), one aldehyde (2-ethyl-hexanal), one hydrocarbon (n-octane), and one sulfur compound (dimethyl disulfide). The 10 volatiles with lower levels in the headspace of the cultures are four aldehydes (2-methylpropanal, benzaldehyde, 3-methylbutanal, and butanal), two heterocyclic compounds (2-ethylfuran and 2-pentylfuran), one ketone (2-butanone), one aromatic (benzene), one alcohol (2-butanol) and bromodichloromethane. Of the volatile species showing increased levels, the highest emissions are found to be for 3-methyl-1-butanol, 1-butanol and dimethyl disulfide. Qualitative variations in their emissions from the different isolates was observed. CONCLUSIONS: The volatiles emitted by H. pylori provide a characteristic volatilome signature that has the potential of being developed as a tool for monitoring infections caused by this pathogen. Furthermore, using the volatilome signature, we are able to differentiate different isolates of H. pylori. However, the volatiles also represent potential confounders for the recognition of gastric cancer volatile markers.


Subject(s)
Disulfides , Helicobacter Infections , Helicobacter pylori , Pentanols , Stomach Neoplasms , Humans , Alcohols
10.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542218

ABSTRACT

This study addresses the pressing issues of energy production and consumption, in line with global sustainable development goals. Focusing on the potential of alcohols as "green" alternatives to traditional fossil fuels, especially in biofuel applications, we investigate the thermochemical properties of three alcohols (n-propanol, n-butanol, n-pentanol) blended with sunflower oil. The calorimetric analysis allows for the experimental determination of excess enthalpies in pseudo-binary mixtures at 303.15 K, revealing similarities in the trends of the curves (dependence on concentrations) but with different values for the excess enthalpies for each mixture. Despite the structural differences of the alcohols studied, the molar excess enthalpy values exhibit uniformity, suggesting consistent mixing behavior. The peak values of excess enthalpies for systems with sunflower oil and n-propanol, n-butanol and n-pentanol are, respectively, 3255.2 J/mole, 3297.4 J/mole and 3150.1 J/mole. Both the NRTL and Redlich-Kister equations show satisfactory agreement with the obtained values.


Subject(s)
Alcohols , Biofuels , Pentanols , Alcohols/chemistry , Sunflower Oil , 1-Propanol , 1-Butanol
11.
Food Chem ; 447: 139005, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38507948

ABSTRACT

Hydrogen sulfide (H2S) is known to effectively inhibit the browning of fresh-cut apples, but the mechanism at a metabolic level remains unclear. Herein, non-targeted metabolomics was used to analyze metabolic changes in surface and internal tissues of fresh-cut apple after H2S treatment. The results showed that prenol lipids were the most up-accumulated differential metabolites in both surface and inner tissue of fresh-cut apple during browning process, which significantly down-accumulated by H2S treatment. H2S treatment reduced the consumption of amino acid in surface tissue. Regarding inner tissue, H2S activated defense response through accumulation of lysophospholipid signaling and induced the biosynthesis of phenolic compounds. We therefore propose that H2S inhibited the surface browning of fresh-cut apple by reducing the accumulation of prenol lipids, directly delaying amino acid consumption in surface tissue and indirectly regulating defense response in inner tissue, which provides fundamental insights into browning inhibition mechanisms by H2S.


Subject(s)
Hemiterpenes , Hydrogen Sulfide , Malus , Pentanols , Malus/chemistry , Amino Acids/pharmacology , Lipids/pharmacology
12.
ACS Synth Biol ; 13(3): 876-887, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38362836

ABSTRACT

Cyanobacteria are attractive hosts for photosynthetic terpenoid production, using CO2 as the sole carbon source. Although the methylerythritol phosphate (MEP) pathway is superior to the mevalonate pathway for cyanobacterial terpenoid synthesis, the first reaction of the MEP pathway, which is catalyzed by 1-deoxy-d-xylulose-5-phosphate (DXP) synthase, involves complex regulation and carbon loss. Here, we constructed a direct route linking ribulose-5-phosphate (Ru5P) in the Calvin-Benson (CB) cycle with DXP in the MEP pathway in a cyanobacterium to increase the terpenoid yield from CO2 and bypass the DXS-targeted regulations. By employing the adaptive laboratory evolution, we identified new RibB variants including RibB 90-92del with a high activity of synthesizing DXP from Ru5P. These RibB variants were introduced into Synechococcus elongatus, resulting in the significantly increased photosynthetic production of isopentenol. The 13C tracer experiments demonstrated a direct carbon flow from Ru5P in the CB cycle to the MEP pathway; thus, this direct route was denoted as the Ru5P shunt. The strain harboring the Ru5P shunt produced 105.2 mg L-1 of isopentenol with an average rate of 17.5 mg L-1 d-1 under continuous light conditions, which is higher than those ever reported for five-carbon alcohol production by photoautotrophic microorganisms. Utilization of the Ru5P shunt in cyanobacterial cells also improved the pinene production, which demonstrates that this shunt can be used to enhance the photosynthetic production of diverse terpenoids.


Subject(s)
Pentanols , Pentoses , Phosphates , Terpenes , Terpenes/metabolism , Carbon Dioxide/metabolism , Photosynthesis , Carbon
13.
Ecotoxicol Environ Saf ; 272: 116055, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38340597

ABSTRACT

2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.


Subject(s)
Environmental Pollutants , Oryza , Antioxidants/metabolism , Seedlings , Oryza/metabolism , Pentanols/metabolism , Pentanols/pharmacology , 1-Butanol/metabolism , 1-Butanol/pharmacology , Environmental Pollutants/metabolism , Glutathione Disulfide/metabolism , Oxidative Stress , Glutathione/metabolism , Plant Roots/metabolism
14.
Molecules ; 29(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398505

ABSTRACT

Fermentation by lactic acid bacteria (LAB) is a promising approach to meet the increasing demand for meat or dairy plant-based analogues with realistic flavours. However, a detailed understanding of the impact of the substrate, fermentation conditions, and bacterial strains on the volatile organic compounds (VOCs) produced during fermentation is lacking. As a first step, the current study used a defined medium (DM) supplemented with the amino acids L-leucine (Leu), L-isoleucine (Ile), L-phenylalanine (Phe), L-threonine (Thr), L-methionine (Met), or L-glutamic acid (Glu) separately or combined to determine their impact on the VOCs produced by Levilactobacillus brevis WLP672 (LB672). VOCs were measured using headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS). VOCs associated with the specific amino acids added included: benzaldehyde, phenylethyl alcohol, and benzyl alcohol with added Phe; methanethiol, methional, and dimethyl disulphide with added Met; 3-methyl butanol with added Leu; and 2-methyl butanol with added Ile. This research demonstrated that fermentation by LB672 of a DM supplemented with different amino acids separately or combined resulted in the formation of a range of dairy- and meat-related VOCs and provides information on how plant-based fermentations could be manipulated to generate desirable flavours.


Subject(s)
Butanols , Levilactobacillus brevis , Pentanols , Volatile Organic Compounds , Amino Acids , Fermentation , Volatile Organic Compounds/analysis , Glutamic Acid , Leucine , Isoleucine , Phenylalanine , Solid Phase Microextraction/methods
15.
Environ Sci Pollut Res Int ; 31(5): 7556-7568, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38165546

ABSTRACT

Indoor air pollution is a global problem and one of the main stress factors that has negative effects on plant and human health. 3-methyl-1-butanol (3MB), an indoor air pollutant, is a microbial volatile organic compound (mVOC) commonly found in damp indoor dwellings. In this study, we reported that 1 mg/L of 3MB can elicit a significant reduction in the stomatal aperture ratio in Arabidopsis and tobacco. Our results also showed that 3MB enhances the reactive oxygen species (ROS) production in guard cells of wild-type Arabidopsis after 24 h exposure. Further investigation of 24 h 3MB fumigation of rbohD, the1-1, mkk1, mkk3, and nced3 mutants revealed that ROS production, cell wall integrity, MAPK kinases cascade, and phytohormone abscisic acid are all involved in the process of 3MB-induced stomatal. Our findings proposed a mechanism by which 3MB regulates stomatal closure in Arabidopsis. Understanding the mechanisms by which microbial indoor air pollutant induces stomatal closure is critical for modulating the intake of harmful gases from indoor environments into leaves. Investigations into how stomata respond to the indoor mVOC 3MB will shed light on the plant's "self-defense" system responding to indoor air pollution.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Pentanols , Humans , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Plant Stomata , Signal Transduction , Abscisic Acid/metabolism
16.
Sci Rep ; 14(1): 1350, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228683

ABSTRACT

Animals are exposed to many microbes in their environment, some of which have been shown to colonize various tissues including the intestine. The composition of the intestinal microbiota affects many aspects of the host's physiology and health. Despite this, very little is known about whether host behavior contributes to the colonization. We approach this question in the nematode C. elegans, which feeds on bacteria and also harbors an intestinal microbiome. We examined the behavior of C. elegans towards CeMbio, a simplified microbiome consisting of twelve strains that represent the bacteria found in the animal's natural environment. We observed that C. elegans raised on E. coli shows a strong preference for three members of CeMbio (Lelliottia amnigena JUb66, Enterobacter hormaechei CEent1, and Pantoea nemavictus BIGb0393) compared to E. coli. Previously, these three bacterial strains have been shown to support faster C. elegans development time than E. coli OP50 and are low colonizers compared to eight other members of CeMbio. We then used gas chromatography coupled to mass spectrometry to identify that these three bacteria release isoamyl alcohol, a previously described C. elegans chemoattractant. We suggest that C. elegans seeks bacteria that release isoamyl alcohol and support faster growth.


Subject(s)
Caenorhabditis elegans , Microbiota , Pentanols , Animals , Caenorhabditis elegans/physiology , Escherichia coli/physiology , Gas Chromatography-Mass Spectrometry , Bacteria
17.
PLoS Pathog ; 20(1): e1011557, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38277417

ABSTRACT

A proposed treatment for malaria is a combination of fosmidomycin and clindamycin. Both compounds inhibit the methylerythritol 4-phosphate (MEP) pathway, the parasitic source of farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively). Both FPP and GGPP are crucial for the biosynthesis of several essential metabolites such as ubiquinone and dolichol, as well as for protein prenylation. Dietary prenols, such as farnesol (FOH) and geranylgeraniol (GGOH), can rescue parasites from MEP inhibitors, suggesting the existence of a missing pathway for prenol salvage via phosphorylation. In this study, we identified a gene in the genome of P. falciparum, encoding a transmembrane prenol kinase (PolK) involved in the salvage of FOH and GGOH. The enzyme was expressed in Saccharomyces cerevisiae, and its FOH/GGOH kinase activities were experimentally validated. Furthermore, conditional knockout parasites (Δ-PolK) were created to investigate the biological importance of the FOH/GGOH salvage pathway. Δ-PolK parasites were viable but displayed increased susceptibility to fosmidomycin. Their sensitivity to MEP inhibitors could not be rescued by adding prenols. Additionally, Δ-PolK parasites lost their capability to utilize prenols for protein prenylation. Experiments using culture medium supplemented with whole/delipidated human plasma in transgenic parasites revealed that human plasma has components that can diminish the effectiveness of fosmidomycin. Mass spectrometry tests indicated that both bovine supplements used in culture and human plasma contain GGOH. These findings suggest that the FOH/GGOH salvage pathway might offer an alternate source of isoprenoids for malaria parasites when de novo biosynthesis is inhibited. This study also identifies a novel kind of enzyme related to isoprenoid metabolism.


Subject(s)
Diterpenes , Fosfomycin/analogs & derivatives , Hemiterpenes , Parasites , Pentanols , Humans , Animals , Cattle , Parasites/metabolism , Phosphates , Terpenes/pharmacology , Terpenes/metabolism
18.
Bioresour Technol ; 395: 130352, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272142

ABSTRACT

The productive separation and conversion of corn straw offers significant prospects for the economic viability of biorefineries centered on straw resources. In this work, a graded utilization method was proposed to produce xylo-oligosaccharides (XOS), ethanol and lignin from corn straw by nicotinic acid (NA) hydrolysis and water/pentanol pretreatment. A XOS yield of 52.6 % was achieved under optimized conditions of 100 mM NA, 170 °C and 30 min. The solid residue was directly treated with water/pentanol, achieving a lignin removal rate of 79.7 %, and the total XOS yield was improved to 62.6 %. The lignin recovered from pentanol had a high purity of 97.6 %, with high phenolic OH content. Simultaneous saccharification and fermentation of final residue resulted in an ethanol yield of 92.0 %, which yielded 55.3 g/L ethanol. Thus, NA hydrolysis and water/pentanol pretreatment provided an efficient, environmentally friendly approach to fractionate corn straw for the co-production of XOS, ethanol, and lignin.


Subject(s)
Glucuronates , Lignin , Niacin , Lignin/chemistry , Zea mays , Ethanol , Pentanols , Hydrolysis , Oligosaccharides , Fermentation , Water
19.
Environ Entomol ; 53(1): 108-115, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38198762

ABSTRACT

Anisandrus maiche Stark (Coleoptera: Curculionidae: Scolytinae) is a non-native ambrosia beetle from central Asia that has been spreading throughout the eastern United States since 2005. Preferred hosts of A. maiche are not well characterized within its currently invaded range, but it is established in managed and natural forests throughout Indiana. Current monitoring and detection efforts for this beetle rely on ethanol-baited traps, but fungal volatiles may alter the attraction of A. maiche to ethanol. In this study, we conducted trapping experiments in Indiana to determine the extent to which a suite of common fungal alcohols influences the response of A. maiche to ethanol-baited traps. We then evaluated isoamyl and isobutyl alcohol as potential attractants for A. maiche and their ability to enhance attraction to ethanol. Lastly, we used SPME-GC-MS to identify volatiles from Ambrosiella cleistominuta (Mayers & Harr.), the fungal symbiont of A. maiche, grown for 7 and 14 days on malt extract agar. Benzyl alcohol, isobutyl alcohol, hexanol, methyl phenylacetate, phenethyl alcohol, and piperitone reduced the attraction of A. maiche to ethanol-baited traps in the field. Moreover, adding methyl benzoate and isoamyl alcohol individually to ethanol-baited traps did not further increase A. maiche capture. When paired with ethanol, isoamyl alcohol repelled beetles in the early flight period but did not significantly increase trap capture during the fall flight. These results represent a first step in understanding the role of fungal volatiles in the colonization behavior of A. maiche and may ultimately inform management strategies for this species.


Subject(s)
Butanols , Coleoptera , Pentanols , Weevils , Animals , Coleoptera/physiology , Ethanol/pharmacology , Insect Control , Pheromones
20.
Environ Res ; 248: 118286, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38280524

ABSTRACT

This study assesses the environmental impact of pine chip-based biorefinery processes, focusing on bioethanol, xylonic acid, and lignin production. A cradle-to-gate Life Cycle Assessment (LCA) is employed, comparing a novel biphasic pretreatment method (p-toluenesulfonic acid (TsOH)/pentanol, Sc-1) with conventional sulfuric acid pretreatment (H2SO4, Sc-2). The analysis spans biomass handling, pretreatment, enzymatic hydrolysis, yeast fermentation, and distillation. Sc-1 yielded an environmental impact of 1.45E+01 kPt, predominantly affecting human health (96.55%), followed by ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed 32.61%, 29.28%, and 38.11% to the total environmental burdens, respectively. Sc-2 resulted in an environmental burden of 1.64E+01 kPt, with a primary impact on human health (96.56%) and smaller roles for ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed differently at 22.59%, 12.5%, and 64.91%, respectively. Electricity generation was predominant in both scenarios, accounting for 99.05% of the environmental impact, primarily driven by its extensive usage in biomass handling and pretreatment processes. Sc-1 demonstrated a 13.05% lower environmental impact than Sc-2 due to decreased electricity consumption and increased bioethanol and xylonic acid outputs. This study highlights the pivotal role of pretreatment methods in wood-based biorefineries and underscores the urgency of sustainable alternatives like TsOH/pentanol. Additionally, adopting greener electricity generation, advanced technologies, and process optimization are crucial for reducing the environmental footprint of waste-based biorefineries while preserving valuable bioproduct production.


Subject(s)
Ecosystem , Lignin , Sulfuric Acids , Humans , Pentanols , Biotechnology/methods , Biomass , Saccharomyces cerevisiae , Hydrolysis , Biofuels
SELECTION OF CITATIONS
SEARCH DETAIL