Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 691
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999989

ABSTRACT

Cefaclor is a substrate of human-peptide-transporter-1 (PEPT1), and the impact of inter-individual pharmacokinetic variation due to genetic polymorphisms of solute-carrier-family-15-member-1 (SLC15A1) has been a topic of great debate. The main objective of this study was to analyze and interpret cefaclor pharmacokinetic variations according to genetic polymorphisms in SLC15A1 exons 5 and 16. The previous cefaclor bioequivalence results were integrated with additional SLC15A1 exons 5 and 16 genotyping results. An analysis of the structure-based functional impact of SLC15A1 exons 5 and 16 genetic polymorphisms was recently performed using a PEPT1 molecular modeling approach. In cefaclor pharmacokinetic analysis results according to SLC15A1 exons 5 and 16 genetic polymorphisms, no significant differences were identified between genotype groups. Furthermore, in the population pharmacokinetic modeling, genetic polymorphisms in SLC15A1 exons 5 and 16 were not established as effective covariates. PEPT1 molecular modeling results also confirmed that SLC15A1 exons 5 and 16 genetic polymorphisms did not have a significant effect on substrate interaction with cefaclor and did not have a major effect in terms of structural stability. This was determined by comprehensively considering the insignificant change in energy values related to cefaclor docking due to point mutations in SLC15A1 exons 5 and 16, the structural change in conformations confirmed to be less than 0.05 Å, and the relative stabilization of molecular dynamic simulation energy values. As a result, molecular structure-based analysis recently suggested that SLC15A1 exons 5 and 16 genetic polymorphisms of PEPT1 were limited to being the main focus in interpreting the pharmacokinetic diversity of cefaclor.


Subject(s)
Cefaclor , Peptide Transporter 1 , Humans , Peptide Transporter 1/genetics , Peptide Transporter 1/metabolism , Cefaclor/pharmacokinetics , Exons/genetics , Genotype , Polymorphism, Genetic , Anti-Bacterial Agents/pharmacokinetics , Polymorphism, Single Nucleotide , Models, Molecular
2.
J Agric Food Chem ; 72(22): 12719-12724, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38789103

ABSTRACT

Lactononadecapeptide (LNDP; NIPPLTQTPVVVPPFLQPE), a casein-derived peptide comprising 19 residues, is known for its capacity to enhance cognitive function. This study aimed to explore the transepithelial transport and stability of LNDP. Results showed that LNDP retained over 90% stability after 2 h of treatment with gastrointestinal enzymes. The stability of LNDP on Caco-2 cell monolayers ranged from 93.4% ± 0.9% to 101.1% ± 1.2% over a period of 15-60 min, with no significant differences at each time point. The permeability of LNDP across an artificial lipid membrane was very low with the effective permeability of 3.6 × 10-11 cm/s. The Caco-2 assay demonstrated that LNDP could traverse the intestinal epithelium, with an apparent permeability of 1.22 × 10-6 cm/s. Its transport was significantly inhibited to 67.9% ± 5.0% of the control by Gly-Pro, a competitor of peptide transporter 1 (PEPT1). Furthermore, PEPT1 knockdown using siRNA significantly inhibited LNDP transport by 77.6% ± 1.9% in Caco-2 cell monolayers. The LNDP uptake in PEPT1-expressing HEK293 cells was significantly higher (54.5% ± 14.6%) than that in mock cells. These findings suggest that PEPT1 plays a crucial role in LNDP transport, and LNDP exhibits good resistance to gastrointestinal enzymes.


Subject(s)
Caseins , Humans , Caco-2 Cells , Biological Transport , Caseins/metabolism , Caseins/chemistry , Caseins/genetics , Peptide Transporter 1/genetics , Peptide Transporter 1/metabolism , Intestinal Mucosa/metabolism , Enzyme Stability , Peptides/chemistry , Peptides/metabolism
3.
Adv Sci (Weinh) ; 11(24): e2306671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639383

ABSTRACT

Cancer metastasis is the leading cause of mortality in patients with hepatocellular carcinoma (HCC). To meet the rapid malignant growth and transformation, tumor cells dramatically increase the consumption of nutrients, such as amino acids. Peptide transporter 1 (PEPT1), a key transporter for small peptides, has been found to be an effective and energy-saving intracellular source of amino acids that are required for the growth of tumor cells. Here, the role of PEPT1 in HCC metastasis and its underlying mechanisms is explored. PEPT1 is upregulated in HCC cells and tissues, and high PEPT1 expression is associated with poor prognosis in patients with HCC. PEPT1 overexpression dramatically promoted HCC cell migration, invasion, and lung metastasis, whereas its knockdown abolished these effects both in vitro and in vivo. Mechanistic analysis revealed that high PEPT1 expression increased cellular dipeptides in HCC cells that are responsible for activating the MAP4K4/G3BP2 signaling pathway, ultimately facilitating the phosphorylation of G3BP2 at Thr227 and enhancing HCC metastasis. Taken together, these findings suggest that PEPT1 acts as an oncogene in promoting HCC metastasis through dipeptide-induced MAP4K4/G3BP2 signaling and that the PEPT1/MAP4K4/G3BP2 axis can serve as a promising therapeutic target for metastatic HCC.


Subject(s)
Carcinoma, Hepatocellular , Dipeptides , Liver Neoplasms , Peptide Transporter 1 , Signal Transduction , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Dipeptides/metabolism , Dipeptides/pharmacology , Mice , Signal Transduction/genetics , Peptide Transporter 1/metabolism , Peptide Transporter 1/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Neoplasm Metastasis , Male , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Movement/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice, Nude
4.
Bioorg Med Chem Lett ; 96: 129502, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37806498

ABSTRACT

Camptothecin (CPT) and its derivatives are potent candidates for cancer treatment. However, the clinical applications are largely restricted by non-selectivity and severe toxicities. The peptide transporter 1 (PEPT1), which is highly expressed in human intestines, has been found to be overexpressed in several cancer cells. This discovery suggests that PEPT1 has the potential to serve as a therapeutic target for both improving bioavailability and cancer-targeting treatment. Therefore, a prodrug approach for CPT targeting at PEPT1 highly expressed cancer cells was adopted in the present study. Eighteen CPT prodrugs, its peptidic conjugates, were synthesized and the structures were confirmed by NMR and HRMS. The protein expression profiles of PEPT1 in different cell lines were performed using immunofluorescence assay and western blotting analysis. The cytotoxicity of CPT prodrugs and their uptake via competition with Gly-Sar, a typical substrate of PEPT1, were evaluated in both PEPT1-overexpressed and under expressed cells. The results demonstrated that most CPT prodrugs significantly impaired Gly-Sar uptake, suggesting a higher affinity of CPT-peptidic conjugates for PEPT1 and PEPT1 overexpression cells. In addition, these prodrugs demonstrated a higher capability for inhibiting cell growth in PEPT1 highly-expressed cancer cells compared to PEPT1 under expressed cells. These results indicated that this peptidic prodrug strategy might offer great potential for improved tumor selectivity and chemotherapeutic efficacy of CPT.


Subject(s)
Neoplasms , Prodrugs , Humans , Prodrugs/chemistry , Peptide Transporter 1/metabolism , Cell Line , Biological Transport , Camptothecin/pharmacology , Camptothecin/chemistry
5.
Biopharm Drug Dispos ; 44(5): 372-379, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37507848

ABSTRACT

Irinotecan causes severe gastrointestinal damage, which may affect the expression of intestinal transporters. However, neither the expression of peptide transporter 1 (Pept1) nor the pharmacokinetics of Pept1 substrate drugs has been investigated under irinotecan-induced gastrointestinal damage. Therefore, the present study quantitatively investigated the effects of irinotecan-induced gastrointestinal damage on the intestinal expression of Pept1 and absorption of cephalexin (CEX), a typical Pept1 substrate, in rats. Irinotecan was administered intravenously to rats for 4 days to induce gastrointestinal damage. The expression of Pept1 mRNA and the Pept1 protein in the upper, middle, and lower segments of the small intestine of irinotecan-treated rats was assessed by quantitative real-time polymerase chain reaction (PCR) and western blotting, respectively. The pharmacokinetic profile of CEX was examined after its oral or intravenous administration (10 mg/kg). In irinotecan-treated rats, ∼2-fold increases in Pept1 protein levels were observed in all three segments, whereas mRNA levels remained unchanged. The oral bioavailability of CEX significantly decreased to 76% of that in control rats. The decrease in passive diffusion caused by intestinal damage may have overcome the increase in Pept1-mediated uptake. In conclusion, irinotecan may decrease the intestinal absorption of Pept1 substrate drugs; however, it increased the expression of intestinal Pept1.


Subject(s)
Cephalexin , Symporters , Rats , Animals , Cephalexin/metabolism , Peptide Transporter 1/genetics , Peptide Transporter 1/metabolism , Irinotecan , Symporters/metabolism , RNA, Messenger/metabolism , Intestinal Absorption
6.
Biosci Biotechnol Biochem ; 87(2): 197-207, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36521839

ABSTRACT

The protamine-derived peptide arginine-proline-arginine (RPR) can ameliorate lifestyle-related diseases such as obesity and hypercholesterolemia. Thus, we hypothesized that the hypolipidemic activity of RPR could attenuate events leading to non-alcoholic fatty liver disease. Addition of 2 m m oleic acid (OA) to the culture medium induced fatty liver conditions in HepG2 cells. The OA + RPR group showed significantly decreased cellular or medium triglyceride (TG) level compared with the OA group. Stearoyl-CoA desaturase-1 (SCD1) or sterol regulatory element-binding protein 1 (SREBP1) protein level was significantly lower in the OA + RPR group than in the OA group. In the R + P + R amino acid mixture-treated group, the TG level was not significantly different from that in the OA-treated group. The OA + RP- or OA + PR-treated groups showed significantly decreased cellular TG level compared with the OA group. Moreover, the effect of RPR disappeared when the peptide transporter 1 (PepT1) was knocked down with a siRNA. Collectively, our results demonstrated that RPR effectively ameliorated hepatic steatosis in HepG2 cells via the PepT1 pathway.


Subject(s)
Lipogenesis , Non-alcoholic Fatty Liver Disease , Humans , Oleic Acid/pharmacology , Hep G2 Cells , Peptide Transporter 1/metabolism , Protamines , Non-alcoholic Fatty Liver Disease/metabolism , Peptides/metabolism , Proline/metabolism
7.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(11): 1132-1137, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36567554

ABSTRACT

OBJECTIVE: To investigate the role of cholinergic anti-inflammatory pathway in the regulation of peptide transporter 1 (PepT1) expression in small intestinal epithelium of septic rats by Ghrelin. METHODS: One hundred adult male Sprague-Dawley (SD) rats were randomly divided into sham operation group, sepsis group, sepsis+vagotomy group, sepsis+Ghrelin group, and sepsis+vagotomy+Ghrelin group, with 20 rats in each group. In the sham operation group, the cecum was separated after laparotomy, without ligation and perforation. In the sepsis group, the rats received cecal ligation puncture (CLP). In the sepsis+vagotomy group, the rats received CLP and vagotomy after laparotomy. In the sepsis+Ghrelin group, 100 µmol/L Ghrelin was intravenously injected after CLP immediately. The rats in the sepsis+vagotomy+Ghrelin group received CLP and vagotomy at the same time, then the Ghrelin was intravenously injected immediately with the same dose as the sepsis+Ghrelin group. Ten rats in each group were taken to observe their survival within 7 days. The remaining 10 rats were sacrificed 20 hours after the operation to obtain venous blood and small intestinal tissue. The condition of the abdominal intestine was observed. The injury of intestinal epithelial cells was observed with transmission electron microscopy. The contents of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in serum and small intestinal tissue were detected by enzyme-linked immunosorbent assay (ELISA). The brush border membrane vesicle (BBMV) was prepared, the levels of mRNA and protein expression of PepT1 in the small intestinal epithelium were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and Western blotting. RESULTS: All rats in the sham operation group survived at 7 days after operation. The 7-day cumulative survival rate of rats in the sepsis group was significantly lower than that in the sham operation group (20% vs. 100%, P < 0.05). The cumulative survival rate of rats after Ghrelin intervention was improved (compared with sepsis group: 40% vs. 20%, P < 0.05), but the protective effect of Ghrelin was weakened after vagotomy (compared with sepsis+Ghrelin group: 10% vs. 40%, P < 0.05). Compared with the sham operation group, in the sepsis group, the small intestine and cecum were dull red, the intestinal tubules were swollen and filled with gas, the intestinal epithelial cells were seriously injured under transmission electron microscopy, the levels of TNF-α and IL-1ß in serum and small intestinal were significantly increased, and the expression levels of PepT1 mRNA and protein in the small intestinal epithelium were significantly decreased. It indicated that the sepsis rat model was successfully prepared. After vagotomy, the intestinal swelling and gas accumulation became worse in septic rats, leading to the death of all rats. Compared with the sepsis group, the abdominal situation in the sepsis+Ghrelin group was improved, the injury of intestinal epithelial cells was alleviated, the serum and small intestinal TNF-α and IL-1ß were significantly decreased [serum TNF-α (ng/L): 253.27±23.32 vs. 287.90±19.48, small intestinal TNF-α (ng/L): 95.27±11.47 vs. 153.89±18.15, serum IL-1ß (ng/L): 39.16±4.47 vs. 54.26±7.27, small intestinal IL-1ß (ng/L): 28.47±4.13 vs. 42.26±2.59, all P < 0.05], and the expressions of PepT1 mRNA and protein in the small intestinal epithelium were significantly increased [PepT1 mRNA (2-ΔΔCt): 0.66±0.05 vs. 0.53±0.06, PepT1 protein (PepT1/GAPDH): 0.80±0.04 vs. 0.60±0.05, both P < 0.05]. Compared with the sepsis+Ghrelin group, after vagotomy in the sepsis+vagotomy+Ghrelin group, the effect of Ghrelin on reducing the release of inflammatory factors in sepsis rats was significantly reduced [serum TNF-α (ng/L): 276.58±19.88 vs. 253.27±23.32, small intestinal TNF-α (ng/L): 144.28±12.99 vs. 95.27±11.47, serum IL-1ß (ng/L): 48.15±3.21 vs. 39.16±4.47, small intestinal IL-1ß (ng/L): 38.75±4.49 vs. 28.47±4.13, all P < 0.05], the up-regulated effect on the expression of PepT1 in small intestinal epithelium was lost [PepT1 mRNA (2-ΔΔCt): 0.58±0.03 vs. 0.66±0.05, PepT1 protein (PepT1/GAPDH): 0.70±0.02 vs. 0.80±0.04, both P < 0.05], and the injury of small intestinal epithelial cells was worse. CONCLUSIONS: Ghrelin plays a protective role in sepsis by promoting cholinergic neurons to inhibit the release of inflammatory factors, thereby promoting the transcription and translation of PepT1.


Subject(s)
Cholinergic Neurons , Ghrelin , Intestine, Small , Neuroimmunomodulation , Peptide Transporter 1 , Sepsis , Animals , Male , Rats , Ghrelin/metabolism , Intestinal Mucosa/metabolism , Peptide Transporter 1/genetics , Peptide Transporter 1/metabolism , Rats, Sprague-Dawley , RNA, Messenger/metabolism , Sepsis/metabolism , Tumor Necrosis Factor-alpha/metabolism , Intestine, Small/metabolism , Cholinergic Neurons/metabolism
8.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36047828

ABSTRACT

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Subject(s)
Edible Grain , Glucose , Nitrate Transporters , Peptide Transporter 1 , Plant Proteins , Sucrose , Zea mays , Humans , Edible Grain/genetics , Edible Grain/growth & development , Glucose/metabolism , HEK293 Cells , Nitrate Transporters/genetics , Nitrate Transporters/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose/metabolism , Zea mays/growth & development , Zea mays/metabolism , Peptide Transporter 1/genetics , Peptide Transporter 1/metabolism , Biological Transport
9.
Biomed Res Int ; 2022: 2988159, 2022.
Article in English | MEDLINE | ID: mdl-36124064

ABSTRACT

Bladder cancer (BCa) is an increasingly severe clinical and public health issue. Therefore, we aim to investigate BCa susceptibility loci in the Chinese population. In this study, 487 BCa patients and 563 controls were recruited from the First Affiliated Hospital of China Medical University from July 2015 to September 2020. A total of ten single-nucleotide polymorphisms (SNPs) in solute carrier family 15 member 1 (SLC15A1), CWC27 spliceosome associated cyclophilin (CWC27), or UDP glucuronosyltransferase family 1 member A3 (UGT1A3) genes were genotyped. The associations between the candidate SNPs and BCa were analyzed using genotype and haplotype analysis. The results demonstrated that Rs4646227 of SLC15A1 has a significant association with BCa. The patients with CG (OR =2.513, p < 0.05) and GG (OR =2.859, p < 0.05) genotypes had an increasing risk of BCa compared with the CC genotype. For the CWC27 gene, genotypic frequency analysis revealed that the GT or TT genotype of rs2042329 and the CT or TT genotype of rs1870437 were more frequent in BCa patients than those in the control group, indicating that these genotypes were associated with a higher risk of BCa (all p < 0.05). Haplotypes of SLC15A1, UGT1A3, and CWC27 genes found that the C-C-C haplotype of SLC15A1 was associated with a lower risk of BCa while the C-G-C haplotype was associated with a higher risk. For the UGT1A3 gene, a moderate protective effect was observed with the most frequent T-T-C haplotype, and for the CWC27 gene, most of the haplotypes showed no association with BCa, except the G-G-C-T haplotype (order of SNPs: rs2042329-rs7735338-rs1870437-rs2278351, OR =0.81, p =0.038). In sum, this study indicated that rs2042329 and rs1870437 in the CWC27 gene and rs4646227 in the SLC15A1 gene are independent indicators for BCa risk in Chinese people. Further large-scale studies are required to validate these findings. Also, this study provided the theoretical basis for developing new therapeutic drug targeting of BCa.


Subject(s)
Glucuronosyltransferase , Peptide Transporter 1 , Urinary Bladder Neoplasms , Humans , Cyclophilins/genetics , Genetic Predisposition to Disease/genetics , Glucuronosyltransferase/genetics , Peptide Transporter 1/genetics , Urinary Bladder Neoplasms/genetics
10.
Curr Med Chem ; 29(9): 1596-1605, 2022.
Article in English | MEDLINE | ID: mdl-35546503

ABSTRACT

PEPT1 is a vital member of the proton-dependent oligopeptide transporters family (POTs). Many studies have confirmed that PEPT1 plays a critical role in the absorption of dipeptides, tripeptides, and pseudopeptides in the intestinal tract. In recent years, several studies have found that PEPT1 is highly expressed in malignant tumor tissues and cells. The abnormal expression of PEPT1 in tumors may be closely related to the progress of tumors, and hence, could be considered as a potential molecular biomarker for the diagnosis, treatment, and prognosis in malignant tumors. Furthermore, PEPT1 can be used to mediate the targeted delivery of anti-tumor drugs. Herein, the expression, regulation, and role of PEPT1 in tumors in recent years have been reviewed.


Subject(s)
Membrane Transport Proteins , Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Oligopeptides , Peptide Transporter 1/metabolism , Protons
11.
Structure ; 30(7): 1035-1041.e3, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35580608

ABSTRACT

Mammalian peptide transporters, PepT1 and PepT2, mediate uptake of small peptides and are essential for their absorption. PepT also mediates absorption of many drugs and prodrugs to enhance their bioavailability. PepT has twelve transmembrane (TM) helices that fold into an N-terminal domain (NTD, TM1-6) and a C-terminal domain (CTD, TM7-12) and has a large extracellular domain (ECD) between TM9-10. It is well recognized that peptide transport requires movements of the NTD and CTD, but the role of the ECD in PepT1 remains unclear. Here we report the structure of horse PepT1 encircled in lipid nanodiscs and captured in the inward-open apo conformation. The structure shows that the ECD bridges the NTD and CTD by interacting with TM1. Deletion of ECD or mutations to the ECD-TM1 interface impairs the transport activity. These results demonstrate an important role of ECD in PepT1 and enhance our understanding of the transport mechanism in PepT1.


Subject(s)
Symporters , Animals , Biological Transport , Horses , Mammals/metabolism , Molecular Conformation , Peptide Transporter 1/genetics , Peptides , Symporters/genetics , Symporters/metabolism
12.
Amino Acids ; 54(7): 1001-1011, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35386060

ABSTRACT

Hypertension is a major risk factor for kidney and cardiovascular disease. The treatment of hypertensive individuals by selected ACE inhibitors and certain di-and tripeptides halts the progression of renal deterioration and extends life-span. Renal reabsorption of these low molecular weight substrates are mediated by the PEPT1 and PEPT2 cotransporters. This study aims to investigate whether hypertension and ageing affects renal PEPT cotransporters at gene, protein expression and distribution as well as function in the superficial cortex and the outer medulla of the kidney. Membrane vesicles from the brush border (BBMV) and outer medulla (OMMV) were isolated from the kidneys of young Wistar Kyoto (Y-WKY), young spontaneously hypertensive (Y-SHR), and middle aged SHR (M-SHR) rats. Transport activity was measured using the substrate, ß-Ala-Lys (AMCA). Gene expression levels of PEPT genes were assessed with qRT-PCR while renal localisation of PEPT cotransporters was examined by immunohistochemistry with Western Blot validation. The Km and Vmax of renal PEPT1 were decreased significantly in SHR compared to WKY BBMV, whilst the Vmax of PEPT2 showed differences between SHR and WKY. By contrast to the reported cortical distribution of PEPT1, PEPT1-staining was detected in the outer medulla, whilst PEPT2 was expressed primarily in the cortex of all SHR; PEPT1 was significantly upregulated in the cortex of Y-SHR. These outcomes are indicative of a redistribution of PEPT1 and PEPT2 in the kidney proximal tubule under hypertensive conditions that has potential repercussions for nutrient handling and the therapeutic use of ACE inhibitors in hypertensive individuals.


Subject(s)
Hypertension , Symporters , Angiotensin-Converting Enzyme Inhibitors , Animals , Hypertension/genetics , Hypertension/metabolism , Kidney/metabolism , Peptide Transporter 1/genetics , Peptide Transporter 1/metabolism , Peptides/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Rodentia/metabolism , Symporters/genetics , Symporters/metabolism
13.
PLoS One ; 17(2): e0263692, 2022.
Article in English | MEDLINE | ID: mdl-35226682

ABSTRACT

Pharmaceutical excipients are the basic materials and important components of pharmaceutical preparations, and play an important role in improving the efficacy of drugs and reducing adverse reactions. Therefore, selecting suitable excipients for dosage form is an important step in formulation development. An increasing number of studies have revealed that the traditionally regarded "inert" excipients can, however, influence the bioavailability of drugs. Moreover, these effects on the bioavailability of drugs caused by pharmaceutical excipients may differ in between males and females. In this study, the in situ effect of the widely-used pharmaceutical excipient Cremophor RH 40 spanning from 0.001% to 0.1% on the intestinal absorption of ampicillin in male and female rats using closed-loop models was investigated. Cremophor RH 40 ranging from 0.03% to 0.07% increased the absorption of ampicillin in females, however, was decreased in male rats. The mechanism of such an effect on drug absorption is suggested to be due to the interaction between Cremophor RH 40 and two main membrane transporters P-gp and PepT1. Cremophor RH 40 altered the PepT1 protein content in a sex-dependent manner, showing an increase in female rats but a decrease in males. No modification on the PepT1 mRNA abundance was found with Cremophor RH 40, indicating that the excipient may regulate the protein recruitment of the plasma membrane from the preformed cytoplasm pool to alter the PepT1 function. This influence, however, may differ between males and females. As such, the study herein shows that supposedly inert excipient Cremophor RH 40 can influence membrane fluidity, uptake and efflux transporters in a sex- and concentration-dependent manner. These findings, therefore, highlight the need for sex-specific studies in the application of solubilizing excipients in drug formulation development.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Ampicillin , Intestinal Absorption/drug effects , Intestinal Mucosa/metabolism , Peptide Transporter 1/metabolism , Polyethylene Glycols , Sex Characteristics , Ampicillin/pharmacokinetics , Ampicillin/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Male , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Rats , Rats, Wistar
14.
Acta Biomater ; 141: 164-177, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35032720

ABSTRACT

Chitosan oligosaccharide-stearic acid-Valyl-Valyl-Valine/1-2-Dioleoyl-sn-glycero-3-phosphoethanolamine (CSO-SA-VVV5:2/DOPE) nanomicelles were rationally designed and developed for topical drug delivery to the posterior segment of the eye. The new ligand of VVV selected by computer-aided design exhibited better peptide transporter 1 active targeting in human conjunctival epithelial cells (HConEpiC) than other ligands mentioned in this project. The classic membrane fusion lipid of DOPE was indicated to facilitate the stability and lysosomal escape of the mixed nanomicelles. Förster Resonance Energy Transfer was used to investigate the integrity of mixed nanomicelles in HConEpiC after passing through cell monolayer as well as in ocular tissues after topical administration. The results indicated that mixed nanomicelles could keep more intact micellar structure than CSO-SA nanomicelles in transit. These findings suggested that CSO-SA-VVV5:2/DOPE nanomicelles could overcome multiple ocular barriers and offer an efficient strategy for drug delivery from ocular surface to the posterior segment of the eye. STATEMENT OF SIGNIFICANCE: Ocular drug delivery systems face multiple physiological barriers in delivering drugs to the posterior segment of the eye by topical administration. In this study, new ligand of Valyl-Valyl-Valine was selected with computer-aided design for active targeting to peptide transporter 1 and anchored onto nanomicelles. Chitosan oligosaccharide-stearic acid- Valyl-Valyl-Valine/1-2-Dioleoyl-sn-glycero-3-phosphoethanolamine nanomicelles were rational designed. The mixed nanomicelles exhibited better active targeting ability and lysosomal escape. Nanomicellar integrity analysis with fluorescence resonance energy transfer technique demonstrated that mixed nanomicelles significantly enhanced cell permeability and exhibited more intact micellar structure in transit. These results suggested that the mixed nanomicelle eye drops have the potential to deliver drugs from ocular surface to the posterior segment of the eye.


Subject(s)
Chitosan , Chitosan/chemistry , Drug Delivery Systems , Humans , Ligands , Micelles , Oligosaccharides , Ophthalmic Solutions/pharmacology , Peptide Transporter 1
15.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 24-32, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33834547

ABSTRACT

Intestinal absorption of peptides is vital for the overall health and productivity of dairy cows. This study investigated the regulation, uptake and transport of dipeptides in bovine intestinal epithelial cells (BIECs). We also evaluated the effects of time, pH, concentration of the dipeptides, temperature, presence of diethylpyrocarbonate (DEPC)-an inhibitor of PepT1, and other dipeptides (Met-Met, Lys-Lys or Met-Lys), on the uptake and transport of Gly-Sar-FITC, which was a common fluorophore-labelled dipeptide. Under controlled experiments, BIECs were treated with 25 µM LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor) and 25 µM Perifosine (a protein kinase B (AKT) inhibitor). The subsequent expression of PepT1 in the BIECs was assessed by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. It was found that the uptake and transport of Gly-Sar-FITC were significant high at 37℃ than that at 4℃. The optimal pH for transport and uptake of Gly-Sar-FITC was 6.0-6.5, whereas the two properties decreased significantly in the presence of DEPC, Met-Met, Lys-Lys and Met-Lys (p < 0.05). The apical-to-basolateral transport was also found to be significantly higher than the reverse transport (p < 0.05). PI3K and AKT inhibitors were found to significantly suppress the expression of PepT1, thus impairing uptake and transport of Gly-Sar-FITC. Findings of this study thus suggest that the uptake and transport of Gly-Sar-FITC in BIECs are mediated by PepT1, and the PI3K/AKT signalling pathway regulates the absorption of small peptides.


Subject(s)
Phosphatidylinositol 3-Kinases , Symporters , Animals , Biological Transport , Caco-2 Cells , Cattle , Dipeptides , Epithelial Cells/metabolism , Female , Humans , Peptide Transporter 1 , Symporters/genetics , Symporters/metabolism
16.
Protein Expr Purif ; 190: 105990, 2022 02.
Article in English | MEDLINE | ID: mdl-34637915

ABSTRACT

The human peptide transporter hPEPT1 (SLC15A1) is responsible for uptake of dietary di- and tripeptides and a number of drugs from the small intestine by utilizing the proton electrochemical gradient, and hence an important target for peptide-like drug design and drug delivery. hPEPT1 belongs to the ubiquitous major facilitator superfamily that all contain a 12TM core structure, with global conformational changes occurring during the transport cycle. Several bacterial homologues of these transporters have been characterized, providing valuable insight into the transport mechanism of this family. Here we report the overexpression and purification of recombinant hPEPT1 in a detergent-solubilized state. Thermostability profiling of hPEPT1 at different pH values revealed that hPEPT1 is more stable at pH 6 as compared to pH 7 and 8. Micro-scale thermophoresis (MST) confirmed that the purified hPEPT1 was able to bind di- and tripeptides respectively. To assess the in-solution oligomeric state of hPEPT1, negative stain electron microscopy was performed, demonstrating a predominantly monomeric state.


Subject(s)
Gene Expression , Peptide Transporter 1 , Hot Temperature , Humans , Hydrogen-Ion Concentration , Peptide Transporter 1/biosynthesis , Peptide Transporter 1/chemistry , Peptide Transporter 1/genetics , Peptide Transporter 1/isolation & purification , Protein Stability , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
17.
J Med Chem ; 65(6): 4565-4577, 2022 03 24.
Article in English | MEDLINE | ID: mdl-34842428

ABSTRACT

The naturally occurring linear dipeptide JBP923 (trans-4-l-Hyp-l-Ser, HS-tLL) with anti-inflammatory effects showed potential for the treatment of inflammatory bowel disease (IBD). However, colon-specific delivery after oral administration is still a challenge because its absorption is mediated by oligopeptide transporter 1 (PEPT1) in the upper small intestine and because of its instability in the gastrointestinal tract. Therefore, we aimed to enhance the colon-targeting efficiency by modulating HS-tLL chirality to synthesize eight enantiomers. Among these enantiomers, trans-4-d-Hyp-d-Ser, cis-4-l-Hyp-d-Ser, cis-4-d-Hyp-l-Ser, and cis-4-d-Hyp-d-Ser did not work as substrates of PEPT1 and were stable in the gastrointestinal tract, resulting in enhanced colonic accumulation through the paracellular pathway due to the loose tight junctions in IBD. Interestingly, cis-4-d-Hyp-d-Ser exerted the most potent therapeutic effect on IBD. Our findings revealed the impact of chirality on the colonic accumulation of the linear dipeptide, providing strategies for the colon-targeted delivery of the linear dipeptide for the treatment of IBD.


Subject(s)
Inflammatory Bowel Diseases , Peptide Transporter 1 , Symporters , Colon , Dipeptides/chemistry , Dipeptides/pharmacology , Humans , Inflammatory Bowel Diseases/drug therapy , Peptide Transporter 1/chemistry , Serine/pharmacology , Symporters/metabolism
18.
Toxins (Basel) ; 13(12)2021 12 07.
Article in English | MEDLINE | ID: mdl-34941711

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of mortality in diabetes mellitus (DM). Immunomodulatory dysfunction is a primary feature of DM, and the emergence of chronic kidney disease (CKD) in DM abruptly increases CVD mortality compared with DM alone. Endothelial injury and the accumulation of uremic toxins in the blood of DM/CKD patients are known mechanisms for the pathogenesis of CVD. However, the molecular factors that cause this disproportional increase in CVD in the DM/CKD population are still unknown. Since long non-protein-coding RNAs (lncRNAs) play an important role in regulating multiple cellular functions, we used human endothelial cells treated with high glucose to mimic DM and with the uremic toxin indoxyl sulfate (IS) to mimic the endothelial injury associated with CKD. Differentially expressed lncRNAs in these conditions were analyzed by RNA sequencing. We discovered that lnc-SLC15A1-1 expression was significantly increased upon IS treatment in comparison with high glucose alone, and then cascaded the signal of chemokines CXCL10 and CXCL8 via sponging miR-27b, miR-297, and miR-150b. This novel pathway might be responsible for the endothelial inflammation implicated in augmenting CVD in DM/CKD and could be a therapeutic target with future clinical applications.


Subject(s)
Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Indican/genetics , Indican/metabolism , MicroRNAs/metabolism , Renal Insufficiency, Chronic/chemically induced , Toxins, Biological/toxicity , Adult , Aged , Aged, 80 and over , Cardiovascular Diseases/complications , Cardiovascular Diseases/mortality , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Diabetes Mellitus, Type 2/complications , Female , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Middle Aged , Peptide Transporter 1/genetics , Peptide Transporter 1/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Up-Regulation
19.
Biochem J ; 478(20): 3757-3774, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34569600

ABSTRACT

PEPT1 is a proton-coupled peptide transporter that is up-regulated in PDAC cell lines and PDXs, with little expression in the normal pancreas. However, the relevance of this up-regulation to cancer progression and the mechanism of up-regulation have not been investigated. Herein, we show that PEPT1 is not just up-regulated in a large panel of PDAC cell lines and PDXs but is also functional and transport-competent. PEPT2, another proton-coupled peptide transporter, is also overexpressed in PDAC cell lines and PDXs, but is not functional due to its intracellular localization. Using glibenclamide as a pharmacological inhibitor of PEPT1, we demonstrate in cell lines in vitro and mouse xenografts in vivo that inhibition of PEPT1 reduces the proliferation of the cancer cells. These findings are supported by genetic knockdown of PEPT1 with shRNA, wherein the absence of the transporter significantly attenuates the growth of cancer cells, both in vitro and in vivo, suggesting that PEPT1 is critical for the survival of cancer cells. We also establish that the tumor-derived lactic acid (Warburg effect) in the tumor microenvironment supports the transport function of PEPT1 in the maintenance of amino acid nutrition in cancer cells by inducing MMPs and DPPIV to generate peptide substrates for PEPT1 and by generating a H+ gradient across the plasma membrane to energize PEPT1. Taken collectively, these studies demonstrate a functional link between PEPT1 and extracellular protein breakdown in the tumor microenvironment as a key determinant of pancreatic cancer growth, thus identifying PEPT1 as a potential therapeutic target for PDAC.


Subject(s)
Pancreatic Neoplasms/genetics , Peptide Transporter 1/genetics , Symporters/genetics , Tumor Microenvironment/genetics , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glyburide/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Mice , Molecular Targeted Therapy/methods , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Peptide Transporter 1/antagonists & inhibitors , Peptide Transporter 1/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Symporters/metabolism , Tumor Burden/drug effects , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
20.
Article in English | MEDLINE | ID: mdl-34536565

ABSTRACT

To specify the timing of exogenous nutrient consumption in the larvae of two commercially important tuna species, the Pacific bluefin tuna (PBF) Thunnus orientalis and the yellowfin tuna (YFT) Thunnus albacares, the gene expressions of peptide transporter 1 (PEPT1) were examined. The mRNA expressions of PEPT1 first occurred at 2 days post hatching (dph) in PBF larvae and 3 dph for the YFT, and PEPT1 was found to only be expressed in the intestinal tract. The histological changes of the digestive tract of the YFT larvae were observed and compared to PBF larvae from a previous study. The intestines were developed at the hatching day for both species. It was found that the developmental timing of internal organs differed between the species, with the YFT showing an approximately one-day delay. The major organs such as liver, pancreas and gall bladder that excrete digestive enzymes appeared at 1 dph for PBF and 2 dph for YFT. The development of external morphological features was similar to organ development timings, with mouth-opening and first feeding starting at 2 dph for PBF, and 3 dph for YFT. Growth during the first month is rapid and variable for both species, ranging from 1.06 to 1.56 mm/d. Our findings provide new information about the early onset of feeding and larval development for the two species which would contribute to future aquaculture.


Subject(s)
Digestive System/growth & development , Eating , Tuna/growth & development , Age Factors , Animals , Digestive System/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Larva/growth & development , Larva/metabolism , Organogenesis , Peptide Transporter 1/genetics , Peptide Transporter 1/metabolism , Tuna/genetics , Tuna/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...