Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 409
Filter
1.
Biomolecules ; 14(9)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39334900

ABSTRACT

Neurotransmission is critical for brain function, allowing neurons to communicate through neurotransmitters and neuropeptides. RVD-hemopressin (RVD-Hp), a novel peptide identified in noradrenergic neurons, modulates cannabinoid receptors CB1 and CB2. Unlike hemopressin (Hp), which induces anxiogenic behaviors via transient receptor potential vanilloid 1 (TRPV1) activation, RVD-Hp counteracts these effects, suggesting that it may block TRPV1. This study investigates RVD-Hp's role as a TRPV1 channel blocker using HEK293 cells expressing TRPV1-GFP. Calcium imaging and patch-clamp recordings demonstrated that RVD-Hp reduces TRPV1-mediated calcium influx and TRPV1 ion currents. Molecular docking and dynamics simulations indicated that RVD-Hp interacts with TRPV1's selectivity filter, forming stable hydrogen bonds and van der Waals contacts, thus preventing ion permeation. These findings highlight RVD-Hp's potential as a therapeutic agent for conditions involving TRPV1 activation, such as pain and anxiety.


Subject(s)
Endocannabinoids , TRPV Cation Channels , Humans , Calcium/metabolism , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Endocannabinoids/chemistry , HEK293 Cells , Hemoglobins , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , TRPV Cation Channels/metabolism , TRPV Cation Channels/antagonists & inhibitors
2.
Biochim Biophys Acta Gen Subj ; 1868(11): 130693, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39147109

ABSTRACT

BACKGROUND: Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. MAJOR CONCLUSIONS: Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 µmol L-1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties. GENERAL SIGNIFICANCE: This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Biofilms , Escherichia coli , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Acinetobacter baumannii/drug effects , Humans , Escherichia coli/drug effects , Biofilms/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Molecular Dynamics Simulation , Peptide Fragments/pharmacology , Peptide Fragments/chemistry
3.
J Phys Chem B ; 128(29): 7022-7032, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39016210

ABSTRACT

The interaction between iron and amyloid-beta (Aß) peptides has received significant attention in Alzheimer's disease (AD) research due to its potential implications in developing this pathology. However, the coordination preferences of iron and Aß1-42 have not been thoroughly investigated or remain unknown. This study employs a computational protocol that combines homology modeling techniques with quantum mechanics (DTF-xTB) calculations to build and evaluate several 3D models of Fe2+/3+-Aß1-42. Our results reveal well-defined complexes for both the metal and peptide moieties, and we discuss the molecular interactions stabilizing these complexes by elucidating the coordinating environments and binding preferences. These proposed models offer valuable insights into the role of iron in Alzheimer's disease (AD) pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Peptide Fragments , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Humans , Quantum Theory , Models, Molecular , Iron/chemistry , Iron/metabolism , Ferric Compounds/chemistry , Ferrous Compounds/chemistry
4.
J Biol Inorg Chem ; 29(4): 407-425, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811408

ABSTRACT

The influence of metal ions on the structure of amyloid- ß (Aß) protofibril models was studied through molecular dynamics to explore the molecular mechanisms underlying metal-induced Aß aggregation relevant in Alzheimer's disease (AD). The models included 36-, 48-, and 188-mers of the Aß42 sequence and two disease-modifying variants. Primary structural effects were observed at the N-terminal domain, as it became susceptible to the presence of cations. Specially when ß-sheets predominate, this motif orients N-terminal acidic residues toward one single face of the ß-sheet, resulting in the formation of an acidic region that attracts cations from the media and promotes the folding of the N-terminal region, with implications in amyloid aggregation. The molecular phenotype of the protofibril models based on Aß variants shows that the AD-causative D7N mutation promotes the formation of N-terminal ß-sheets and accumulates more Zn2+, in contrast to the non-amyloidogenic rodent sequence that hinders the ß-sheets and is more selective for Na+ over Zn2+ cations. It is proposed that forming an acidic ß-sheet domain and accumulating cations is a plausible molecular mechanism connecting the elevated affinity and concentration of metals in Aß fibrils to their high content of ß-sheet structure at the N-terminal sequence.


Subject(s)
Amyloid beta-Peptides , Molecular Dynamics Simulation , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Protein Conformation, beta-Strand , Humans , Zinc/metabolism , Zinc/chemistry , Alzheimer Disease/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/genetics , Metals/metabolism , Metals/chemistry
5.
Molecules ; 28(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894616

ABSTRACT

Amyloid ß (Aß) oligomers are the most neurotoxic forms of Aß, and Aß(1-42) is the prevalent Aß peptide found in the amyloid plaques of Alzheimer's disease patients. Aß(25-35) is the shortest peptide that retains the toxicity of Aß(1-42). Aß oligomers bind to calmodulin (CaM) and calbindin-D28k with dissociation constants in the nanomolar Aß(1-42) concentration range. Aß and histidine-rich proteins have a high affinity for transition metal ions Cu2+, Fe3+ and Zn2+. In this work, we show that the fluorescence of Aß(1-42) HiLyteTM-Fluor555 can be used to monitor hexa-histidine peptide (His6) interaction with Aß(1-42). The formation of His6/Aß(1-42) complexes is also supported by docking results yielded by the MDockPeP Server. Also, we found that micromolar concentrations of His6 block the increase in the fluorescence of Aß(1-42) HiLyteTM-Fluor555 produced by its interaction with the proteins CaM and calbindin-D28k. In addition, we found that the His6-tag provides a high-affinity site for the binding of Aß(1-42) and Aß(25-35) peptides to the human recombinant cytochrome b5 reductase, and sensitizes this enzyme to inhibition by these peptides. In conclusion, our results suggest that a His6-tag could provide a valuable new tool to experimentally direct the action of neurotoxic Aß peptides toward selected cellular targets.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/metabolism , Histidine/chemistry , Hexosaminidase A , Calbindin 1 , Copper/chemistry , Peptide Fragments/chemistry , Alzheimer Disease/metabolism
6.
Amino Acids ; 55(12): 1991-1997, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37904049

ABSTRACT

Alzheimer's disease is characterized by the presence of senile plaques composed of ß-amyloid peptide (Aß) aggregates with toxic effects that are still not fully understood. Recently, it was discovered that Aß(1-42) fibrils possess catalytic activity on acetylcholine hydrolysis. Catalytic amyloids are an emerging and exciting field of research. In this study, we examined the catalytic activity of the fibrils formed by Aß(1-40), the most abundant Aß variant, on acetylcholine hydrolysis. Our findings reveal that Aß(1-40) fibrils exhibit moderate enzymatic activity, indicating that natural peptide aggregates could serve as biocatalysts and provide new insights into the potential role of Aß in neurological disorders.


Subject(s)
Acetylcholine , Alzheimer Disease , Humans , Hydrolysis , Amyloid beta-Peptides , Peptide Fragments/chemistry , Amyloid
7.
Anal Bioanal Chem ; 415(18): 4003-4021, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36877264

ABSTRACT

Alzheimer's disease (AD), a neurological disorder, is a major public health concern and the most common form of dementia. Its typical symptoms include memory loss, confusion, changes in personality, and cognitive impairment, which result in patients gradually losing independence. Over the last decades, some studies have focused on searching for effective biomarkers as early diagnostic indicators of AD. Amyloid-ß (Aß) peptides have been consolidated as reliable AD biomarkers and have been incorporated into modern diagnostic research criteria. However, quantitative analysis of Aß peptides in biological samples remains a challenge because both the sample and the physical-chemical properties of these peptides are complex. During clinical routine, Aß peptides are measured in the cerebrospinal fluid by immunoassays, but the availability of a specific antibody is critical-in some cases, an antibody may not exist, or its specificity may be inadequate, leading to low sensitivity and false results. HPLC-MS/MS has been reported as a sensitive and selective method for determining different fragments of Aß peptides in biological samples simultaneously. Developments in sample preparation techniques (preconcentration platforms) such as immunoprecipitation, 96-well plate SPME, online SPME, and fiber-in-tube SPME have enabled not only effective enrichment of Aß peptides present at trace levels in biological samples, but also efficient exclusion of interferents from the sample matrix (sample cleanup). This high extraction efficiency has provided MS platforms with higher sensitivity. Recently, methods affording LLOQ values as low as 5 pg mL-1 have been reported. Such low LLOQ values are adequate for quantifying Aß peptides in complex matrixes including cerebrospinal fluid (CSF) and plasma samples. This review summarizes the advances in mass spectrometry (MS)-based methods for quantifying Aß peptides and covers the period 1992-2022. Important considerations regarding the development of the HPLC-MS/MS method such as the sample preparation step, optimization of the HPLC-MS/MS parameters, and matrix effects are described. Clinical applications, difficulties related to analysis of plasma samples, and future trends of these MS/MS-based methods are also discussed.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Alzheimer Disease/diagnosis , Antibodies , Biomarkers/cerebrospinal fluid , Peptide Fragments/chemistry
8.
Proteins ; 90(12): 2124-2143, 2022 12.
Article in English | MEDLINE | ID: mdl-36321654

ABSTRACT

Calcium ion regulation plays a crucial role in maintaining neuronal functions such as neurotransmitter release and synaptic plasticity. Copper (Cu2+ ) coordination to amyloid-ß (Aß) has accelerated Aß1-42 aggregation that can trigger calcium dysregulation by enhancing the influx of calcium ions by extensive perturbing integrity of the membranes. Aß1-42 aggregation, calcium dysregulation, and membrane damage are Alzheimer disease (AD) implications. To gain a detail of calcium ions' role in the full-length Aß1-42 and Aß1-42 -Cu2+ monomers contact, the cellular membrane before their aggregation to elucidate the neurotoxicity mechanism, we carried out 2.5 µs extensive molecular dynamics simulation (MD) to rigorous explorations of the intriguing feature of the Aß1-42 and Aß1-42 -Cu2+ interaction with the dimyristoylphosphatidylcholine (DMPC) bilayer in the presence of calcium ions. The outcome of the results compared to the same simulations without calcium ions. We surprisingly noted robust binding energies between the Aß1-42 and membrane observed in simulations containing without calcium ions and is two and a half fold lesser in the simulation with calcium ions. Therefore, in the case of the absence of calcium ions, N-terminal residues of Aß1-42 deeply penetrate from the surface to the center of the bilayer; in contrast to calcium ions presence, the N- and C-terminal residues are involved only in surface contacts through binding phosphate moieties. On the other hand, Aß1-42 -Cu2+ actively participated in surface bilayer contacts in the absence of calcium ions. These contacts are prevented by forming a calcium bridge between Aß1-42 -Cu2+ and the DMPC bilayer in the case of calcium ions presence. In a nutshell, Calcium ions do not allow Aß1-42 penetration into the membranes nor contact of Aß1-42 -Cu2+ with the membranes. These pieces of information imply that the calcium ions mediate the membrane perturbation via the monomer interactions but do not damage the membrane; they agree with the western blot experimental results of a higher concentration of calcium ions inhibit the membrane pore formation by Aß peptides.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Calcium , Dimyristoylphosphatidylcholine , Peptide Fragments/chemistry , Amyloid beta-Peptides/chemistry , Copper/chemistry , Ions
9.
J Biomol Struct Dyn ; 40(20): 9602-9612, 2022.
Article in English | MEDLINE | ID: mdl-34042019

ABSTRACT

In this study, comparable molecular dynamic (MD) simulations of 1.2 microseconds were performed to clarify the prevention of the ß-amyloid peptide (Aß1-42) aggregation by cucurbit[7]uril (CB[7]). The accumulation of this peptide in the brain is one of the most harmful in Alzheimer's disease. The inhibition mechanism of Aß1-42 aggregation by different molecules is attributed to preventing of Aß1-42 conformational transition from α-helix to the ß-sheet structure. However, our structural analysis shows that the pure water and aqueous solution of the CB[7] denature the native Aß1-42 α-helix structure forming different compactness and unfolded conformations, not in ß-sheet form. On the other hand, in the three CB[7]@Aß1-42 complexes, it was observed the encapsulation of N-terminal (Asp1), Lys16, and Val36 by CB[7] along the MD trajectory, and not with aromatic residues as suggested by the literature. Only in one CB[7]@Aß1-42 complex was observed stable Asp23-Lys28 salt bridge with an average distance of 0.36 nm. All CB[7]@Aß1-42 complexes are very stable with binding free energy lowest than ∼-50 kcal/mol between the CB[7] and Aß1-42 monomer from MM/PBSA calculation. Therefore, herein we show that the mechanism of the prevention of elongation protofibril by CB[7] is due to the disruption of the Asp23-Lys28 salt bridge and steric effects of CB[7]@Aß1-42 complex with the fibril lattice, and not due to the transition from α-helix to ß-sheet following the dock-lock mechanism.Communicated by Ramaswamy H. Sarma.


Subject(s)
Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Protein Conformation, beta-Strand
10.
Biochim Biophys Acta Biomembr ; 1864(1): 183779, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34560046

ABSTRACT

Biophysical characterization of antimicrobial peptides helps to understand the mechanistic aspects of their action. The physical behavior of the KR-12 antimicrobial peptide (e.g. orientation and changes in secondary structure), was analyzed after interactions with a Staphylococcus aureus membrane model and solid surfaces. We performed antimicrobial tests using Gram-positive S. aureus (ATCC 25923) bacteria. Moreover, Langmuir-Blodgett experiments showed that the synthetic peptide can disturb the lipidic membrane at a concentration lower than the Minimum Inhibitory Concentration, thus confirming that KR-12/lipid interactions are involved. Partially- and fully-deactivated KR-12 hybrid samples were obtained by physisorption and covalent immobilization in chitosan/silica and glyoxal-rich solid supports. The correlation of Langmuir-Blodgett data with the α-helix formation, followed by FTIR-ATR in a frozen-like state, and the antimicrobial activity showed the importance of these interactions and conformation changes on the first step action mode of this peptide. This is the first time that material science (immobilization in solid surfaces assisted by FTIR-ATR analysis in frozen-like state) and physical (Langmuir-Blodgett/Schaefer) approaches are combined for exploring mechanistic aspects of the primary action mode of the KR-12 antimicrobial peptide against S. aureus.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/chemistry , Cathelicidins/chemistry , Lipids/antagonists & inhibitors , Peptide Fragments/chemistry , Anti-Bacterial Agents/pharmacology , Cathelicidins/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Humans , Lipids/chemistry , Membrane Lipids/antagonists & inhibitors , Microbial Sensitivity Tests , Peptide Fragments/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity
11.
Biochim Biophys Acta Biomembr ; 1864(1): 183749, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34506795

ABSTRACT

Gangliosides induced a smelting process in nanostructured amyloid fibril-like films throughout the surface properties contributed by glycosphingolipids when mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/Aß(1-40) amyloid peptide. We observed a dynamical smelting process when pre-formed amyloid/phospholipid mixture is laterally mixed with gangliosides. This particular environment, gangliosides/phospholipid/Aß(1-40) peptide mixed interfaces, showed complex miscibility behavior depending on gangliosides content. At 0% of ganglioside covered surface respect to POPC, Aß(1-40) peptide forms fibril-like structure. In between 5 and 15% of gangliosides, the fibrils dissolve into irregular domains and they disappear when the proportion of gangliosides reach the 20%. The amyloid interfacial dissolving effect of gangliosides is taken place at lateral pressure equivalent to the organization of biological membranes. Domains formed at the interface are clearly evidenced by Brewster Angle Microscopy and Atomic Force Microscopy when the films are transferred onto a mica support. The domains are thioflavin T (ThT) positive when observed by fluorescence microscopy. We postulated that the smelting process of amyloids fibrils-like structure at the membrane surface provoked by gangliosides is a direct result of a new interfacial environment imposed by the complex glycosphingolipids. We add experimental evidence, for the first time, how a change in the lipid environment (increase in ganglioside proportion) induces a rapid loss of the asymmetric structure of amyloid fibrils by a simple modification of the membrane condition (a more physiological situation).


Subject(s)
Amyloid beta-Peptides/chemistry , Gangliosides/chemistry , Glycosphingolipids/chemistry , Membrane Lipids/chemistry , Nanostructures/chemistry , Peptide Fragments/chemistry , Amyloid/chemistry , Amyloid beta-Peptides/ultrastructure , Microscopy, Atomic Force , Nanostructures/ultrastructure , Peptide Fragments/ultrastructure , Phosphatidylcholines/chemistry , Surface Properties
12.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948022

ABSTRACT

A semi-exhaustive approach and a heuristic search algorithm use a fragment-based drug design (FBDD) strategy for designing new inhibitors in an in silico process. A deconstruction reconstruction process uses a set of known Hsp90 ligands for generating new ones. The deconstruction process consists of cutting off a known ligand in fragments. The reconstruction process consists of coupling fragments to develop a new set of ligands. For evaluating the approaches, we compare the binding energy of the new ligands with the known ligands.


Subject(s)
Drug Design/methods , HSP90 Heat-Shock Proteins/chemistry , Peptide Fragments/chemistry , Algorithms , Computer Simulation , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Heuristics , Humans , Ligands , Peptide Fragments/pharmacology , Structure-Activity Relationship
13.
Anal Bioanal Chem ; 413(30): 7559-7585, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34739558

ABSTRACT

Subunit vaccines based on the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 provide one of the most promising strategies to fight the COVID-19 pandemic. The detailed characterization of the protein primary structure by mass spectrometry (MS) is mandatory, as described in ICHQ6B guidelines. In this work, several recombinant RBD proteins produced in five expression systems were characterized using a non-conventional protocol known as in-solution buffer-free digestion (BFD). In a single ESI-MS spectrum, BFD allowed very high sequence coverage (≥ 99%) and the detection of highly hydrophilic regions, including very short and hydrophilic peptides (2-8 amino acids), and the His6-tagged C-terminal peptide carrying several post-translational modifications at Cys538 such as cysteinylation, homocysteinylation, glutathionylation, truncated glutathionylation, and cyanylation, among others. The analysis using the conventional digestion protocol allowed lower sequence coverage (80-90%) and did not detect peptides carrying most of the above-mentioned PTMs. The two C-terminal peptides of a dimer [RBD(319-541)-(His)6]2 linked by an intermolecular disulfide bond (Cys538-Cys538) with twelve histidine residues were only detected by BFD. This protocol allows the detection of the four disulfide bonds present in the native RBD, low-abundance scrambling variants, free cysteine residues, O-glycoforms, and incomplete processing of the N-terminal end, if present. Artifacts generated by the in-solution BFD protocol were also characterized. BFD can be easily implemented; it has been applied to the characterization of the active pharmaceutical ingredient of two RBD-based vaccines, and we foresee that it can be also helpful to the characterization of mutated RBDs.


Subject(s)
Cysteine/metabolism , Peptide Fragments/metabolism , Protein Processing, Post-Translational , Spectrometry, Mass, Electrospray Ionization/methods , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Cysteine/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Peptide Fragments/chemistry , Protein Binding , Protein Domains , Protein Subunits
14.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502187

ABSTRACT

Gluten-related disorders (GRDs) are a group of diseases that involve the activation of the immune system triggered by the ingestion of gluten, with a worldwide prevalence of 5%. Among them, Celiac disease (CeD) is a T-cell-mediated autoimmune disease causing a plethora of symptoms from diarrhea and malabsorption to lymphoma. Even though GRDs have been intensively studied, the environmental triggers promoting the diverse reactions to gluten proteins in susceptible individuals remain elusive. It has been proposed that pathogens could act as disease-causing environmental triggers of CeD by molecular mimicry mechanisms. Additionally, it could also be possible that unrecognized molecular, structural, and physical parallels between gluten and pathogens have a relevant role. Herein, we report sequence, structural and physical similarities of the two most relevant gluten peptides, the 33-mer and p31-43 gliadin peptides, with bacterial pathogens using bioinformatics going beyond the molecular mimicry hypothesis. First, a stringent BLASTp search using the two gliadin peptides identified high sequence similarity regions within pathogen-derived proteins, e.g., extracellular proteins from Streptococcus pneumoniae and Granulicatella sp. Second, molecular dynamics calculations of an updated α-2-gliadin model revealed close spatial localization and solvent-exposure of the 33-mer and p31-43 peptide, which was compared with the pathogen-related proteins by homology models and localization predictors. We found putative functions of the identified pathogen-derived sequence by identifying T-cell epitopes and SH3/WW-binding domains. Finally, shape and size parallels between the pathogens and the superstructures of gliadin peptides gave rise to novel hypotheses about activation of innate immunity and dysbiosis. Based on our structural findings and the similarities with the bacterial pathogens, evidence emerges that these pathologically relevant gluten-derived peptides could behave as non-replicating pathogens opening new research questions in the interface of innate immunity, microbiome, and food research.


Subject(s)
Celiac Disease/immunology , Epitopes, T-Lymphocyte , Gliadin/metabolism , Glutens/metabolism , Molecular Mimicry , Peptide Fragments/metabolism , Carnobacteriaceae/metabolism , Computational Biology , Gliadin/chemistry , Gliadin/immunology , Glutens/chemistry , Glutens/immunology , Humans , Peptide Fragments/chemistry , Peptide Fragments/immunology , Streptococcus pneumoniae/metabolism
15.
Int J Mol Sci ; 22(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34502472

ABSTRACT

Aß(1-42) peptide is a neurotoxic agent strongly associated with the etiology of Alzheimer's disease (AD). Current treatments are still of very low effectiveness, and deaths from AD are increasing worldwide. Huprine-derived molecules have a high affinity towards the enzyme acetylcholinesterase (AChE), act as potent Aß(1-42) peptide aggregation inhibitors, and improve the behavior of experimental animals. AVCRI104P4 is a multitarget donepezil-huprine hybrid that improves short-term memory in a mouse model of AD and exerts protective effects in transgenic Caenorhabditis elegans that express Aß(1-42) peptide. At present, there is no information about the effects of this compound on human erythrocytes. Thus, we considered it important to study its effects on the cell membrane and erythrocyte models, and to examine its protective effect against the toxic insult induced by Aß(1-42) peptide in this cell and models. This research was developed using X-ray diffraction and differential scanning calorimetry (DSC) on molecular models of the human erythrocyte membrane constituted by lipid bilayers built of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). They correspond to phospholipids representative of those present in the external and internal monolayers, respectively, of most plasma and neuronal membranes. The effect of AVCRI104P4 on human erythrocyte morphology was studied by scanning electron microscopy (SEM). The experimental results showed a protective effect of AVCRI104P4 against the toxicity induced by Aß(1-42) peptide in human erythrocytes and molecular models.


Subject(s)
Amyloid beta-Peptides , Erythrocyte Membrane , Heterocyclic Compounds, 4 or More Rings , Models, Molecular , Peptide Fragments , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/toxicity , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/ultrastructure , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Peptide Fragments/chemistry , Peptide Fragments/toxicity
16.
Int J Mol Sci ; 22(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562650

ABSTRACT

Plasmodium parasites' invasion of their target cells is a complex, multi-step process involving many protein-protein interactions. Little is known about how complex the interaction with target cells is in Plasmodium vivax and few surface molecules related to reticulocytes' adhesion have been described to date. Natural selection, functional and structural analysis were carried out on the previously described vaccine candidate P. vivax merozoite surface protein 10 (PvMSP10) for evaluating its role during initial contact with target cells. It has been shown here that the recombinant carboxyl terminal region (rPvMSP10-C) bound to adult human reticulocytes but not to normocytes, as validated by two different protein-cell interaction assays. Particularly interesting was the fact that two 20-residue-long regions (388DKEECRCRANYMPDDSVDYF407 and 415KDCSKENGNCDVNAECSIDK434) were able to inhibit rPvMSP10-C binding to reticulocytes and rosette formation using enriched target cells. These peptides were derived from PvMSP10 epidermal growth factor (EGF)-like domains (precisely, from a well-defined electrostatic zone) and consisted of regions having the potential of being B- or T-cell epitopes. These findings provide evidence, for the first time, about the fragments governing PvMSP10 binding to its target cells, thus highlighting the importance of studying them for inclusion in a P. vivax antimalarial vaccine.


Subject(s)
Antigens, Protozoan/metabolism , Plasmodium vivax/metabolism , Protozoan Proteins/metabolism , Reticulocytes/parasitology , Amino Acid Sequence , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Binding Sites/genetics , Conserved Sequence , Epitopes/chemistry , Epitopes/genetics , Epitopes/metabolism , Genes, Protozoan , Humans , In Vitro Techniques , Malaria, Vivax/blood , Malaria, Vivax/parasitology , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Plasmodium vivax/genetics , Plasmodium vivax/pathogenicity , Protein Domains/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reticulocytes/metabolism , Static Electricity
17.
Biochem Pharmacol ; 183: 114291, 2021 01.
Article in English | MEDLINE | ID: mdl-33075312

ABSTRACT

Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7-NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more "drug-like" molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.


Subject(s)
Peptide Fragments/pharmacology , Scorpion Venoms/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Peptide Fragments/chemistry , Scorpion Venoms/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry , Xenopus laevis
18.
Chem Biodivers ; 18(2): e2000885, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33369144

ABSTRACT

Chimeric peptides containing short sequences derived from bovine Lactoferricin (LfcinB) and Buforin II (BFII) were synthetized using solid-phase peptide synthesis (SPPS) and characterized via reversed-phase liquid chromatography and mass spectrometry. The chimeras were obtained with high purity, demonstrating their synthetic viability. The chimeras' antibacterial activity against Gram-positive and Gram-negative strains was evaluated. Our results showed that all the chimeras exhibited greater antibacterial activity against the evaluated strains than the individual sequences, suggesting that chemical binding of short sequences derived from AMPs significantly increased the antibacterial activity. For each strain, the chimera with the best antibacterial activity exerted a bacteriostatic and/or bactericidal effect, which was dependent on the concentration. It was found that: (i) the antibacterial activity of a chimera is mainly influenced by the linked sequences, the palindromic motif RLLRRLLR being the most relevant one; (ii) the inclusion of a spacer between the short sequences did not significantly affect the chimera's synthesis process; however, it enhanced its antibacterial activity against Gram-negative and Gram-positive strains; on the other hand, (iii) the replacement of Arg with Lys in the LfcinB or BFII sequences improved the chimeras' synthesis process without significantly affecting their antibacterial activity. These results illustrate the great importance of the synthesis of chimeric peptides for the generation of promising antibacterial peptides.


Subject(s)
Anti-Bacterial Agents/chemistry , Lactoferrin/chemistry , Peptide Fragments/chemistry , Proteins/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Cattle , Humans , Lactoferrin/chemical synthesis , Lactoferrin/pharmacology , Peptide Fragments/chemical synthesis , Peptide Fragments/pharmacology , Proteins/chemical synthesis , Proteins/pharmacology , Solid-Phase Synthesis Techniques
19.
Acta Biotheor ; 69(1): 67-78, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32783083

ABSTRACT

The theory of chemical symbiosis (TCS) suggests that biological systems started with the collaboration of two polymeric molecules existing in early Earth: nucleic acids and peptides. Chemical symbiosis emerged when RNA-like nucleic acid polymers happened to fold into 3D structures capable to bind amino acids together, forming a proto peptidyl-transferase center. This folding catalyzed the formation of quasi-random small peptides, some of them capable to bind this ribozyme structure back and starting to form an initial layer that would produce the larger subunit of the ribosome by accretion. TCS suggests that there is no chicken-and-egg problem into the emergence of biological systems as RNAs and peptides were of equal importance to the origin of life. Life has initially emerged when these two macromolecules started to interact in molecular symbiosis. Further, we suggest that life evolved into progenotes and cells due to the emergence of new layers of symbiosis. Mutualism is the strongest force in biology, capable to create novelties by emergent principles; on which the whole is bigger than the sum of the parts. TCS aims to apply the Margulian view of biology into the origins of life field.


Subject(s)
Evolution, Molecular , Models, Theoretical , Origin of Life , Peptide Fragments/metabolism , Proteins/metabolism , RNA/metabolism , Symbiosis , Humans , Models, Biological , Peptide Fragments/chemistry , Proteins/chemistry , RNA/chemistry
20.
Sci Rep ; 10(1): 18074, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093586

ABSTRACT

The increasing interest in bioactive peptides with therapeutic potentials has been reflected in a large variety of biological databases published over the last years. However, the knowledge discovery process from these heterogeneous data sources is a nontrivial task, becoming the essence of our research endeavor. Therefore, we devise a unified data model based on molecular similarity networks for representing a chemical reference space of bioactive peptides, having an implicit knowledge that is currently not explicitly accessed in existing biological databases. Indeed, our main contribution is a novel workflow for the automatic construction of such similarity networks, enabling visual graph mining techniques to uncover new insights from the "ocean" of known bioactive peptides. The workflow presented here relies on the following sequential steps: (i) calculation of molecular descriptors by applying statistical and aggregation operators on amino acid property vectors; (ii) a two-stage unsupervised feature selection method to identify an optimized subset of descriptors using the concepts of entropy and mutual information; (iii) generation of sparse networks where nodes represent bioactive peptides, and edges between two nodes denote their pairwise similarity/distance relationships in the defined descriptor space; and (iv) exploratory analysis using visual inspection in combination with clustering and network science techniques. For practical purposes, the proposed workflow has been implemented in our visual analytics software tool ( http://mobiosd-hub.com/starpep/ ), to assist researchers in extracting useful information from an integrated collection of 45120 bioactive peptides, which is one of the largest and most diverse data in its field. Finally, we illustrate the applicability of the proposed workflow for discovering central nodes in molecular similarity networks that may represent a biologically relevant chemical space known to date.


Subject(s)
Algorithms , Antineoplastic Agents/chemistry , Computational Biology/methods , Computer Graphics , Models, Chemical , Peptide Fragments/chemistry , Unsupervised Machine Learning , Computer Simulation , Databases, Factual , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL