Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.557
Filter
2.
J Med Virol ; 96(5): e29671, 2024 May.
Article in English | MEDLINE | ID: mdl-38747003

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Subject(s)
Blood-Brain Barrier , COVID-19 , Choroid Plexus , SARS-CoV-2 , Blood-Brain Barrier/virology , Animals , Choroid Plexus/virology , Choroid Plexus/pathology , COVID-19/virology , COVID-19/pathology , COVID-19/complications , COVID-19/physiopathology , Mice , Tight Junctions/virology , Disease Models, Animal , Angiotensin-Converting Enzyme 2/metabolism , Inflammation/virology , Humans , Pericytes/virology , Pericytes/pathology
3.
Cell Mol Life Sci ; 81(1): 225, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769116

ABSTRACT

Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)ß controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRß is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.


Subject(s)
Endothelial Cells , Ischemic Stroke , Lymphokines , Pericytes , Platelet-Derived Growth Factor , Pericytes/metabolism , Pericytes/pathology , Animals , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Mice , Lymphokines/metabolism , Lymphokines/genetics , Platelet-Derived Growth Factor/metabolism , Humans , Endothelial Cells/metabolism , Male , Mice, Inbred C57BL , Brain/metabolism , Brain/pathology , Disease Models, Animal , Neovascularization, Physiologic , Cell Movement
4.
Nat Commun ; 15(1): 4097, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755144

ABSTRACT

Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is essential for the development of new organ systems, but transcriptional control of angiogenesis remains incompletely understood. Here we show that FOXC1 is essential for retinal angiogenesis. Endothelial cell (EC)-specific loss of Foxc1 impairs retinal vascular growth and expression of Slc3a2 and Slc7a5, which encode the heterodimeric CD98 (LAT1/4F2hc) amino acid transporter and regulate the intracellular transport of essential amino acids and activation of the mammalian target of rapamycin (mTOR). EC-Foxc1 deficiency diminishes mTOR activity, while administration of the mTOR agonist MHY-1485 rescues perturbed retinal angiogenesis. EC-Foxc1 expression is required for retinal revascularization and resolution of neovascular tufts in a model of oxygen-induced retinopathy. Foxc1 is also indispensable for pericytes, a critical component of the blood-retina barrier during retinal angiogenesis. Our findings establish FOXC1 as a crucial regulator of retinal vessels and identify therapeutic targets for treating retinal vascular disease.


Subject(s)
Blood-Retinal Barrier , Endothelial Cells , Forkhead Transcription Factors , Retinal Neovascularization , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Retinal Neovascularization/metabolism , Retinal Neovascularization/genetics , Retinal Neovascularization/pathology , Mice , Endothelial Cells/metabolism , Blood-Retinal Barrier/metabolism , TOR Serine-Threonine Kinases/metabolism , Pericytes/metabolism , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Fusion Regulatory Protein 1, Heavy Chain/genetics , Retinal Vessels/metabolism , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Mice, Knockout , Mice, Inbred C57BL , Retina/metabolism , Male , Angiogenesis
5.
Methods Mol Biol ; 2807: 271-283, 2024.
Article in English | MEDLINE | ID: mdl-38743235

ABSTRACT

The blood-brain barrier (BBB) is one of several barriers between the brain and the peripheral blood system to maintain homeostasis. Understanding the interactions between infectious agents such as human immunodeficiency virus type 1 (HIV-1), which are capable of traversing the BBB and causing neuroinflammation requires modeling an authentic BBB in vitro. Such an in vitro BBB model also helps develop means of targeting viruses that reside in the brain via natural immune effectors such as antibodies. The BBB consists of human brain microvascular endothelial cells (HBMECs), astrocytes, and pericytes. Here we report in vitro methods to establish a dual-cell BBB model consisting of primary HBMECs and primary astrocytes to measure the integrity of the BBB and antibody penetration of the BBB, as well as a method to establish a single cell BBB model to study the impact of HIV-1 infected medium on the integrity of such a BBB.


Subject(s)
Astrocytes , Blood-Brain Barrier , Endothelial Cells , HIV Infections , HIV-1 , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Humans , Astrocytes/virology , Astrocytes/metabolism , Astrocytes/immunology , Endothelial Cells/virology , Endothelial Cells/metabolism , Endothelial Cells/immunology , HIV-1/immunology , HIV-1/physiology , HIV Infections/virology , HIV Infections/immunology , Pericytes/virology , Pericytes/metabolism , Pericytes/immunology , Neuroinflammatory Diseases/virology , Neuroinflammatory Diseases/immunology , Coculture Techniques/methods , Cells, Cultured , Brain/virology , Brain/immunology , Brain/metabolism
6.
7.
Front Biosci (Landmark Ed) ; 29(4): 136, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38682184

ABSTRACT

Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder characterized by aberrant amyloid precursor protein (APP) cleavage, pathological aggregations of beta-amyloid (Aß) that make up Aß plaques and hyperphosphorylation of Tau that makes up neurofibrillary tangles (NFTs). Although progress has been made in research on AD, the fundamental causes of this disease have not been fully elucidated. Recent studies have shown that vascular dysfunction especially the loss of pericytes plays a significant role in the onset of AD. Pericytes play a variety of important roles in the nervous system including the regulation of the cerebral blood flow (CBF), the formation and maintenance of the blood-brain barrier (BBB), angiogenesis, and the clearance of toxic substances from the brain. Pericytes participate in the transport of Aß through various receptors, and Aß acts on pericytes to cause them to constrict, detach, and die. The loss of pericytes elevates the levels of Aß1-40 and Aß1-42 by disrupting the integrity of the BBB and reducing the clearance of soluble Aß from the brain interstitial fluid. The aggravated deposition of Aß further exacerbates pericyte dysfunction, forming a vicious cycle. The combined influence of these factors eventually results in the loss of neurons and cognitive decline. Further exploration of the interactions between pericytes and Aß is beneficial for understanding AD and could lead to the identification of new therapeutic targets for the prevention and treatment of AD. In this review, we explore the characterization of pericytes, interactions between pericytes and other cells in the neurovascular unit (NVU), and the physiological functions of pericytes and dysfunctions in AD. This review discusses the interactions between pericytes and Aß, as well as current and further strategies for preventing or treating AD targeting pericytes.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Blood-Brain Barrier , Pericytes , Pericytes/metabolism , Alzheimer Disease/metabolism , Humans , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Animals , Brain/metabolism
8.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683849

ABSTRACT

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Subject(s)
Brain , Cell Differentiation , Pericytes , Transcription Factors , Zebrafish Proteins , Zebrafish , Pericytes/metabolism , Pericytes/cytology , Animals , Zebrafish/metabolism , Zebrafish/embryology , Zebrafish/genetics , Brain/metabolism , Brain/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Gene Expression Regulation, Developmental , Neural Crest/metabolism , Neural Crest/cytology , Mesoderm/metabolism , Mesoderm/cytology , Signal Transduction , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631408

ABSTRACT

Mitochondrial dysregulation is pivotal in Alzheimer's disease (AD) pathogenesis. Calcium governs vital mitochondrial processes impacting energy conversion, oxidative stress, and cell death signaling. Disruptions in mitochondrial calcium (mCa2+) handling induce calcium overload and trigger the opening of mitochondrial permeability transition pore, ensuing energy deprivation and resulting in AD-related neuronal cell death. However, the role of mCa2+ in non-neuronal cells (microglia, astrocytes, oligodendrocytes, endothelial cells, and pericytes) remains elusive. This review provides a comprehensive exploration of mitochondrial heterogeneity and calcium signaling, offering insights into specific differences among various brain cell types in AD.


Subject(s)
Alzheimer Disease , Calcium Signaling , Calcium , Mitochondria , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Mitochondria/metabolism , Mitochondria/pathology , Calcium Signaling/physiology , Animals , Calcium/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Pericytes/metabolism , Pericytes/pathology , Microglia/metabolism , Microglia/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Oxidative Stress , Oligodendroglia/metabolism , Oligodendroglia/pathology , Mitochondrial Permeability Transition Pore/metabolism , Neurons/metabolism , Neurons/pathology
10.
Front Biosci (Landmark Ed) ; 29(4): 141, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38682199

ABSTRACT

Pericytes, a specific type of mesenchymal cell that surround the basement membrane of pulmonary venules and capillaries. They are crucial pathological features observed in individuals with the severe lung disease of pulmonary fibrosis (PF). The presence of pericytes leads to inflammation and fibrosis in the lung interstitium and alveolar space due to the release of various cytokines and chemokines. Pericytes also stimulate the proliferation and activation of fibroblasts, thereby promoting the progression of PF. Previous studies examining the mechanism of action of pericytes have primarily focused on cell signal transduction pathways, cell growth and death processes, and the synthesis and breakdown of extracellular matrix (ECM). Notably, the transforming growth factor-ß (TGF-ß) and Wnt signaling pathways have been associated with the action of pericytes in driving the progression of PF. It is therefore clear that pericytes play an essential role in the development of PF, while also offering possible avenues for targeted therapeutic intervention against this condition. The current article provides a comprehensive review on how pericytes contribute to inflammatory responses, as well as their importance for understanding the mechanism of PF. In addition, this review discusses the potential use of pericyte-targeted approaches for the treatment of patients affected by this debilitating lung disease.


Subject(s)
Pericytes , Pulmonary Fibrosis , Pericytes/pathology , Pericytes/metabolism , Humans , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Animals , Transforming Growth Factor beta/metabolism , Signal Transduction , Extracellular Matrix/metabolism , Wnt Signaling Pathway
11.
Circ Res ; 134(10): 1240-1255, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38563133

ABSTRACT

BACKGROUND: Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. Although aging is one of the main risk factors for cardiovascular disease, the consequences of aging on cardiac pericytes are unknown. METHODS: In this study, we have combined single-nucleus RNA sequencing and histological analysis to determine the effects of aging on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 (regulator of G-protein signaling 5) loss of function and finally have performed pericytes-fibroblasts coculture studies to understand the effect of RGS5 deletion in pericytes on the neighboring fibroblasts. RESULTS: Aging reduced the pericyte area and capillary coverage in the murine heart. Single-nucleus RNA sequencing analysis further revealed that the expression of Rgs5 was reduced in cardiac pericytes from aged mice. In vivo and in vitro studies showed that the deletion of RGS5 impaired cardiac function, induced fibrosis, and morphological changes in pericytes characterized by a profibrotic gene expression signature and the expression of different ECM (extracellular matrix) components and growth factors, for example, TGFB2 and PDGFB. Indeed, culturing fibroblasts with the supernatant of RGS5-deficient pericytes induced their activation as evidenced by the increased expression of αSMA (alpha smooth muscle actin) in a TGFß (transforming growth factor beta)2-dependent mechanism. CONCLUSIONS: Our results have identified RGS5 as a crucial regulator of pericyte function during cardiac aging. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac aging.


Subject(s)
Fibroblasts , Fibrosis , Pericytes , RGS Proteins , Pericytes/metabolism , Pericytes/pathology , Animals , RGS Proteins/genetics , RGS Proteins/metabolism , RGS Proteins/deficiency , Fibroblasts/metabolism , Fibroblasts/pathology , Mice , Cells, Cultured , Aging/metabolism , Aging/pathology , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Male , Coculture Techniques
12.
Dev Cell ; 59(10): 1233-1251.e5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38569546

ABSTRACT

De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively explored. Here, through in vivo lineage tracing and mouse modeling, we observed that platelet-derived growth factor receptor beta (PDGFRß)+ pericytes give rise to developmental brown adipocytes but not to those in adult homeostasis. By contrast, T-box 18 (TBX18)+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRß+ pericytes promotes brown adipogenesis by downregulating PDGFRß. Furthermore, inhibition of Notch signaling in PDGFRß+ pericytes mitigates high-fat, high-sucrose (HFHS)-induced glucose and metabolic impairment in mice during their development and juvenile phases. Collectively, these findings show that the Notch/PDGFRß axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health.


Subject(s)
Adipocytes, Brown , Adipogenesis , Cell Differentiation , Receptor, Platelet-Derived Growth Factor beta , Receptors, Notch , Stem Cells , Animals , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptors, Notch/metabolism , Mice , Adipocytes, Brown/metabolism , Adipocytes, Brown/cytology , Stem Cells/metabolism , Stem Cells/cytology , Signal Transduction , Pericytes/metabolism , Pericytes/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/cytology , Mice, Inbred C57BL , Male
13.
EMBO J ; 43(8): 1519-1544, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528180

ABSTRACT

Pericytes and endothelial cells (ECs) constitute the fundamental components of blood vessels. While the role of ECs in tumor angiogenesis and the tumor microenvironment is well appreciated, pericyte function in tumors remains underexplored. In this study, we used pericyte-specific deletion of the nitric oxide (NO) receptor, soluble guanylate cyclase (sGC), to investigate via single-cell RNA sequencing how pericytes influence the vascular niche and the tumor microenvironment. Our findings demonstrate that pericyte sGC deletion disrupts EC-pericyte interactions, impairing Notch-mediated intercellular communication and triggering extensive transcriptomic reprogramming in both pericytes and ECs. These changes further extended their influence to neighboring cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) through paracrine signaling, collectively suppressing tumor growth. Inhibition of pericyte sGC has minimal impact on quiescent vessels but significantly increases the vulnerability of angiogenic tumor vessels to conventional anti-angiogenic therapy. In conclusion, our findings elucidate the role of pericytes in shaping the tumor vascular niche and tumor microenvironment and support pericyte sGC targeting as a promising strategy for improving anti-angiogenic therapy for cancer treatment.


Subject(s)
Neoplasms , Pericytes , Humans , Pericytes/pathology , Pericytes/physiology , Soluble Guanylyl Cyclase , Endothelial Cells/physiology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neoplasms/genetics , Neoplasms/pathology , Guanylate Cyclase , Tumor Microenvironment
14.
J Cereb Blood Flow Metab ; 44(6): 881-895, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513138

ABSTRACT

The blood-brain barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional changes during aging, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. In recent years, advances in microscopy and high-throughput bioinformatics have allowed a more in-depth investigation of the aging mechanisms of BBB. This review summarizes age-related alterations of the BBB structure and function from six perspectives: endothelial cells, astrocytes, pericytes, basement membrane, microglia and perivascular macrophages, and fibroblasts, ranging from the molecular level to the human multi-system level. These basic components are essential for the proper functioning of the BBB. Recent imaging methods of BBB were also reviewed. Elucidation of age-associated BBB changes may offer insights into BBB homeostasis and may provide effective therapeutic strategies to protect it during aging.


Subject(s)
Aging , Blood-Brain Barrier , Blood-Brain Barrier/metabolism , Humans , Aging/physiology , Animals , Endothelial Cells/metabolism , Pericytes/metabolism , Pericytes/physiology , Astrocytes/metabolism , Astrocytes/physiology
15.
Chem Biol Interact ; 393: 110939, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38490643

ABSTRACT

Cisplatin (CDDP) is broadly employed to treat different cancers, whereas there are no drugs approved by the Food and Drug Administration (FDA) for preventing its side effects, including ototoxicity. Quercetin (QU) is a widely available natural flavonoid compound with anti-tumor and antioxidant properties. The research was designed to explore the protective effects of QU on CDDP-induced ototoxicity and its underlying mechanisms in male C57BL/6 J mice and primary cultured pericytes (PCs). Hearing changes, morphological changes of stria vascularis, blood labyrinth barrier (BLB) permeability and expression of apoptotic proteins were observed in vivo by using the auditory brainstem response (ABR) test, HE staining, Evans blue staining, immunohistochemistry, western blotting, etc. Oxidative stress levels, mitochondrial function and endothelial barrier changes were observed in vitro by using DCFH-DA probe detection, flow cytometry, JC-1 probe, immunofluorescence and the establishment in vitro BLB models, etc. QU pretreatment activates the PI3K/AKT signaling pathway, inhibits CDDP-induced oxidative stress, protects mitochondrial function, and reduces mitochondrial apoptosis in PCs. However, PI3K/AKT specific inhibitor (LY294002) partially reverses the protective effects of QU. In addition, in vitro BLB models were established by coculturing PCs and endothelial cells (ECs), which suggests that QU both reduces the CDDP-induced apoptosis in PCs and improves the endothelial barrier permeability. On the whole, the research findings suggest that QU can be used as a novel treatment to reduce CDDP-induced ototoxicity.


Subject(s)
Cisplatin , Ototoxicity , Mice , Animals , Male , Cisplatin/pharmacology , Cisplatin/metabolism , Pericytes/metabolism , Quercetin/pharmacology , Quercetin/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells/metabolism , Ototoxicity/metabolism , Mice, Inbred C57BL , Oxidative Stress , Apoptosis
18.
Stem Cell Res Ther ; 15(1): 59, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433209

ABSTRACT

BACKGROUND: Pericytes are multifunctional contractile cells that reside on capillaries. Pericytes are critical regulators of cerebral blood flow and blood-brain barrier function, and pericyte dysfunction may contribute to the pathophysiology of human neurological diseases including Alzheimers disease, multiple sclerosis, and stroke. Induced pluripotent stem cell (iPSC)-derived pericytes (iPericytes) are a promising tool for vascular research. However, it is unclear how iPericytes functionally compare to primary human brain vascular pericytes (HBVPs). METHODS: We differentiated iPSCs into iPericytes of either the mesoderm or neural crest lineage using established protocols. We compared iPericyte and HBVP morphologies, quantified gene expression by qPCR and bulk RNA sequencing, and visualised pericyte protein markers by immunocytochemistry. To determine whether the gene expression of neural crest iPericytes, mesoderm iPericytes or HBVPs correlated with their functional characteristics in vitro, we quantified EdU incorporation following exposure to the key pericyte mitogen, platelet derived growth factor (PDGF)-BB and, contraction and relaxation in response to the vasoconstrictor endothelin-1 or vasodilator adenosine, respectively. RESULTS: iPericytes were morphologically similar to HBVPs and expressed canonical pericyte markers. However, iPericytes had 1864 differentially expressed genes compared to HBVPs, while there were 797 genes differentially expressed between neural crest and mesoderm iPericytes. Consistent with the ability of HBVPs to respond to PDGF-BB signalling, PDGF-BB enhanced and a PDGF receptor-beta inhibitor impaired iPericyte proliferation. Administration of endothelin-1 led to iPericyte contraction and adenosine led to iPericyte relaxation, of a magnitude similar to the response evoked in HBVPs. We determined that neural crest iPericytes were less susceptible to PDGFR beta inhibition, but responded most robustly to vasoconstrictive mediators. CONCLUSIONS: iPericytes express pericyte-associated genes and proteins and, exhibit an appropriate physiological response upon exposure to a key endogenous mitogen or vasoactive mediators. Therefore, the generation of functional iPericytes would be suitable for use in future investigations exploring pericyte function or dysfunction in neurological diseases.


Subject(s)
Induced Pluripotent Stem Cells , Pericytes , Humans , Becaplermin/pharmacology , Endothelin-1/pharmacology , Adenosine , Cell Proliferation
19.
Genes (Basel) ; 15(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38540357

ABSTRACT

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Subject(s)
Gene Expression Profiling , Lung , Animals , Humans , Mice , Lung/metabolism , Mammals/genetics , Pericytes , Phenotype , Transcriptome/genetics , Infant, Newborn
20.
Brain Res ; 1832: 148849, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452844

ABSTRACT

The present study focused on whether hypoxia-inducible factor-1alpha (HIF-1α) and platelet-derived factor-beta (PDGF-ß) are involved in the crosstalk between brain microvascular endothelial cells (BMECs) and brain vascular pericytes (BVPs) under ischaemic-hypoxic conditions. Mono-cultures or co-cultures of BVPs and BMECs were made for the construction of the blood-brain barrier (BBB) model in vitro and then exposed to control and oxygen-glucose deprivation (OGD) conditions. BBB injury was determined by assessing the ability, apoptosis, and migration of BVPs and the transendothelial electrical resistance and horseradish peroxidase permeation of BMECs. Relative mRNA and protein levels of HIF-1α and PDGF-ß, as well as tight junction proteins ZO-1 and claudin-5 were analyzed by western blotting, reverse transcription quantitative PCR, and/or immunofluorescence staining. Dual-luciferase reporter assays assessed the relationship between PDGF-ß and HIF-1α. Co-culturing with BMECs alleviated OGD-induced reduction in BVP viability, elevation in BVP apoptosis, and repression in BVP migration. Co-culturing with BVPs protected against OGD-induced impairment on BMEC permeability. OGD-induced HIF-1α upregulation enhanced PDGF-ß expression in mono-cultured BMECs and co-cultured BMECs with BVPs. Knockdown of HIF-1α impaired the effect of BMECs on BVPs under OGD conditions, and PDGFR-ß silencing in BVPs blocked the crosstalk between BMECs and BVPs under OGD conditions. The crosstalk between BMECs and BVPs was implicated in OGD-induced BBB injury through the HIF-1α/PDGF-ß signaling.


Subject(s)
Endothelial Cells , Oxygen , Brain/metabolism , Endothelial Cells/metabolism , Glucose/metabolism , Hypoxia/metabolism , Oxygen/metabolism , Pericytes/metabolism , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...